AMR dependency parsing with a
typed semantic algebra

Jonas Groschwitz*/, Matthias Lindemann™,
Meaghan Fowlie™, Mark Johnson”, Alexander Koller*

*Saarland University AMacquarie University

©® UNIVERSITAT
SAARLANDES "
ACL 2018 MACQUARIE
Melbourne, Australia
July 17

Matthias Lindemann
Saarland University

Meaghan Fowlie
Saarland University

Mark Johnson
Macquarie University

Alexander Koller
Saarland University

Abstract Meaning Representation (AMR)

Banarescu et al. 2013

The witch tried to cast a spell

Abstract Meaning Representation (AMR)

Banarescu et al. 2013

Parsing

The witch tried to cast a spell

sntl snt2
crack-02 possible-01 and
ARG2 ARG it ARG 1 \polarity ppl op2

ARGO A possible-01 RG condition
@ ARGO have-org-role-91 RG1 8

RGI ARGO JARG2 RG2
@ @ @ government-organzation @ endanger-Ol
od RGI

Classic AMR parser (e.g. JAMR 2014)

Step 1: Predict nodes Step 2: Predict edges

O
©

The witch tried to cast a spell

Not just nodes and edges

Not just nodes and edges

Control verb

Transitive verb

Hidden compositional structure

Principle of compositionality: the meaning of a complex expression is
determined by the meanings of its constituent expressions and the

rules used to combine them.
APPs

APPo

APPo

Lo () L gty L

The witch tried to cast a spell

Hidden compositional structure

Principle of compositionality: the meaning of a complex expression is
determined by the meanings of its constituent expressions and the
rules used to combine them.

APPs

~~APPo

APPo

5]
i
<
° — @

The witch tried to cast a spell

Hidden compositional structure

Principle of compositionality: the meaning of a complex expression is
determined by the meanings of its constituent expressions and the
rules used to combine them.

APPs
APPo
APPo
The witch tried to cast a spell

e \Widely accepted in linguistics, long history (Frege 1800s)
e Use this knowledge to guide machine learning!

APPs

O

APPo

¢ N (m—Tw

The witch tried to cast a spell

The witch

S O[]

tried

APPs

to

APPo
APPo
o
liﬁﬂqéb
difficult
cast a

spell

APPs

O

APPo

AN :
ARGO
S O[S] S

equivalent

Appo

dependencies!

easy (easier)

The witch tried to cast a spell

APPs

O

APPo

3 3, g
s o[s] . ¢ ‘ P a I’t 1

equivalent

Appo

dependencies!

easy (easier) Part 2

The witch tried to cast a spell

Apply-Modify (AM) Algebra ”‘
(e r—(=

G. etal, IWCS 2017

ei ARGO

*HR algebra, Courcelle & Engelfriet 2012 10

Apply-Modify (AM) Algebra Q‘
(e r—(=

G. etal, IWCS 2017

e Empty argument slots are labeled with sources* S,0,... (subject, object,...)

ei ARGO

*HR algebra, Courcelle & Engelfriet 2012 10

Apply-Modify (AM) Algebra Q‘
(e r—(=

G. etal, IWCS 2017

e Empty argument slots are labeled with sources* S,0,... (subject, object,...)

* Have ‘apply’ operation for each source, e.g. APPo

Appo

e ARGO

ei ARGO

head argument

*HR algebra, Courcelle & Engelfriet 2012 10

Typed AM Algebra Q‘
(o=

e - ‘e

Has type [S]

Typed AM Algebra Q‘
(o))

Has type [S]

11

Typed AM Algebra ‘

cast

Object must have type [S]

G ARGO

Has type [S]

Matching sources
automatically merge

e - ‘e

11

The witch tried to cast a spell

12

Types control reentrancies

“cast to sleep

13

Types control reentrancies

“cast to sleep

Object must have type | |

13

. ou®
Types control reentrancies ‘
(=

Object must have type [S]

*tried to witch

14

AM Dependency Trees

dependencies define operations, but not their order

Apps Appo

7 e)
O oub

The witch cast a spell

ARG1

15

AM Dependency Trees

dependencies define operations, but not their order

Apps Appo

7 e)
O o

The witch cast a spell

ARG1

here: order does not matter

15

AM Dependency Trees

The witch tried to cast a

here: need APPo before APPs to get reentrancies

16

AM Dependency Trees

Appo
AppS Appo
n e
ARGO
The witch tried to cast a spell

here: need APPo before APPs to get reentrancies

e Always need to resolve reentrancies first
® [ypes encode reentrencies

= Use type system to determine operation order

16

AM Dependency Trees

The witch tried to cast a spell

Building instructions for an AMR that we know how to predict

16

APPs
APPo °

APPo

3 7"@, g
“) Part 1
s o[s] S

equivalent

Appo

easy (easier) Part 2

The witch tried to cast a spell

17

Model

1. Supertagging: score graph fragments for each word

=) s &
ARGO
S o[s] S

2. Dependency model: score operations
Appo APPs

3. Decoding: find highest-scoring well-typed tree

Appo

/Api/\ =

The witch tried to cast a spell

18

1. Supertagging

E.g. Lewis et al. (2014) for CCG

train to predict

o
9]
oc
<

probability distribution

Po P P2 Pn .

T T T T over graph lexicon
DN _,I‘ DTS _,l‘_' bidirectional LSTM

Wo W1 W2 Whn word embeddings

The witch tried spell

19

2. Dependency Model

Kiperwasser & Goldberg (2016) for syntactic dependencies

Apps

train to predict 7 \

l witch tried

P._ | probability distribution over operations

< DN ... T/7 bidirectional LSTM

Wo W1 W2 Whn word embeddings

The witch tried spell

AMR Corpus

The witch cast a spell

Required training data

The witch cast a spell

21

AMR Corpus Required training data

@ - @

The witch

ARG

The witch cast a spell

Heuristics :
- Qo=

Alignments
Attaching edges The witch cast a spell
Source names

Source annotations

21

AMR Corpus Required training data

@ - @

The witch cast a spell

ARG

determine

Heuristics
> O‘— @

Alignments
Attaching edges The witch cast a spell
Source names

Source annotations

21

3. Decoding

Find the best well-typed dependency tree

3. Decoding

Find the best well-typed dependency tree

e ||[-typed trees do not evaluate to AMRs

® i|l-typed trees to not match our linguistic intuitions

3. Decoding

Find the best well-typed dependency tree

e ||[-typed trees do not evaluate to AMRs

® i|l-typed trees to not match our linguistic intuitions
e Exact typed decoding is NP-hard

e Untyped decoding: 74% of trees are ill-typed

3. Decoding

Find the best well-typed dependency tree

e ||[-typed trees do not evaluate to AMRs

® i|l-typed trees to not match our linguistic intuitions
e Exact typed decoding is NP-hard

e Untyped decoding: 74% of trees are ill-typed

= Approximate decoders

Approximate decoders

A: Fixed tree

OO

The witch cast a spell
The witch

cast

a spell

23

Approximate decoders

A: Fixed tree

1. Fix unlabeled tree

OO

The witch cast a

spell

2. Label tree, with type checking

Apps Appo

CNZN
® oot

The witch cast a spell

23

Approximate decoders

A: Fixed tree
1. Fix unlabeled tree 2. Label tree, with type checking
, ® o-h
The witch cast a spell
The witch cast a spell

B: Projective: can only combine adjacent constituents

'CKY parsing with types as nonterminals’

23

Results

Classic AMR parser (graph decoder)

Step 1: Predict nodes Step 2: Predict edges

O
©

25

Results

“
Score

JAMR (Flanigan et al. 2016) graph decoder 67
Foland & Martin 2017 graph decoder 70.7
van Noord & Bos 2017 neural seq2seq 68.5
Lyu & Titov (ACL 2018) graph decoder 73.7
Our baseline graph decoder 66.1
Our projective decoder 70.2
Our fixed tree decoder 70.2

Dataset: LDC2015E86

26

Conclusion

e \We built a competitive compositional AMR parser

e Clear avenues to improvement

e Update to recent advancements in training regimen (e.g. Lyu &
Tivov 2018)

e | ook into specific phenomena, e.g.
® anaphora
¢ cllipsis

e Future work: extend method to other formalisms

Conclusion

e \We built a competitive compositional AMR parser

e Clear avenues to improvement

e Update to recent advancements in training regimen (e.g. Lyu &
Tivov 2018)

e | ook into specific phenomena, e.g.
® anaphora
¢ cllipsis

e Future work: extend method to other formalisms

@ - 6

ARGO
@:

27

