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1 Experiments

1.1 Embedding Methods for Knowledge
Graph Completion

In this material, we conduct experiments to em-
pirically verify the relationship between holo-
graphic and complex embeddings (HolE and
ComplEx). Let (r, s,o) be a triple, wr ,es ,eo ∈ Rn

be n-dimensional real vectors, zr ∈ Rn2
be n2-

dimensinal real vector and ωr ,εs ,εo ∈ Cn be n-
dimensional complex vectors. Here, we compare
the following embedding methods for knowledge
graph completion:

fRESCAL(r, s,o) = zr · (vec(es ⊗eo))

fHolE(r, s,o) = wr · (es ?eo)

fComplEx(r, s,o) = ωr · (εs ¯εo)

where ⊗ denotes tensor product and vec(Z)
projects a tensor Z into a vector.

1.2 Datasets and Evaluation Protocol
We used a benchmark dataset FB15k1, which is a
large subgraph of Freebase where all entities are
present in Wikilinks database. The FB15k dataset
consists of 483,142 training, 50,000 development,
and 59,071 testing triples, containing 14,951 enti-
ties and 1,345 relation types.

We adopt the same evaluation protocol used in
previous studies. For each test triple (r, s,o), we
corrupt it by replacing the object o (or the sub-
ject s) with every entity e in the knowledge graph
and calculate a score of this corrupted triple (r, s,e)
(or (r,e,o)). Then, we rank all these triples by
their scores in decreasing order. To measure the
quality of the ranking, we use the mean reciprocal
rank (MRR). In this paper, we report its filtered
version: for some testing sample (r, s,o), if we cal-
culate the metric for the subject s (or the object o),

1https://everest.hds.utc.fr/doku.php?id=en:transe

the filtered metric removes all the other positive
triples (r,e,o) (e 6= s) (or (r, s,e) (e 6= o)) from the
ranking that appear in either training, validation or
test set.

1.3 Implementation

We trained all models using the stochastic gradi-
ent descent algorithm by minimizing the negative
log-likelihood of the logistic model with L2 regu-
larization:

min
θ

∑
(r,s,o,y)∈D

log{1+exp(−y f (r, s,o))}+λ||Θ||2F

where Θ corresponds to paramter matrix for enti-
ties and relations. Reported results in the next sec-
tion are given for the best set of hyper-parameters
evaluated on the development set for each model,
after grid search on the following values: n ∈
{20,40,50,100,200,400}, λ ∈ {0.0,0.05,0.1,0.5},
η ∈ {0.01,0.02,0.05,0.1} where η is the initial
learning rate. For all models, we generate 5 neg-
ative samples per one positive triple by heuristics
such as the local closed world assumption (Dong
et al., 2014).

For RESCAL and HolE, we randomly gener-
ate initial real vectors from the uniform distri-
bution U[−

p
6p

2n
,
p

6p
2n

] (Glorot and Bengio, 2010).
For ComplEx, we directly generate initial complex
vectors from the normal Gaussian distribution, fol-
lowing Trouillon’s implementation of ComplEx,
which is available at https://github.com/ttrouill/
complex. Note that as shown in Fig. 1, a dis-
tribution of real and imaginary values in a com-
plex vector generated by DFT of a real vector from
U[−

p
6p

2n
,
p

6p
2n

] also follows a Gaussian distribution
which is in a similar value range to a complex vec-
tor from the normal Gaussian. It could be pre-
dicted from this fact and our theory that HolE and
ComplEx will achieve similar performance.
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Figure 1: Histograms for two random vectors from
the normal Gaussian distribution and the uniform
U[−

p
6p

2n
,
p

6p
2n

] distribution, and for one vector gen-
erated by DFT of the latter vector.
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Figure 2: Speed comparison: time vs. vector di-
mension.

In the following experiments, all algorithms
have been implemented in Java and were evalu-
ated on a single 2.8GHz Intel Core i7 and 16GB
RAM.

1.4 Results

The first interesting advantage of ComplEx over
HolE is the faster training time. Actually, in our
experiments, the training time per iteration was
about 10 times faster. We also show in Fig. 2 that
for test data, ComplEx can be computed in linear-
time and is much faster than RESCAL and HolE.

Fig. 3 plots the filtered MRR accuracy curves
on test data. The RESCAL model is pretty worse
than the other models. As mentioned in (Nickel
et al., 2016), the tensor product makes models
prone to overfitting because it requires high (n2-
) dimensional parameters. ComplEx achieves al-
most the same accuracy as HolE when the vec-
tor size of the former is just half of that of the
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Figure 3: Performance comparison: filtered MRR
accuracy vs. vector dimension.

latter (though ComplEx needs the same amount
of memory as HolE since the former uses com-
plex vectors). These results empirically support
our theory.
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