
STRUCTVAE: Tree-structured Latent Variable Models for
Semi-supervised Semantic Parsing

Supplementary Materials

A Generating Samples from STRUCTVAE

STRUCTVAE is a generative model of natural language, and therefore can be used to sample latent
MRs and the corresponding NL utterances. This amounts to draw a latent MR z from the prior p(z),
and sample an NL utterance x from the reconstruction model pθ(x|z). Since we use the sequential
representation zs in the prior, to guarantee the syntactic well-formedness of sampled MRs from p(z), we
use a syntactic checker and reject any syntactically-incorrect samples6. Tab. 6 and Tab. 7 present samples
from DJANGO and ATIS, respectively. These examples demonstrate that STRUCTVAE is capable of
generating syntactically diverse NL utterances.

latent MR def init (self, ∗args, ∗∗kwargs): pass
surface NL Define the method init with 3 arguments: self, unpacked list args and unpacked dictionary kwargs
latent MR elif isinstance(target, six.string types): pass

surface NL Otherwise if target is an instance of six.string types
latent MR for k, v in unk.items(): pass

surface NL For every k and v in return value of the method unk.items
latent MR return cursor.fetchone()[0]

surface NL Call the method cursor.fetchone , return the first element of the result
latent MR sys.stderr.write(STR % e)

surface NL Call the method sys.stderr, write with an argument STR formated with e
latent MR opts = getattr(self, STR , None)

surface NL Get the STR attribute of the self object, if it exists substitute it for opts, if not opts is None

Table 6: Sampled latent meaning representations (presented in surface source code) and NL utterances from DJANGO.

latent MR (argmax $0 (and (flight $0) (meal $0 lunch:me)
(from $0 ci0) (to $0 ci1)) (departure time $0))

surface NL Show me the latest flight from ci0 to ci1 that serves lunch

latent MR (min $0 (exists $1 (and (from $1 ci0) (to $1 ci1) (day number $1 dn0)
(month $1 mn0) (round trip $1) (= (fare $1) $0))))

surface NL I want the cheapest round trip fare from ci0 to ci1 on mn0 dn0
latent MR (lambda $0 e (and (flight $0) (from $0 ci0) (to $0 ci1) (weekday $0)))

surface NL Please list weekday flight between ci0 and ci1

latent MR (lambda $0 e (and (flight $0) (has meal $0) (during day $0 evening:pd)
(from $0 ci1) (to $0 ci0) (day number $0 dn0) (month $0 mn0)))

surface NL What are the flight from ci1 to ci0 on the evening of mn0 dn0 that serves a meal

latent MR (lambda $0 e (and (flight $0) (oneway $0) (class type $0 first:cl) (from $0 ci0)
(to $0 ci1) (day $0 da0)))

surface NL Show me one way flight from ci0 to ci1 on a da0 with first class fare

latent MR (lambda $0 e (exists $1 (and (rental car $1) (to city $1 ci0)
(= (ground fare $1) $0))))

surface NL What would be cost of car rental car in ci0

Table 7: Sampled latent meaning representations (presented in surface λ-calculus expression) and NL utterances from ATIS.
Verbs are recovered to their correct form instead of the lemmatized version as in the pre-processed dataset.

6We found most samples from p(z) are syntactically well-formed, with 98.9% and 95.3% well-formed samples out of 100K
samples on ATIS and DJANGO, respectively.

B Neural Network Architecture

B.1 Prior p(z)
The prior p(z) is a standard LSTM language model (Zaremba et al., 2014). We use the sequence repre-
sentation of z, zs, to model p(z). Specifically, let zs = {zsi }

|zs|
i=1 consisting of |zs| tokens, we have

p(zs) =

|zs|∏
i=1

p(zsi |zs<i),

where zs<i denote the sequence of history tokens {zs1, zs2, . . . , zsi−1}. At each time step i, the probability
of predicting zsi given the context is modeled by an LSTM network

p(zsi |zs<i) = softmax(Whi + b)

hi = fLSTM(e(zsi−1),hi−1)

where hi denote the hidden state of the LSTM at time step i, and e(·) is an embedding function.

B.2 Reconstruction Model pθ(x|z)
We implement a standard attentional sequence-to-sequence network (Luong et al., 2015) with copy
mechanism as the reconstruction network pθ(x|z). Formally, given a utterance x of n words {xi}ni=1,
the probability of generating a token xi is marginalized over the probability of generating xi from a
closed-set vocabulary, and that of copying from the MR zs:

p(xi|x<i, zs) = p(gen|x<i, zs)p(xi|gen, x<i, zs)

+ p(copy|x<i, zs)p(xi|copy, x<i, zs)

where p(gen|·) and p(copy|·) are computed by softmax(Ws̃ci). s̃
c
i denotes the attentional vector (Luong

et al., 2015) at the i-th time step:
s̃ci = tanh(Wc[c

c
i ; s

c
i]). (7)

Here, sci is the i-th decoder hidden state of the reconstruction model, and cci the context vector (Bahdanau
et al., 2015) obtained by attending to the source encodings. The probability of copying the j-th token in
zs, zsj , is given by a pointer network (Vinyals et al., 2015), derived from s̃ci and the encoding of zsj , hz

j .

p(xi = zsj |copy, x<i, zs) =
exp
(
hz
j
ᵀWs̃ci

)
∑|zs|

j′=1 exp
(
hz
j′
ᵀWs̃ci

)
B.3 Inference Model pφ(z|x)
Our inference model (i.e., the semantic parser) is based on the code generation model proposed in Yin and
Neubig (2017). As illustrated in Fig. 2 and elaborated in § 3.2, our transition parser constructs an abstract
syntax tree specified under the ASDL formalism using a sequence of transition actions. The parser is a
neural sequence-to-sequence network, whose recurrent decoder is augmented with auxiliary connections
following the topology of ASTs. Specifically, at each decoding time step t, an LSTM decoder uses its
internal hidden state st to keep track of the generation process of a derivation AST

st = fLSTM([at−1 : s̃t−1 : pt], st−1)

where [:] denotes vector concatenation. at−1 is the embedding of the previous action. s̃t−1 is the input-
feeding attentional vector as in Luong et al. (2015). pt is a vector that captures the information of the
parent frontier field in the derivation AST, which is the concatenation of four components: nft , which is
the embedding of the current frontier field nft on the derivation; eft , which is the embedding of the type
of nft ; spt , which is the state of the decoder at which the frontier field nft was generated by applying its
parent constructor cpt to the derivation; cpt , which is the embedding of the parent constructor cpt .

Given the current state of the decoder, st, an attentional vector s̃t is computed similar as Eq. (7) by
attending to input the utterance x. The attentional vector s̃t is then used as the query vector to compute
action probabilities, as elaborated in §4.2.2 of Yin and Neubig (2017).

C ASDL Grammar for ATIS

We use the ASDL grammar defined in Rabinovich et al. (2017) to deterministically convert between
λ-calculus logical forms and ASDL ASTs:

expr = Variable(var variable)
| Entity(ent entity)
| Number(num number)
| Apply(pred predicate , expr∗ arguments)
| Argmax(var variable , expr domain , expr body)
| Argmin(var variable , expr domain , expr body)
| Count(var variable , expr body)
| Exists(var variable , expr body)
| Lambda(var variable , var type type , expr body)
| Max(var variable , expr body)
| Min(var variable , expr body)
| Sum(var variable , expr domain , expr body)
| The(var variable , expr body)
| Not(expr argument)
| And(expr∗ arguments)
| Or(expr∗ arguments)
| Compare(cmp op op , expr left , expr right)

cmp op = Equal | LessThan | GreaterThan

D Model Configuration

Initialize Baselines b(x) STRUCTVAE uses baselines b(x) to reduce variance in training. For our
proposed baseline based on the language model over utterances (Eq. (6)), we pre-train a language model
using all NL utterances in the datasets. For terms a and c in Eq. (6), we determine their initial values by
first train STRUCTVAE starting from a = 1.0 and c = 0 for a few epochs, and use their optimized values.
Finally we initialize a to 0.5 and b to −2.0 for ATIS, and a to 0.9 and b to 2.0 for DJANGO. We perform
the same procedure to initialize the bias term bMLP in the MLP baseline, and have bMLP = −20.0.

Pre-trained Priors p(z) STRUCTVAE requires pre-trained priors p(z) (§ 3.3). On ATIS, we train a
prior for each labeled set L of size K using the MRs in L. For DJANGO, we use all source code in
Django that is not included in the annotated dataset.

Hyper-Parameters and Optimization For all experiments we use embeddings of size 128, and LSTM
hidden size of 256. For the transition parser, we use the same hyper parameters as Yin and Neubig
(2017), except for the node (field) type embedding, which is 64 for DJANGO and 32 for ATIS. To
avoid over-fitting, we impose dropouts on the LSTM hidden states, with dropout rates validated among
{0.2, 0.3, 0.4}. We train the model using Adam (Kingma and Ba, 2014), with a batch size of 10 and
25 for the supervised and unsupervised objectives, resp. We apply early stopping, and reload the best
model and halve the learning rate when the performance on the development set does not increase after
5 epochs. We repeat this procedure for 5 times.

E SEQ2TREE Results on ATIS Data Splits

|L| SUP. SEQ2TREE
500 63.2 57.1
1000 74.6 69.9
2000 80.4 71.7
3000 82.8 81.5

Table 8: Accuracies of SEQ2TREE and our supervised parser on different data splits of ATIS

We also present results of SEQ2TREE (Dong and Lapata, 2016) trained on the data splits used in Tab. 1,
as shown in Tab. 8. Our supervised parser performs consistently better than SEQ2TREE. This is probably
due to the fact that our transition-based parser encodes the grammar of the target logical form a priori
under the ASDL specification, in contrast with SEQ2TREE which need to learn the grammar from the
data. This would lead to improved performance when the amount of parallel training data is limited.

