

Generating Informative Responses with Controlled **Sentence Function**

Pei Ke, Jian Guan, Minlie Huang, Xiaoyan Zhu

Conversational AI Group, AI Lab., Dept. of Computer Science, Tsinghua University Beijing National Research Center for Information Science and Technology, China

Introduction

Automatic Evaluation

Automatic Metrics:

- **Perplexity**: Grammaticality
- **Distinct-1/Distinct-2**: Diversity
- Accuracy: How accurately the sentence function can be controlled

Model	PPL	Dist-1	Dist-2	ACC
c-seq2seq	57.14	949/.007	5177/.041	0.973
MA	46.08	745/.005	2952/.027	0.481
KgCVAE	56.81	1531/ .009	10683/.070	0.985
Our Model	55.85	1833 /.008	15586/.075	0.992

Bot: Me, too. But you ate too much at lunch.

• Function-related words Topic words • Ordinary words Figure 1: Responses with three sentence functions.

Sentence Function: Indicating the conversational purpose of speakers

- **Interrogative**: Acquire further information from the user
- Imperative: Make requests, instructions or invitations to elicit further information
- **Declarative**: Make statements to state or explain something

Response Generation Task with Specified Sentence Function

- **Global Control**: Plan different types of words globally
- **Compatibility**: Controllable sentence function + informative content

Table 2: Automatic evaluation with perplexity (PPL), distinct-1 (Dist-1), distinct-2 (Dist-2), and accuracy (ACC). The integers in the Dist-* cells denote the total number of distinct n-grams.

Manual Evaluation

Manual Metrics: Grammaticality, appropriateness, informativeness

Madal	Int	nterrogative		Declarative			Imperative		
Model	Gram.	Appr.	Info.	Gram.	Appr.	Info.	Gram.	Appr.	Info.
Ours vs. c-seq2seq	0.534	0.536	0.896*	0.630*	0.573*	0.764*	0.685*	0.504	0.893*
Ours vs. MA	0.802*	0.602*	0.675*	0.751*	0.592*	0.617*	0.929*	0.568*	0.577*
Ours vs. KgCVAE	0.510	0.626*	0.770*	0.546*	0.515*	0.744*	0.780*	0.521*	0.837*

Table 3: Manual evaluation results for different functions. The scores indicate the percentages that our model wins the baselines after removing tie pairs. The scores of our model marked with * are significantly better than the competitors (p-value < 0.05).

Function	Frequent Words	Frequent Patterns	Response Examples	
		Does $oldsymbol{x}$ mean $oldsymbol{y}$?	Do you mean I'm handsome?	
		S x y? Are you	Are you praising me?	
Interrogative	ative ?,be,particle,mean, what	Where does $x\;y?$	Where do you work?	

Words and Patterns in Function Control

Method

Task Overview

Post \times Function \rightarrow Response

Model: Conditional Variational Autoencoder (CVAE) Framework

- Encoder-Decoder with Attention: Common framework to model the mapping from the post to the response
- **Recognition / Prior Network**: Construct the posterior / prior distribution of latent variable based on the representations of posts and responses
- **Discriminator**: Supervise the latent variable to encode function-related information in responses with supervised signals
- **Type Controller**: Estimate a distribution over the word types (i.e., topic words, function-related words and ordinary words) at each decoding position
- **Decoder**: Generate responses in a mixture form combined with the type distribution and the word distribution

What $oldsymbol{z}$ of	loes x	want to	> y?	What	type	<u>do</u> you	want to	choose?

Imporativa	Lwill can come please	Do $oldsymbol{y}$, then.	Take care of yourself, then.	
Imperative	!,will,can,come, please	Let x give y to z .	Let me give your house to you.	
		$oldsymbol{x}$ also $oldsymbol{y}$, but $oldsymbol{z}$.	I also think so, but I will find a	
Declarative	be,also/too,think,but,no	x also y , but z .	person. Ha-ha.	
Declarative		$oldsymbol{x}$, too, and $oldsymbol{a}$ has $oldsymbol{b}$.	Me, too, and my fans have been	
		\boldsymbol{x} , too, and \boldsymbol{u} has \boldsymbol{v} .	shocked by me.	

Table 4: Frequent function-related words and frequent patterns containing at least 3 function-related words. The letters denote the variables which replace ordinary and topic words in the generated responses.

Case Study

Post:	What would you do if I suddenly broke up with you someday?
Target Function:	Interrogative
KgCVAE:	Did you miss me?
Our Model:	Do you mean that it's my fault?
Target Function:	Imperative
KgCVAE:	l will tell you!
Our Model:	Rest assured that I would give your gift to you.
Target Function:	Declarative
KgCVAE:	l think I'm a good man, too.

Experiments

Dataset

Training	#Post	1,963,382						
Training	#Response	Interrogative	618,340	Declarative	672,346	Imperative	672,696	
Validation	#Post	24,034						
Valluation	#Response	Interrogative	7,045	Declarative	9,685	Imperative	7,304	
Test #Post				6,000				

 Table 1: Corpus statistics.

I would think that I was stupid and I would be blamed by my mother. Our Model:

Table 5: Generated responses of all the models for different sentence functions.

What would you do if I suddenly broke up with you someday?
Do you mean that it's my fault?
Do you mean that it's my fault?
Can you speak normally?
What do you think I should do? Shall I break up with you?

Table 6: Different patterns of interrogative responses generated by our model.

ACL, July 15-20, 2018, Melbourne, Australia, Contact: kepei1106@outlook.com