
Using Intermediate Representations to Solve Math Word Problems:
Supplementary Material

Danqing Huang1∗, Jin-Ge Yao2, Chin-Yew Lin2, Qingyu Zhou3, and Jian Yin1

{huangdq2@mail2,issjyin@mail}.sysu.edu.cn
{Jinge.Yao,cyl}@microsoft.com

qyzhou@hit.edu.cn
1 The School of Data and Computer Science, Sun Yat-sen University.

Guangdong Key Laboratory of Big Data Analysis and Processing, Guangzhou, P.R.China
2Microsoft Research 3 Harbin Institute of Technology

Abstract

This note contains supplementary materi-
als to Using Intermediate Representations
to Solve Math Word Problems.

1 Definition of Intermediate Forms

For our intermediate forms, we define six classes
and The definitions of twenty-three functions.
They are shown in Table S1 and Table S2 respec-
tively.

2 Rules for Deriving Intermediate Forms

In this section, we describe the derivation process
of our intermediate forms.

Table S3 lists the rules that we use to derive in-
termediate forms from equation systems. For ex-
ample, we use regular expressions to match vari-
ables (num, int, unk).

With the rules in Table S3, we map equa-
tion systems to intermediate forms based on op-
erator precedence: (1) variables (e.g. num,
math#consecutive, middle()); (2) functions of
exponents and roots (e.g. math#square); (3)
functions of multiplication and division (e.g.
math#opposite, math#product); (4) functions of
addition and subtraction (e.g. math#more,
math#less). We show the derivation process of two
math problems in Table S4.

3 Error Analysis

There are two main types of errors produced by
our model: (1) Natural language variations; (2)
Nested operations. In Table S5, we show some
example problems in each category.

∗Work done while this author was an intern at Microsoft
Research.

Class Example Semantic
int 1, 2, 3 integers
float 1.1, 3.14 floating numbers
num 1, 3.14 parent class of int and float
unk m, n unknown variables
var 3.14, m parent class of num and unk
list [2, 3, m] a list elements of type var

Table S1: Classes in our intermediate representation.

Function Parameters Return Semantic Expression
math#reciprocal $1: var var the reciprocal of a variable 1/$1
math#oppsotite $1: var var the opposite of a variable (-1)*$1
math#sum $1: list var the sum of the elements in the

list
list[0]+...

math#sum $1: int var the sum of $1 unknown variables m+n+...
math#diff $1,$2: var var the difference of $1 and $2 $2-$1
math#product $1: list var the product of the elements in

the list
list[0]*...

math#product $1: int var the sum of $1 unknown variables m*n*...
math#more $1: var, $2:num var $1 is $2 more than return vari-

able
$1+$2

math#less $1: var, $2:num var $1 is $2 less than return variable $1-$2
math#quotient $1,$2: var var the quotient of $1 and $2 $1/$2
math#square $1: var var the square of a variable ($1)2

math#pow $1: var, $2: int var base $1 raised to the power ex-
ponent $2

$1ˆ$2

math#consecutive $1: int list a list of $1 consecutive variables [x, x+1,...]
math#odd $1: int list a list of $1 consecutive odd vari-

ables
[2*x-1,...]

math#even $1: int list a list of $1 consecutive even
variables

[2*x,...]

count $1: list int the size of the list -
max $1: list var variable with maximum value in

the list
-

min $1: list var variable with minimum value in
the list

-

middle $1: list var variable with middle value in the
list

-

next $1: list, $2: var var variable in the list after $2 -
ordinal $1: list, $2: int var element in the list with value

ranked in $2
-

math#digit $1: int var variable with $1 digits x+10*y+...
= $1,$2:var - $1 is equal to $2 $1=$2

Table S2: Functions in our intermediate representation.

Regex/Rules Class/Function
\-?[0-9\.]+ num
\-?[0-9]+ int
[a-z] unk
<num>|<unk> var
\(\-1\)*<var> math#opposite($1:var)
1/<var> math#reciprocal($1:var)
(<var>\+)+<var> math#sum($1:list)
(<unk>\+)+<unk>, $1=count of unk in the match math#sum(count:$1:int)
<var>\-<var> math#diff($1,$2:var)
(<var>*)+<var> math#prodcut($1:list)
(<unk>*)+<unk>, $1=count of unk in the match math#prodcut(count:$1:int)
<var>\+<num> math#more($1:var, $2:num)
<var>\-<num> math#less($1:var, $2:num)
<var>/<var> math#quotient($1,$2:var)
<var>\ˆ2|<var>*<var> math#square($1:var)
<var>\ˆ<int> math#pow($1:var, $2:int)
if there are x+10*y+100*z+... in the equation system math#digit($1:int)
if there are unk, unk+1, ... in the equation system math#consecutive($1:int)
if there are 2*unk-1, 2*unk+1, ... in the equation system math#odd($1:int)
if there are 2*unk, 2*unk+2,... in the equation system math#even($1:int)
if var has max value in $1 max($1:list)
if var min max value in $1 min($1:list)
if var has middle value in $1 middle($1:list)
if var has the value ranked $2 in $1 ordinal($1:list, $2:int)

Table S3: Rules for deriving intermediate form candidates from equations.

Problem 1: Phil found that the sum of twice a number and -21 is 129 greater than the opposite of the
number, What is the number?
Equation system: 2 ∗m+ (−21) = 129 + ((−1) ∗m)
Derivation:
⇒ math#product(2, m) + (-21) = 129 + math#opposite(m)
⇒ math#sum(math#product(2, m), -21) = math#sum(129, math#opposite(m))
Problem 2: The sum of 3 integers is 251. The sum of the 1st and 2nd integers exceeds the 3rd by 45. The
3rd integer is 42 less than the 1st. Find the 3 integers.
Equation system: m+ n+ o = 251,m+ n = o+ 45, o = m− 42
Derivation:
m+ n+ o = 251⇒ math#sum(cnt: 3) = 251

or math#sum(m, n, o) = 251
or math#sum(ordinal(1), ordinal(2), ordinal(3)) = 251

m+ n = o+ 45⇒ math#sum(m, n) = math#sum(o, 45)
or math#sum(oridnal(1), ordinal(2)), math#sum(ordianl(3), 45)
or math#sum(min(), middle()), math#sum(max(), 45)

o = m− 42⇒ o = math#diff(m, 42)
or ordinal(3)=math#diff(ordianl(1), 42)
or max()=math#diff(min(), 42)

(combination of the three equations)

Table S4: Examples in intermediate form derivations.

Error Type 1: Natural language variations
Problem 1
Two pieces of equipment were purchased for a total of $9000. If one piece cost $370 more than the other,
find the price of the less expensive piece of equipment.
Problem 2
A new oil tank holds 75 barrels of oil more than an old tank. Together they hold 515 barrels of oil. How
much will each tank hold?
[Explanation]
Problem 1 and 2 belongs to the same type of problems, with the template x+ y = n1, x− y = n2

Problem 3
A landscaping company charges $100 plus $15 per hour. Another company charges $75 plus $17 per
hour. How long is a job that costs the same no matter which company is used?
Problem 4
To deliver mulch, lawn and garden charges $30 per cubic yard of mulch plus a $30 delivery fee. Yard
depot charges $25 per cubic yard of mulch plus a $55 delivery fee. For how many cubic yards will the
cost be the same?
[Explanation]
Problem 3 and 4 belongs to the same type of problems. with the template n1 ∗ x+ n2 = n3 ∗ x+ n4

Error Type 2: Nested operations
Problem 5
I think of a number, double it, add three, multiply the answer by three and then add on twice the number
I first thought of. If the final answer is 145 what was the number I first thought of?
[Explanation]
step 1: double a number→ 2 ∗ x
step 2: add three→ 2 ∗ x+ 3
step 3: multiple the answer by three→ 3 ∗ (2 ∗ x+ 3)
step 4: add twice the number→ 3 ∗ (2 ∗ x+ 3) + 2 ∗ x
step 5: final answer is 145→ 3 ∗ (2 ∗ x+ 3) + 2 ∗ x = 145

Problem 6
The difference between two numbers is 10. If the numbers are doubled, what is the difference between
them?
[Explanation]
step 1: difference of two numbers→ x− y = 10
step 2: double the numbers→ 2 ∗ x, 2 ∗ y
step 3: calculate the new difference→ 2 ∗ x− 2 ∗ y

Problem 7
find three consecutive integers such that three times the middle integer is equal to the sum of five times
the first and three times the third integer decreased by 13.
[Explanation]
step 1: three times the middle integer→ 3 ∗ (x+ 1)
step 2: sum of five times the first and three times the third integer→ 5 ∗ x+ 3 ∗ (x+ 2)
step 3: decreased by 13→ 5 ∗ x+ 3 ∗ (x+ 2)− 13

Table S5: Example error problems produced by our model.

