
Supplementary Material

Chunchuan Lyu1 Ivan Titov1,2

1ILCC, School of Informatics, University of Edinburgh
2ILLC, University of Amsterdam

1 Matching algorithm for copying concepts

Only frequent concepts c (frequency at least 10 for R2 and 5 for R1) can be generated without the
copying mechanism (i.e. have their own vector vc associated with them). Both frequent and infrequent
ones are processed with coping, using candidates produced by the algorithm below and the matching rule
in Table 1.

Input : {wl, cl}Ll=1

Output: D copy dictionary
Counter← ∅
for l = 1 to L do

for all pairs cli and wl
j do

if match(cli, w
l
j) then

Increment Counter[wl
j][c

l
i]

end
end

end
D← default Stanford lemmatizer
for w← Counter do

D[w]← argmaxc Counter[w][c]
end
return D

Algorithm 1: Copy function construction

Rules Matching Criteria
Verbalization Match exact match frame in ”verbalization-list-v1.06.txt”
PropBank Match exact match frame in PropBank frame files
Suffix Removal Match word with suffix (“-ed”, “-ly”,“-ing”) removed is identical to concept lemma
Edit-distance Match edit distance smaller than 50% of the length

Table 1: Matching rules for Algorithm 1

2 Re-categorization details

Re-categorization is handled with rules listed in Table 2. They are triggered if a given primary concept
(‘primary’) appears adjacent to edges labeled with relations given in column ‘rel’. The assigned category
is shown in column ‘re-categorized’. The rules yield 32 categories when applied to the training set.

There are also rules of another type shown in Table 3 below. The templates and examples are in column

primary rel re-categorized
person ARG0-of/ARG1-of person([second])
thing ARG0-of/ARG1-of/ARG2-of thing([second])
most degree-of most([second])
-quantity unit primary([second])
date-entity weekday/dayperiod/season date-entity([second])
monetary-quantity unit/ARG2-of/ARG1-of/quant monetary-quantity([second])
temporal-quantity unit/ARG3-of temporal-quantity([second])

Table 2: Templates for re-categorization.

‘original’, the resulting concepts are in column ‘re-categorized’. These rules yield 109 additional types
when applied to the training set.

original re-categorized
(c / t y p e

: name (n / name
: op1 ‘ n1 ’
. . .
: opx ‘ nx ’)

(B-Ner type(n1),...,Ner type(nx))

(c / c i t y
: name (n / name

: op1 ‘New’
: op2 ‘ York ’)

B-Ner city(New),Ner city(York)

(p / t y p e
: ARG0−of (h / have−x−r o l e −91

:ARG2 (p / r o l e)
have-x-role type(role)

(p / p e r s o n
: ARG0−of (h / have−org−r o l e −91

:ARG2 (p / p r e m i e r)
have-org-role person(premier)

(o1 / x−e n t i t y
: x c o n s t a n t)

x-entity(constant)

(o1 / o r d i n a l−e n t i t y
: v a l u e 1)

ordinal-entity(1)

Table 3: Extra rules for re-categorization.

3 Additional pre-processing

Besides constructing re-categorized AMR concepts, we perform additional preprocessing. We start with
tokenized dataset of Pourdamghani et al. (2014). We take all dashed AMR concepts (e.g, make-up and
more-than) and concatenate the corresponding spans (based on statistics from training set and PropBank
frame files). We also combine spans of words corresponding to a single number. For relation identifica-
tion, we normalize relations to one canonical direction (e.g. arg0, time-of). For named entity recognition,
and lemmatization, we use Stanford CoreNLP toolkit (Manning et al., 2014). For pre-trained embedding,
we used Glove (300 dimensional embeddings) (Pennington et al., 2014).

4 Model parameters and optimization details

We selected hyper-parameters based on the best performance on the development set. For all the ab-
lation tests, the hyper parameters are fixed. We used 2 different BiLSTM encoders of the same hyper-
parameters to encode sentence for concept identification and alignment prediction, another BiLSTM
to encode AMR concept sequence for alignment, and finally 2 different BiLSTM of the same hyper-
parameters to encode sentence for relation identification and root identification. There are 5 BiLSTM
encoders in total. Hyper parameters for the model are summarized in Table 4, and optimization parame-
ters are summarized in Table 5.

Model components Hyper-parameters
Glove Embeddings 300
Lemma Embeddings 200
POS Embeddings 32
NER Embeddings 16
Category Embeddings 32
Concept/Alignment 1 layer 548 input
Sentence BiLSTM 256 hidden (each direction)
AMR Categories T 32
AMR Lemmas C 506
AMR NER types 109
Alignment 1 layer 232 input
AMR BiLSTM 100 hidden (each direction)
B bilinear align 200 × 512
Relation map dimensionality dg 200
Relation/Root 2 layers 549 input (predicate position)

Sentence BiLSTM 256 hidden (each direction)
df relation vector 200
vc, vcopy lemma vector 512
vroot root vector 200
Sinkhorn temperature 1
Sinkhorn prior temperature 5
Sinkhorn steps l for full joint training 10
Sinkhorn steps l for two stages training 5
λ 10
Dropout .2

Table 4: Model hyper-parameters

Optimizer Parameters Values
Batch size for single stage 64
Maximum Epochs 30
Batch size for first stage 512
Batch size for second stage 64
Maximum Epochs for both stages 30
Learning Rate 1e-4
Adam betas (0.9, 0.999)
Adam eps 1e-8
Weight decay 1e-5

Table 5: Optimization parameters for full joint training and two stages training.

References
Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J. Bethard, and David McClosky.

2014. The Stanford CoreNLP natural language processing toolkit. In Association for Computational Linguistics
(ACL) System Demonstrations, pages 55–60.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. Glove: Global vectors for word repre-
sentation. In Empirical Methods in Natural Language Processing (EMNLP), pages 1532–1543.

Nima Pourdamghani, Yang Gao, Ulf Hermjakob, and Kevin Knight. 2014. Aligning english strings with abstract
meaning representation graphs. In EMNLP.

http://www.aclweb.org/anthology/P/P14/P14-5010
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162

