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Abstract Meaning Representation (AMR)

Banarescu et al. 2013
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Abstract Meaning Representation (AMR)
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Parsing
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Classic AMR parser (e.g. JAMR 2014)

Step 1: Predict nodes Step 2: Predict edges
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Not just nodes and edges




Not just nodes and edges

Control verb

Transitive verb



Hidden compositional structure

Principle of compositionality: the meaning of a complex expression is
determined by the meanings of its constituent expressions and the

rules used to combine them.
APPs
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Hidden compositional structure

Principle of compositionality: the meaning of a complex expression is
determined by the meanings of its constituent expressions and the
rules used to combine them.

APPs
APPo
APPo
The witch tried to cast a spell

e \Widely accepted in linguistics, long history (Frege 1800s)
e Use this knowledge to guide machine learning!
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Apply-Modify (AM) Algebra ”‘
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Apply-Modify (AM) Algebra Q‘
(e r—(=

G. etal, IWCS 2017

e Empty argument slots are labeled with sources* S,0,... (subject, object,...)

* Have ‘apply’ operation for each source, e.g. APPo

Appo

e ARGO

ei ARGO

head argument

*HR algebra, Courcelle & Engelfriet 2012 10



Typed AM Algebra Q‘
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Typed AM Algebra ‘

cast

Object must have type [S]

G ARGO

Has type [S]

Matching sources
automatically merge
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The witch tried to cast a spell
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Types control reentrancies

“cast to sleep
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Types control reentrancies

“cast to sleep

Object must have type | |
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Object must have type [S]

*tried to witch
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AM Dependency Trees

dependencies define operations, but not their order
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AM Dependency Trees

dependencies define operations, but not their order

Apps Appo
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ARG1

here: order does not matter

15



AM Dependency Trees

The witch tried to cast a

here: need APPo before APPs to get reentrancies
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AM Dependency Trees

Appo
AppS Appo
n e
ARGO
The witch tried to cast a spell

here: need APPo before APPs to get reentrancies

e Always need to resolve reentrancies first
® [ypes encode reentrencies

= Use type system to determine operation order
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AM Dependency Trees

The witch tried to cast a spell

Building instructions for an AMR that we know how to predict
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Model

1. Supertagging: score graph fragments for each word

=) s &
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2. Dependency model: score operations
Appo APPs

3. Decoding: find highest-scoring well-typed tree
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The witch  tried to cast a spell
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1. Supertagging

E.g. Lewis et al. (2014) for CCG

train to predict
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The witch tried spell
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2. Dependency Model

Kiperwasser & Goldberg (2016) for syntactic dependencies
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AMR Corpus

The witch cast a spell

Required training data

The witch cast a spell
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AMR Corpus Required training data
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AMR Corpus Required training data

@ - @

The witch cast a spell

ARG

determine

Heuristics
> O‘— @

Alignments
Attaching edges The witch cast a spell
Source names

Source annotations

21



3. Decoding

Find the best well-typed dependency tree
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3. Decoding

Find the best well-typed dependency tree

e ||[-typed trees do not evaluate to AMRs

® i|l-typed trees to not match our linguistic intuitions
e Exact typed decoding is NP-hard

e Untyped decoding: 74% of trees are ill-typed

= Approximate decoders



Approximate decoders

A: Fixed tree
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Approximate decoders

A: Fixed tree

1. Fix unlabeled tree
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2. Label tree, with type checking
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Approximate decoders

A: Fixed tree
1. Fix unlabeled tree 2. Label tree, with type checking
, ® o-h
The witch cast a spell
The  witch cast a spell

B: Projective: can only combine adjacent constituents

'CKY parsing with types as nonterminals’
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Results



Classic AMR parser (graph decoder)

Step 1: Predict nodes Step 2: Predict edges
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Results

“
Score

JAMR (Flanigan et al. 2016) graph decoder 67
Foland & Martin 2017 graph decoder 70.7
van Noord & Bos 2017 neural seq2seq 68.5
Lyu & Titov (ACL 2018) graph decoder 73.7
Our baseline graph decoder 66.1
Our projective decoder 70.2
Our fixed tree decoder 70.2

Dataset: LDC2015E86
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Conclusion

e \We built a competitive compositional AMR parser

e Clear avenues to improvement

e Update to recent advancements in training regimen (e.g. Lyu &
Tivov 2018)

e | ook into specific phenomena, e.g.
® anaphora
¢ cllipsis

e Future work: extend method to other formalisms
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