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The Political Spectrum

The left-right political spectrum is a system of classifying political positions,
ideologies and parties. Left-wing politics and right-wing politics are often presented
as opposed, although either may adopt stances from the other side. [wikipedia]

Alt-left Left Center Right Alt-right


https://en.wikipedia.org/wiki/Left-right_political_spectrum

The Political Spectrum

The left-right political spectrum is a system of classifying political positions,
ideologies and parties. Left-wing politics and right-wing politics are often presented
as opposed, although either may adopt stances from the other side. [wikipedia]

Alt-left Left Center Right Alt-right

Liberal Conservative


https://en.wikipedia.org/wiki/Left-right_political_spectrum

The Political Spectrum

The left-right political spectrum is a system of classifying political positions,
ideologies and parties. Left-wing politics and right-wing politics are often presented
as opposed, although either may adopt stances from the other side. [wikipedia]

Alt-left Left Center Right Alt-right

_________________________________________________________________| . ____________________________________________________________|
Liberal Conservative

Hyperpartisan Partisan Partisan Hyperpartisan

Partisan: someone with a psychological identification with one major party. [wikipedia]


https://en.wikipedia.org/wiki/Left-right_political_spectrum
https://en.wikipedia.org/wiki/Partisan_(political)

The Political Spectrum

The left-right political spectrum is a system of classifying political positions,
ideologies and parties. Left-wing politics and right-wing politics are often presented
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_________________________________________________________________| . ____________________________________________________________|
Liberal Conservative

Hyperpartisan Partisan Partisan Hyperpartisan

Partisan: someone with a psychological identification with one major party. [wikipedia]

News media reporting on politics can be aligned on this spectrum as well.

We are observing an increasing number of hyperpartisan news publishers.
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Fake News and Hyperpartisan News

BuzzFeeDpNEWS / &5
Hyperpartisan Facebook Pages Are Publishing False

And Misleading Information At An Alarming Rate
A BuzzFeed News analysis found that three big right-wing Facebook pages

published false or misleading information 38% of the time during the period
analyzed, and three large left-wing pages did so in nearly 20% of posts.

By Craig Silverman (BuzzFeed Founding Editor, Canada), Lauren Strapagiel (BuzzFeed

Staff), Hamza Shaban (BuzzFeed News Reporter), Ellie Hall (BuzzFeed News Reporter),

Jeremy Singer-Vine (BuzzFeed News Reporter)
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Fake News Detection Taxonomy of Approaches

Fake news detection

Knowledge-based A

— Knowledge-based (also called fact checking)

0 Requires political knowledge base Etiont et al. 2018

: : Information retrieval Magdy and Wanas, 2010
0 Unavailable ahead of time Cimoon ot al. 2015
o We cannot trust the web _ Wu et al., 2014
Semantic web / LOD —— Ciampaglia et al, 2015

Shi and Weninger, 2016
Long et al., 2017
Mocanu et al., 2015
Context-based — Context-based Acemoglu et al., 2010
.. . . Kwon et al., 2013
o Limited to social media platforms Social network analvsis —| M@ €t al 2017
y Volkova et al., 2017

o Part of damage already done Budak et al., 2011
Nguyen et al. 2012
Derczynski et al., 2017

— Style-based Tambuscio et al., 2015
Style_based JAN Wei et al., 2013
Chen et al., 2015
. — D tion detecti Rubin et al., 2015
a Allows for pre-posting check R e | Wang et . 2017
. . . Bourgonje et al., 2017
o Real-time reaction possible Afroz et al., 2012
Badaskar et al., 2008
o Hard to mask Rubin et al., 2016
. . — Text categorization Yang et al., 2017
o But are style differences sufficient? Rashkin et al., 2017

Horne and Adali, 2017
Pérez-Rosas et al., 2017
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Fake News and Hyperpartisan News Corpus Construction

Orientation Fact-checking results

Publisher true mix false n/a )3
Center 806 8 0 12 826
ABC News 90 2 0 3 95
CNN 295 4 0 8 307
Politico 421 2 0 1 424
Left-wing 182 51 15 8 256
Addicting Info 95 25 8 7 135
Occupy Democrats 59 25 7 0 91
The Other 98% 28 1 0 1 30
Right-wing 276 153 72 44 545
Eagle Rising 106 47 25 36 214
Freedom Daily 49 24 22 4 99
Right Wing News 121 82 25 4 232

) 1264 212 87 64 1627




Fake News and Hyperpartisan News Selected Results

Orientation Fact-checking results

Publisher true mix false n/a )
Center 806 8 0 12 826
ABC News ~n 8 7 Somm3_ 95
CNN " wenNory 807
Politico Fake News Detection ““‘”«-‘li 1;" 424
Left-win L 8 256
Addicting Info Precision ~ 42% 7 135
Occupy Democr Recall ~ 41% 0 91
The Other 98% 1 30
Right-wing 276 153 72 44 545
Eagle Rising 106 47 25 36 214
Freedom Daily 49 24 22 4 99
Right Wing News 121 82 25 4 232
)y 1264 212 87 64 1627

Annotations provided by journalists at BuzzFeed
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Fake News and Hyperpartisan News Selected Results
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Fake News and Hyperpartisan News

How can it be that the alt left and the alt right cannot be distinguished from the
mainstream, when both together (hyperpartisan news) can be?
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Fake News and Hyperpartisan News

How can it be that the alt left and the alt right cannot be distinguished from the
mainstream, when both together (hyperpartisan news) can be?

Center

Left Right
Partisan

Alt-left Hyperpartisan Alt-right

The horseshoe theory asserts that the alt left and the alt right, rather than being at
opposite and opposing ends of a linear political continuum, in fact closely resemble
one another, much like the ends of a horseshoe. [wikipedia]


https://en.wikipedia.org/wiki/Horseshoe_theory

Horseshoe Validation Experiment | Leave-out Classification
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Horseshoe Validation Experiment | Leave-out Classification
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Horseshoe Validation Experiment ||  unmasking [<oppel/schier 2004]
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Horseshoe Validation Experiment || unmasking [<oppelschier 2004]
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Horseshoe Validation Experiment || unmasking [<oppelschier 2004]
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Horseshoe Validation Experiment ||  unmasking

Typical learning characteristic for . ..
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The typical learning characteristic can be learned.

We apply Unmasking to distinguish style genres.
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same author (A = B)

“Meta Learning”



Horseshoe Validation Experiment ||  unmasking
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Summary and Outlook

o Hyperpartisan news pages produce relatively many fake news articles
o Hyperpartisan news can be distinguished quiet well based on style
o Style-based detection allows for real-time detection

Political extremism in news can be ousted or at least flagged

o The style of alt left and alt right news is very similar
o Linguistic evidence for the horseshoe theory of the political spectrum?

Large-scale analysis required
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SemEval 2019 Teaser: Hyperpartisan News Detection
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Style Model

Features

0 n-grams with n € [1, 3] of characters, stop words, parts-of-speech
o 10 readability scores
o Dictionary features based on General Inquirer

0o Ratios of quoted words, external links, number of paragraphs, and their
average length

Feature selection

o Discard word features (n-gram features) occurring in less than 2.5% (10%) of
documents

Training set

o Balancing using oversampling
o Publishers are not represented in both training and test set

Learning algorithm

o WEKA'’s random forest with default parameters



