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Classic AMR parser (e.g. JAMR 2014)
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Not just nodes and edges
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Hidden compositional structure
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Hidden compositional structure
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Principle of compositionality: the meaning of a complex expression is 
determined by the meanings of its constituent expressions and the 
rules used to combine them.

• Widely accepted in linguistics, long history (Frege 1800s) 
• Use this knowledge to guide machine learning!
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• Empty argument slots are labeled with sources* S,O,… (subject, object,…)



Apply-Modify (AM) Algebra
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• Have ‘apply’ operation for each source, e.g. APPO
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• Always need to resolve reentrancies first 
• Types encode reentrencies 

➡ use type system to determine operation order
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Model
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1. Supertagging: score graph fragments for each word 

2. Dependency model: score operations 

3. Decoding: find highest-scoring well-typed tree
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1. Supertagging
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E.g. Lewis et al. (2014) for CCG
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2. Dependency Model
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Kiperwasser & Goldberg (2016) for syntactic dependencies
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3. Decoding
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• ill-typed trees do not evaluate to AMRs
• ill-typed trees to not match our linguistic intuitions

• Exact typed decoding is NP-hard
• Untyped decoding: 74% of trees are ill-typed

➡ Approximate decoders

Find the best well-typed dependency tree
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Approximate decoders
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1. Fix unlabeled tree

A: Fixed tree

The   witch         cast       a       spell
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2. Label tree, with type checking

B: Projective: can only combine adjacent constituents

"CKY parsing with types as nonterminals"
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Classic AMR parser (graph decoder)
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Results
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Model Method Smatch 
score

JAMR (Flanigan et al. 2016) graph decoder 67

Foland & Martin 2017 graph decoder 70.7

van Noord & Bos 2017 neural seq2seq 68.5

Lyu & Titov (ACL 2018) graph decoder 73.7

Our baseline graph decoder 66.1

Our projective decoder 70.2

Our fixed tree decoder 70.2

Dataset: LDC2015E86
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• We built a competitive compositional AMR parser 

• Clear avenues to improvement 
• Update to recent advancements in training regimen (e.g. Lyu & 

Tivov 2018) 

• Look into specific phenomena, e.g. 
• anaphora 
• ellipsis 

• Future work: extend method to other formalisms
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