
Unsupervised Neural Machine Translation with Weight Sharing

Zhen Yang1,2, Wei Chen1 , Feng Wang1,2∗, Bo Xu1

1Institute of Automation, Chinese Academy of Sciences
2University of Chinese Academy of Sciences

{yangzhen2014, wei.chen.media, feng.wang, xubo}@ia.ac.cn

A Experiments on the layer number for
encoders and decoders

To determine the number of layers for encoders

and decoders in our system beforehand, we con-

duct experiments on English-German translation

tasks to test how the amount of layers in encoders

and decoders affects the translation performance.

We vary the number of layers from 2 to 6 and the

results are reported in table 1. We can find that the

translation performance achieves substantial im-

provement with the layer number increasing from

2 to 4. However, with layer number set larger than

4, we get little improvement. To make a trade-off

between the translation performance and the com-

putation complexity, we set the layer number as 4

for our encoders and decoders.

layer num en-de de-en

2 11.57 14.01

3 12.43 14.99

4 12.86 15.62

5 12.91 15.83

6 12.95 15.79

Table 1: The experiments on the number of layers

for encoders and decoders.

B The architecture of the global
discriminator

The global discriminator is applied to classify the

generated sentences as source language, target lan-

guage or generated sentences. Following (Yang

et al., 2017), we implement the global discrimina-

tor based on CNN. Since sentences generated by

the generator (the composition of the encoder and

decoder) have variable lengths, the CNN padding

1Feng Wang is the corresponding author of this paper

is used to transform the sentences to sequences

with fixed length T , which is the maximum length

set for the output of the generator. Given the gen-

erated sequences x1, . . . , xT , we build the matrix

X1:T as:

X1:T = x1;x2; . . . ;xT (1)

where xt ∈ Rk is the k-dimensional word embed-

ding and the semicolon is the concatenation oper-

ator. For the matrix X1:T , a kernel wj ∈ Rl×k

applies a convolutional operation to a window size

of l words to produce a series of feature maps:

cji = ρ(BN(wj ⊗Xi:i+l−1 + b)) (2)

where ⊗ operator is the summation of element-

wise production and b is a bias term. ρ is a non-

linear activation function which is implemented as

ReLu in this paper. To get the final feature with

respect to kernel wj , a max-over-time pooling op-

eration is leveraged over the feature maps:

c̃j = max{cj1, . . . , cjT−l+1} (3)

We use various numbers of kernels with different

window sizes to extract different features, which

are then concatenated to form the final sentence

representation xc. Finally, we pass xc through a

fully connected layer and a softmax layer to gen-

erate the probability p(fg|x1, . . . , xT ) as:

p(fg|x1, . . . , xT ) = softmax(V ∗ xc) (4)

where V is the transformation matrix and fg ∈
{true, generated}.

C The training procedure of the global
GAN

We apply the global GANs to finetune the whole

model. Here, we provide detailed strategies for



training the global GANs. Firstly, we generate the

machine-generated source language sentences by

using Enct and Encs to decode the monolingual

data in target language. Similarly, we get the gen-

erated sentences in target language with Encs and

Dect by decoding source language monolingual

data. We simply use the greedy sampling method

instead of the beam search method for decoding.

Next, we pre-train Dg1 on the combination of true

monolingual data and the generated data in the

source language. Similarly, we also pre-train Dg2

on the combination of true monolingual data and

the generated data in the target language. Final-

ly, we jointly train the generators and discrimina-

tors. The generators are trained with policy gradi-

ent training methods. For the details about the pol-

icy gradient training, we refer the reader to (Yang

et al., 2017).

D The configurations for the open-source
toolkits

We train the word embedding use the following

script:

./word2vec -train text -output embedding.txt -
cbow 0 -size 512 -window 10 -negative 10 -hs 0
-sample 1e- -threads 50 -binary 0 -min-count 5 -
iter 10

After we get the embeddings for both the source

and target languages, we use the open-source

VecMap 1 to map these embeddings to a shared-

latent space with the following scripts:

python3 normalize embeddings.py unit center -i
s embedding.txt -o s embedding.normalized.txt

python3 normalize embeddings.py unit center -i
t embedding.txt -o t embedding.normalized.txt

python3 map embeddings.py –
orthogonal s embedding.normalized.txt
t embedding.normalized.txt
s embedding.mapped.txt t embedding.mapped.txt
–numerals –self learning -v

References
Zhen Yang, Wei Chen, Feng Wang, and Bo Xu. 2017.

Improving neural machine translation with condi-
tional sequence generative adversarial nets .

1https://github.com/artetxem/vecmap


