AMR dependency parsing with a typed semantic algebra

<u>Jonas Groschwitz</u>*^, Matthias Lindemann*, Meaghan Fowlie*, Mark Johnson^, Alexander Koller*

*Saarland University

^Macquarie University

ACL 2018 Melbourne, Australia July 17

Meaghan Fowlie Saarland University

Mark Johnson Macquarie University

Alexander Koller Saarland University

Abstract Meaning Representation (AMR)

Banarescu et al. 2013

The witch tried to cast a spell

Abstract Meaning Representation (AMR)

Banarescu et al. 2013

The witch tried to cast a spell

Classic AMR parser (e.g. JAMR 2014)

The witch tried to cast a spell

Not just nodes and edges

Not just nodes and edges

Hidden compositional structure

Principle of compositionality: the meaning of a complex expression is determined by the meanings of its constituent expressions and the rules used to combine them.

Hidden compositional structure

Principle of compositionality: the meaning of a complex expression is determined by the meanings of its constituent expressions and the rules used to combine them.

Hidden compositional structure

Principle of compositionality: the meaning of a complex expression is determined by the meanings of its constituent expressions and the rules used to combine them.

- Widely accepted in linguistics, long history (Frege 1800s)
- Use this knowledge to guide machine learning!

Apply-Modify (AM) Algebra

G. et al, IWCS 2017

Apply-Modify (AM) Algebra

G. et al, IWCS 2017

- try spell witch cast
- Empty argument slots are labeled with sources* S,O,... (subject, object,...)

Apply-Modify (AM) Algebra

G. et al, IWCS 2017

- Empty argument slots are labeled with sources* S,O,... (subject, object,...)
- Have 'apply' operation for each source, e.g. APPo

spell

cast

try

witch

Typed AM Algebra

Typed AM Algebra

Types control reentrancies

Types control reentrancies

dependencies define operations, but not their order

dependencies define operations, but not their order

here: order does not matter

here: need APPo before APPs to get reentrancies

here: need APPo before APPs to get reentrancies

- Always need to resolve reentrancies first
- Types encode reentrencies
- ➡ use type system to determine operation order

Building instructions for an AMR that we know how to predict

Model

1. Supertagging: score graph fragments for each word

2. Dependency model: score operations

3. Decoding: find highest-scoring well-typed tree

1. Supertagging

E.g. Lewis et al. (2014) for CCG

2. Dependency Model

Kiperwasser & Goldberg (2016) for syntactic dependencies

AMR Corpus

Required training data

The witch cast a spell

AMR Corpus

Required training data

 App_{O}

cast

а

cast

spell

spell

App_S

witch

The witch

AMR Corpus

Required training data

Find the **best well-typed** dependency tree

Find the **best well-typed** dependency tree

- ill-typed trees do not evaluate to AMRs
- ill-typed trees to not match our linguistic intuitions

Find the **best well-typed** dependency tree

- ill-typed trees do not evaluate to AMRs
- ill-typed trees to not match our linguistic intuitions
- Exact typed decoding is NP-hard
- Untyped decoding: 74% of trees are ill-typed

Find the best well-typed dependency tree

- ill-typed trees do not evaluate to AMRs
- ill-typed trees to not match our linguistic intuitions
- Exact typed decoding is NP-hard
- Untyped decoding: 74% of trees are ill-typed

➡ Approximate decoders

Approximate decoders

A: Fixed tree

The witch cast a spell

Approximate decoders

A: Fixed tree

Approximate decoders

A: Fixed tree

B: Projective: can only combine adjacent constituents

"CKY parsing with types as nonterminals"

Results

Classic AMR parser (graph decoder)

Results

Model	Method	Smatch score
JAMR (Flanigan et al. 2016)	graph decoder	67
Foland & Martin 2017	graph decoder	70.7
van Noord & Bos 2017	neural seq2seq	68.5
Lyu & Titov (ACL 2018)	graph decoder	73.7
Our baseline	graph decoder	66.1
Our projective decoder		70.2
Our fixed tree decoder		70.2

Conclusion

- We built a competitive compositional AMR parser
- Clear avenues to improvement
 - Update to recent advancements in training regimen (e.g. Lyu & Tivov 2018)
 - Look into specific phenomena, e.g.
 - anaphora
 - ellipsis
- Future work: extend method to other formalisms

Conclusion

- We built a competitive compositional AMR parser
- Clear avenues to improvement
 - Update to recent advancements in training regimen (e.g. Lyu & Tivov 2018)
 - Look into specific phenomena, e.g.
 - anaphora
 - ellipsis
- Future work: extend method to other formalisms

