
AMR dependency parsing with a
typed semantic algebra

Jonas Groschwitz*^, Matthias Lindemann*,
Meaghan Fowlie*, Mark Johnson^, Alexander Koller*

*Saarland University ^Macquarie University

ACL 2018
Melbourne, Australia

July 17

 2

Matthias Lindemann
Saarland University

Meaghan Fowlie
Saarland University

Mark Johnson
Macquarie University

Alexander Koller
Saarland University

Abstract Meaning Representation (AMR)

 3

witch cast

spell

AR
G

0

AR
G

1

ARG0

ARG1

try

The witch tried to cast a spell

Banarescu et al. 2013

Abstract Meaning Representation (AMR)

 4

witch cast

spell

AR
G

0

AR
G

1

ARG0

ARG1

try

The witch tried to cast a spell

Parsing

Banarescu et al. 2013

 5

 6

Classic AMR parser (e.g. JAMR 2014)

witch cast

spelltry

witch cast

spell

AR
G

0

AR
G

1

ARG0

ARG1

try

Step 1: Predict nodes Step 2: Predict edges

The witch tried to cast a spell

Not just nodes and edges

 7

witch cast

spell

AR
G

0

AR
G

1

ARG0

ARG1

try

Not just nodes and edges

 7

Noun Transitive verb

Control verb

cast

AR
G

0

AR
G

1

ARG0

ARG1

try
spell

witch

Hidden compositional structure

 8

Principle of compositionality: the meaning of a complex expression is
determined by the meanings of its constituent expressions and the
rules used to combine them.

The witch tried to cast a spell

witch AR
G

1

ARG0
S

O

cast
spellAR

G
0 ARG1

S O[S]

try

⊥ ⊥ ⊥

APPO

APPS

APPO

Hidden compositional structure

 8

Principle of compositionality: the meaning of a complex expression is
determined by the meanings of its constituent expressions and the
rules used to combine them.

The witch tried to cast a spell

witch

AR
G

1

ARG0
S

O

cast
spellAR

G
0 ARG1

S O[S]

try

APPO

APPS

APPO

Hidden compositional structure

 8

Principle of compositionality: the meaning of a complex expression is
determined by the meanings of its constituent expressions and the
rules used to combine them.

• Widely accepted in linguistics, long history (Frege 1800s)
• Use this knowledge to guide machine learning!

The witch tried to cast a spell

witch

AR
G

1

ARG0
S

O

cast
spellAR

G
0 ARG1

S O[S]

try

APPO

APPS

APPO

 9

The witch tried to cast a spell

witch cast

spelltry

witch AR
G

1

ARG0
S

O

cast
spellAR

G
0

ARG1

S O[S]

try

APPO

APPS

APPO

 9

The witch tried to cast a spell

difficult

witch cast

spelltry

witch AR
G

1

ARG0
S

O

cast
spellAR

G
0

ARG1

S O[S]

try

APPO

APPS

APPO

 9

The witch tried to cast a spell

easy (easier)

equivalent

witch cast

spelltry

dependencies!
witch AR

G
1

ARG0
S

O

cast
spellAR

G
0

ARG1

S O[S]

try

AppO

AppS AppO

witch AR
G

1

ARG0
S

O

cast
spellAR

G
0

ARG1

S O[S]

try

APPO

APPS

APPO

 9

The witch tried to cast a spell

easy (easier)

equivalent

witch cast

spelltry

Part 1

Part 2

dependencies!
witch AR

G
1

ARG0
S

O

cast
spellAR

G
0

ARG1

S O[S]

try

AppO

AppS AppO

witch AR
G

1

ARG0
S

O

cast
spellAR

G
0

ARG1

S O[S]

try

APPO

APPS

APPO

Apply-Modify (AM) Algebra

 10

witch cast

spelltry

G. et al, IWCS 2017

AR
G

1

ARG0S

O

cast

*HR algebra, Courcelle & Engelfriet 2012

Apply-Modify (AM) Algebra

 10

witch cast

spelltry

G. et al, IWCS 2017

AR
G

1

ARG0S

O

cast

*HR algebra, Courcelle & Engelfriet 2012

• Empty argument slots are labeled with sources* S,O,… (subject, object,…)

Apply-Modify (AM) Algebra

 10

witch cast

spelltry

G. et al, IWCS 2017

AR
G

1

ARG0S

O

cast

*HR algebra, Courcelle & Engelfriet 2012

head

spell

argument

AR
G

1

ARG0 castS

spell

=
AppO

• Empty argument slots are labeled with sources* S,O,… (subject, object,…)

• Have ‘apply’ operation for each source, e.g. APPO

Typed AM Algebra

 11

cast

AR
G

1

ARG0 castS

spell

Has type [S]

witch cast

spelltry

Typed AM Algebra

 11

AR
G

0 ARG1

try

S O[S]

Object must have type [S]

cast

AR
G

1

ARG0 castS

spell

Has type [S]

witch cast

spelltry

Typed AM Algebra

 11

AR
G

0 ARG1

try

S O[S]

Object must have type [S]
Matching sources

automatically merge

cast

spell

AR
G

0

AR
G

1

ARG0

ARG1

try

S

=

AppO

cast

AR
G

1

ARG0 castS

spell

Has type [S]

witch cast

spelltry

Apply-Modify Algebra

 12

witch cast

spell

AR
G

0

AR
G

1

ARG0

ARG1

try

cast

spell

AR
G

0

AR
G

1

ARG0

ARG1

try

S

witch

=

witch cast

spelltry

AppS

The witch tried to cast a spell

 13

Types control reentrancies

AR
G

1

ARG0S

O

cast

AppO

ARG0

S

sleep
ARG0

sleep

AR
G

1

ARG0S cast

=
✘

*cast to sleepHas type [S]

 13

Types control reentrancies

AR
G

1

ARG0S

O

cast

AppO

ARG0

S

sleep
ARG0

sleep

AR
G

1

ARG0S cast

=
✘

*cast to sleep
Object must have type []

Has type [S]

Types control reentrancies

 14

witch

AR
G

0 ARG1

try

S

AR
G

0 ARG1

try

S O[S]

Object must have type [S]

AppO

Has type []

witch

*tried to witch

=
✘

witch cast

spelltry

AM Dependency Trees

 15

dependencies define operations, but not their order

The witch cast a spell

witch AR
G

1

ARG0
S

O

cast
spell

AppS AppO

AM Dependency Trees

 15

dependencies define operations, but not their order

The witch cast a spell

witch AR
G

1

ARG0
S

O

cast
spell

AppS AppO

here: order does not matter

AM Dependency Trees

 16

The witch tried to cast a spell

witch AR
G

1

ARG0
S

O

cast
spellAR

G
0 ARG1

S O[S]

try

AppO

AppS AppO

here: need APPO before APPS to get reentrancies

AM Dependency Trees

 16

The witch tried to cast a spell

witch AR
G

1

ARG0
S

O

cast
spellAR

G
0 ARG1

S O[S]

try

AppO

AppS AppO

here: need APPO before APPS to get reentrancies

• Always need to resolve reentrancies first
• Types encode reentrencies

➡ use type system to determine operation order

AM Dependency Trees

 16

The witch tried to cast a spell

witch AR
G

1

ARG0
S

O

cast
spellAR

G
0 ARG1

S O[S]

try

AppO

AppS AppO

Building instructions for an AMR that we know how to predict

 17

The witch tried to cast a spell

easy (easier)

equivalent

witch cast

spelltry

Part 1

Part 2

witch AR
G

1

ARG0
S

O

cast
spellAR

G
0

ARG1

S O[S]

try

APPO

APPS

APPO

witch AR
G

1

ARG0
S

O

cast
spellAR

G
0

ARG1

S O[S]

try

AppO

AppS AppO

Model

 18

1. Supertagging: score graph fragments for each word

2. Dependency model: score operations

3. Decoding: find highest-scoring well-typed tree

The witch tried to cast a spell

witch AR
G

1

ARG0
S

O

cast
spellAR

G
0

ARG1

S O[S]

try

AppO

AppS AppO

witch AR
G

1

ARG0
S

O

cast
spellAR

G
0

ARG1

S O[S]

try

⊥

AppO AppS✘

1. Supertagging

 19

E.g. Lewis et al. (2014) for CCG

The witch tried … spell

w0 w1 w2 wn

P0 P1 P2 Pn

… bidirectional LSTM

probability distribution
over graph lexicon

word embeddings

AR
G

0

ARG1

S O[S]

try

train to predict

2. Dependency Model

 20

Kiperwasser & Goldberg (2016) for syntactic dependencies

The witch tried … spell

w0 w1 w2 wn

P2 1→

… bidirectional LSTM

probability distribution over operations

word embeddings

train to predict
AppS

triedwitch

 21

witch cast

spell
AR

G
1

ARG0

The witch cast a spell

witch AR
G

1

ARG0
castS

O

spell

AppOAppS

AMR Corpus Required training data

The witch cast a spell

 21

witch cast

spell
AR

G
1

ARG0

The witch cast a spell

witch AR
G

1

ARG0
castS

O

spell

AppOAppS

AMR Corpus Required training data

The witch cast a spell

witch

AR
G

1

ARG0

castS

O

spell

Heuristics

• Alignments
• Attaching edges
• Source names
• Source annotations

The witch cast a spell

 21

witch cast

spell
AR

G
1

ARG0

The witch cast a spell

witch AR
G

1

ARG0
castS

O

spell

AppOAppS

AMR Corpus Required training data

The witch cast a spell

witch

AR
G

1

ARG0

castS

O

spell

Heuristics

• Alignments
• Attaching edges
• Source names
• Source annotations

The witch cast a spell

determine

3. Decoding

 22

Find the best well-typed dependency tree

3. Decoding

 22

• ill-typed trees do not evaluate to AMRs
• ill-typed trees to not match our linguistic intuitions

Find the best well-typed dependency tree

3. Decoding

 22

• ill-typed trees do not evaluate to AMRs
• ill-typed trees to not match our linguistic intuitions

• Exact typed decoding is NP-hard
• Untyped decoding: 74% of trees are ill-typed

Find the best well-typed dependency tree

3. Decoding

 22

• ill-typed trees do not evaluate to AMRs
• ill-typed trees to not match our linguistic intuitions

• Exact typed decoding is NP-hard
• Untyped decoding: 74% of trees are ill-typed

➡ Approximate decoders

Find the best well-typed dependency tree

Approximate decoders

 23

A: Fixed tree

The witch cast a spell
The witch cast a spell

witch AR
G

1

ARG0
castS

O

spell

AppOAppS

Approximate decoders

 23

1. Fix unlabeled tree

A: Fixed tree

The witch cast a spell
The witch cast a spell

witch AR
G

1

ARG0
castS

O

spell

AppOAppS

2. Label tree, with type checking

Approximate decoders

 23

1. Fix unlabeled tree

A: Fixed tree

The witch cast a spell
The witch cast a spell

witch AR
G

1

ARG0
castS

O

spell

AppOAppS

2. Label tree, with type checking

B: Projective: can only combine adjacent constituents

"CKY parsing with types as nonterminals"

Results

 24

 25

Classic AMR parser (graph decoder)

witch cast

spelltry

witch cast

spell

AR
G

0

AR
G

1

ARG0

ARG1

try

Step 1: Predict nodes Step 2: Predict edges

Results

 26

Model Method Smatch
score

JAMR (Flanigan et al. 2016) graph decoder 67

Foland & Martin 2017 graph decoder 70.7

van Noord & Bos 2017 neural seq2seq 68.5

Lyu & Titov (ACL 2018) graph decoder 73.7

Our baseline graph decoder 66.1

Our projective decoder 70.2

Our fixed tree decoder 70.2

Dataset: LDC2015E86

Conclusion

 27

• We built a competitive compositional AMR parser

• Clear avenues to improvement
• Update to recent advancements in training regimen (e.g. Lyu &

Tivov 2018)

• Look into specific phenomena, e.g.
• anaphora
• ellipsis

• Future work: extend method to other formalisms

Conclusion

 27

• We built a competitive compositional AMR parser

• Clear avenues to improvement
• Update to recent advancements in training regimen (e.g. Lyu &

Tivov 2018)

• Look into specific phenomena, e.g.
• anaphora
• ellipsis

• Future work: extend method to other formalisms

we thank

you
AR

G
1

ARG0

