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Dependency Parsing

$ But there were no buyers
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Transition-pased Parsing

e Process the input sequentially in order

e Use actions that build up a tree

e Choose which actions to apply with a classifier
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-xample: Arc-standard Parsing
[Yamada+ 2003, Nivre 2004]

e Order: Left-to-right
e Actions: Shift, reduce-right, reduce-left

shift right
N ¥\ 7N
ROOT | saw a girl ¢ o ROOTI| saw a girl
YR

ROOT| saw a girl

e Classifier:
e Support vector machines [Nivre+ 2004]
e Feed-forward neural networks [Chen+ 2014]
e Recurrent neural networks [Dyer+ 2015]
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Qur Proposal: Stack-pointer Networks (StackPtr)
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e Order: Top-down, depth-first

e Actions: "Point” to the next word to choose as a child

e Model: A neural network, based on “pointer networks"

o Advantages:
e Top-down parsing maintains a global view of the sentence
e High accuracy

e Can maintain full history, low asymptotic running time (c.f.
graph-based)
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Background: Pointer Network [Vinyals+ 2015]

o QOutput sequence with elements that are discrete tokens corresponding to
positions in an input sequence
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e Use attention as a pointer to select a member of the input sequence as the output
t __
L=

a' = softmax(e’)

e; = score(hy, s;)

s and / are the hidden states of encoder and decoder, and score() is the
attention scoring function, e.g. bi-affine attention [Luong+ 2015; Dozat+ 2017]
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Variable Definitions

s = {s1,...,Sn}: hidden states of encoder h = {hy,...,h,}: hidden states of decoder

y = {p1,-..,pn}: @ sequence of paths,
each of which is a sequence
of words from root to a leaf
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Transition System

 Two data structures
- List (a): of words whose head has not been selected

- Stack (o): of partially processed head words whose
children have not been fully selected

e Stack o is initialized with the root symbol $
e At each decoding step ¢

- receive the top element of stack ¢ as head word wy, and
generate the hidden state 4,

- compute the attention vector af using 4;and encoder
hidden states s

- generate an arc: choose a specific word (w.) from a as
the child of w,, remove w. from a and push it onto o

- complete a head: pop w; out of ©
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Features for the Classifier

o Utilize higher-order information at each step of the top-
down decoding procedure

e Sibling and Grandchild structures

- proven beneficial for parsing performance (McDonald and
Pereira 2006; Koo and Collins 2010)

AL e
h s m g h m
sibling grandchild

e Use element-wise sum of the encoder hidden states instead
of concatenation

- does not increase the dimension of Bt

6t:8h+39+58
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Example

ST A

$ But there were no buyers
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Example

ST A

$ But there were no buyers

$ But there were no buyers
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Example

ST A

$ But there were no buyers

S1 ™28y >8S3 284 >S5 > S6 |

A A

But there were no buyers
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Example

ST A

$ But there were no buyers

S1 ™28y >8S3 284 >S5 > S6 |

A A

But there were no buyers
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Example

e Y

$ But there were no buyers

S1 ™28y >8S3 284 >S5 > S6 |
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But there were no buyers
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Example

e Y

$ But there were no buyers

S1 282 > 83 > 84 >S5 > 56 h

l (R I R s _____________ - Sg

But there were no buyers
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Example

ST A

$ But there were no buyers
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S1 282 > 83 > 84 >S5 > 56 h
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But there were no buyers
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Example

ST A

$ But there were no buyers

v v v v4i ¥

S1 282 > 83 > 84 >S5 > 56 h

l (R I R s _____________ - Sg

But there were no buyers
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Example

e Y

$ But there were no buyers

S1 282 > 83 > 84 >S5 > 56 h hy

l T T T T T SS ............. T ............. Sg ss ............. T ............ sg

But there were no buyers

O+/s1+0 0 |+|s4 +|51
L were_
....... S L8
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Example

ST A

$ But there were no buyers
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But there were no buyers
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Example

ST A

$ But there were no buyers
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But there were no buyers

O+/s1+0 0 |+|s4 +|51 0 |+/s3 +|54
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R S N were .. L. were
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Example

ST A

$ But there were no buyers
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But there were no buyers
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Example

e Y

$ But there were no buyers
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But there were no buyers
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Learning StackPtr

e Maximum likelihood
e Factorize into sequence of top-down paths

Po(ylx) = 11 Pe(pilp<i;x)

k
1=1
k1

— H H PQ(Ci,j‘C’i,<j7p<i7X)7

1=17=1

e Pre-defined inside-out order for children of each head word
e Enables parser to utilize higher-order sibling information
e Train separate classifier for dependency label prediction
e Use head word and child information [Dozat+ 2017]
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Experiment 1: Main Results & Analysis

e Datasets:

- English PTB, Chinese PTB, German CoNLL 2009 shared task
e Parsing models for comparison

- Baseline: Deep Biaffine (BiAF) parser (Dozat et al., 2017),
augmented with character-level information

- Four versions of StackPtr:
e Org: utilizes only head word information
e +gpar: augment Org with grandparent information
e +sib: augment Org with sibling information
e Full: include all the three information
e Evaluation metrics

- Unlabeled Attachment Score (UAS), Labeled Attachment
Score (LAS), Unlabeled Complete Match (UCM), Labeled
Complete Match (LCM), Root Accuracy (RA)
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Parsing Performance on Test Data

w.r.t Sentence Length
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[1,10] [11,20] [21,30] [31,40] [41,50] > 50
Sentence Length

StackPtr tends to perform better on shorter sentences,
consistent with transition-based/graph-based
comparison in McDonald and Nivre (2011)
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Parsing Performance

w.r.t Dependency Length

0.98-
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The gap between Stack-Ptr and BiAF is marginal, graph-
based BiAF still performs better for longer arcs
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Parsing Performance
w.r.t Root Distance

0.98 1

0.981 — BIAF
0.98 0.981 - STACKPTR
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Distance to Root Distance to Root

Different from McDonald and Nivre (2011), StackPtr and
BiAf similar regardless of root distance
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Effect of POS Embedding

B Gold B Pred None

96.5

95.75

95

94.25

93.5

UAS LAS

Gold: Parser with gold-standard POS tags
Pred: Parser with predicted POS tags (97.3% accuracy)
None: Parser without POS tags




=xperiment 2: Universal Dependency Treebanks

e Datasets:
e Universal Dependency Treebanks (V2.2)
e 12 languages

e Languages: Bulgarian, Catalan, Czech, Dutch,
English, French, German, Italian,
Norwegian, Romanian, Russian and Spanish

e Note: we also ran experiments on 14 CoNLL Treebanks.
(see the paper for details)
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LAS on UD Treebanks

B BIAF " StackPtr
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Conclusion & Future Work

e Stack-Pointer network for dependency parsing
- A transition-based neural network architecture
- Top-down, depth-first decoding procedure
- State-of-the-art performance on 21 out of 29 treebanks

e Future Work

- Learn an optimal order for the children of head words,
instead of using a pre-defined fixed order

- End-to-end training
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Thank you!

Questions?
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Our code is published at:
https://github.com/XuezheMax/NeuroNLP2
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Model Detalls

e Encoder

- Bi-directional LSTM-CNN (Chiu and Nichols 2016; Ma and Hovy
2016)

- Three input embeddings: word, character and POS

- CNN encodes character-level information

- 3-layer LSTM with recurrent dropout (Gal et al., 2016)
e Decoder

- Uni-directional LSTM

- Use encoder hidden states as input instead of word
embeddings

- 1-layer LSTM with recurrent dropout
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