
A Transition-Based Directed Acyclic Graph Parser for UCCA
Supplementary Notes

A Feature Templates

Figure 1 presents the feature templates used by TUPASparse. All feature templates define binary features.
The other classifiers use the same elements listed in the feature templates, but all categorical features are
replaced by vector embeddings, and all count-based features are replaced by their numeric value.

For some of the features, we used the notion of head word, defined by the h∗ function (see Ap-
pendix D). While head words are not explicitly represented in the UCCA scheme, these features prove
useful as means of encoding word-to-word relations.

Features from (Zhang and Clark, 2009):

unigrams
s0tde, s0we, s1tde, s1we, s2tde, s2we, s3tde, s3we,
b0wtd, b1wtd, b2wtd, b3wtd,
s0lwe, s0rwe, s0uwe, s1lwe, s1rwe, s1uwe
bigrams
s0ws1w, s0ws1e, s0es1w, s0es1e, s0wb0w, s0wb0td,
s0eb0w, s0eb0td, s1wb0w, s1wb0td, s1eb0w, s1eb0td,
b0wb1w, b0wb1td, b0tdb1w, b0tdb1td
trigrams
s0es1es2w, s0es1es2e, s0es1eb0w, s0es1eb0td,
s0es1wb0w, s0es1wb0td, s0ws1es2e, s0ws1eb0td
separator
s0wp, s0wep, s0wq, s0wcq, s0es1ep, s0es1eq,
s1wp, s1wep, s1wq, s1weq
extended (Zhu et al., 2013)

s0llwe, s0lrwe, s0luwe, s0rlwe, s0rrwe,
s0ruwe, s0ulwe, s0urwe, s0uuwe, s1llwe,
s1lrwe, s1luwe, s1rlwe, s1rrwe, s1ruwe

disco (Maier, 2015)

s0xwe, s1xwe, s2xwe, s3xwe,
s0xtde, s1xtde, s2xtde, s3xtde,
s0xy, s1xy, s2xy, s3xy
s0xs1e, s0xs1w, s0xs1x, s0ws1x, s0es1x,
s0xs2e, s0xs2w, s0xs2x, s0ws2x, s0es2x,
s0ys1y, s0ys2y, s0xb0td, s0xb0w
Features from (Tokgöz and Eryiğit, 2015):

counts
s0P, s0C, s0wP, s0wC, b0P, b0C, b0wP, b0wC
edges
s0s1, s1s0, s0b0, b0s0, s0b0e, b0s0e
history
a0, a1
remote (Novel, UCCA-specific features)

s0R, s0wR, b0R, b0wR

Figure 1: Binary feature templates for TUPASparse. Notation:
si, bi: ith stack and buffer items.
w, t, d: word form, POS tag and syntactic dependency label of the terminal returned by h∗(·) (see Appendix D).
e: edge label to the node returned by h(·).
l, r (ll, rr): leftmost and rightmost (grand)children.
u (uu): unary (grand)child, when only one exists.
p: unique separator punctuation between s0 and s1. q: separator count.
x: gap type (“none”, “pass” or “gap”) at the sub-graph under the current node.
y: sum of gap lengths (Maier and Lichte, 2009).
P , C: number of parents and children.
R: number of remote children.
ai: action taken i steps back.

B Extended Presentation of UCCA

This work does not handle two important constructions in the UCCA foundational layer: Linkage, rep-
resenting discourse relations, and Implicit, representing covert entities. Table 1 shows the statistics of
linkage nodes and edges and implicit nodes in the corpora.

Wiki 20K
Train Dev Test Leagues

nodes
implicit 899 122 77 241
linkage 2956 263 359 376
edges
linkage 9276 803 1094 957

Table 1: Statistics of linkage and implicit nodes in the Wiki and 20K Leagues UCCA corpora. Cf. Table 1.

Linkage. Figure 2 demonstrates a linkage relation, omitted from Figure 1a. The linkage relation is
represented by the gray node. LA is link argument, and LR is link relation. The relation represents the
fact that the linker “After” links the two parallel scenes that are the arguments of the linkage. Linkage
relations are another source of multiple parents for a node, which we do not yet handle in parsing and
evaluation.

After

L

graduation
P

H

,
U

John

A

moved

P

to
R

Paris

C

A

H

A

LR

LA

LA

Figure 2: UCCA example with linkage.

Implicit units. UCCA graphs may contain implicit units with no correspondent in the text. Figure 3
shows the annotation for the sentence “A similar technique is almost impossible to apply to other crops,
such as cotton, soybeans and rice.”. The sentence was used by Oepen et al. (2015) to compare between
different semantic dependency schemes. It includes a single scene, whose main relation is “apply”, a
secondary relation “almost impossible”, as well as two complex arguments: “a similar technique” and
the coordinated argument “such as cotton, soybeans, and rice.” In addition, the scene includes an implicit
argument, which represents the agent of the “apply” relation.

A

E

similar

E

technique

C

A

is

F

almost

E

impossible

C

D

IMPLICIT

A

to

F

apply

P

to

R

other

E

crops

C

,

U

such as

R

cotton

C

,

U

soybeans

C

and

N

rice

C

E

A

.

U

Figure 3: UCCA example with an implicit unit.

The parsing of these units is deferred to future work, as it is likely to require different methods than
those explored in this paper (Roth and Frank, 2015).

C Hyperparameter Values

Table 2 lists the hyperparameter values we found for the different classifiers by tuning on the development
set. Note that learning rate decay is multiplicative and is applied at each epoch. Mini-batch size is in
number of transitions, but a mini-batch must contain only whole sentences.

Sparse MLP BiLSTM
Embedding dimensions

external word 100 100
word 200 200
POS tag 20 20
syntactic dep. 10 10
edge label 20 20
punctuation 1 1
gap 3 3
action 3 3
Other parameters

training epochs 19 28 59
MINUPDATE 5
initial learning rate 1 1 1
learning rate decay 0.1 1 1
MLP #layers 2 2
MLP layer dim. 100 50
LSTM #layers 2
LSTM layer dim. 500
word dropout 0.2 0.2
dropout 0.4 0.4
weight decay 10−5 10−5

mini-batch size 100 100

Table 2: Hyperparameters used for the different classifiers.

D Bilexical Graph Conversion

Here we describe the algorithms used in the conversion referred to in Section 4.

Notation. Let L be the set of possible edge labels. A UCCA graph over a sequence of tokens
w1, . . . , wn is a directed acyclic graph G = (V,E, `), where ` : E → L maps edges to labels. For
each token wi there exists a leaf (terminal) ti ∈ V . A bilexical (dependency) graph over the same text
consists of a set A of labeled dependency arcs (t′, l, t) between the terminals of G, where t′ is the head,
t is the dependent and l is the edge label.

Conversion to bilexical graphs. Let G = (V,E, `) be a UCCA graph with labels ` : E → L. The
conversion to a bilexical graph requires calculating the set A. All non-terminals in G are removed.

We define a linear order over possible edge labels L (see Figure 4). The priority order generally places
core-like categories before adjunct-like ones, and was decided heuristically. For each node u ∈ V ,
denote by h(u) its child with the highest-priority edge label. The leftmost edge is chosen in case of a tie.
Let h∗(u) be the terminal reached by recursively applying h(·) over u. For each terminal t, we define

N(t) = {(u, v) ∈ E | t = h∗(v) ∧ t 6= h∗(u)}

For each edge (u, v) ∈ N(t), we add h∗(u) as a head of t in A, with the label `(u, v). This procedure is
given in Algorithm 1.

Data: UCCA graph G = (V,E, `)
Result: set A of labeled bilexical arcs
A← ∅;
foreach t ∈ Terminals(V) do

foreach (u, v) ∈ N(t) do
A← A ∪ {(h∗(u), `(u, v), t)};

end
end

Algorithm 1: Conversion to bilexical graphs.

Note that this conversion procedure is simpler than the head percolation procedure used for convert-
ing syntactic constituency trees to dependency trees (Collins, 1997), since h(u) (similar to u’s head-
containing child) depends only on `(u, h(u)) and not on the sub-tree spanned by u, because edge labels
in UCCA directly express the role of the child in the parent unit, and are thus sufficient for determining
which of u’s children contains the head node.

Conversion from bilexical graphs. The inverse conversion introduces non-terminal nodes back into
the graph. As the distinction between low- and high-attaching nodes is lost in the conversion, we assume
that attachments are always low-attaching. Let A be a the labeled arc set of a bilexical graph. Iterating
over the terminals in topological order according to A, we add its members as terminals to graph and
create a pre-terminal parent ut for each terminal t, with an edge labeled as Terminal between them. The
parents of the pre-terminals are determined by the terminal’s parent in the bilexical graph: if t′ is a head
of t in A, then ut′ will be a parent of ut. We add an intermediate node in between if t has any dependents
in A, to allow adding their pre-terminals as children later. Edge labels for the intermediate edges are
determined by a rule-based function, denoted by Label(t). This procedure is given in Algorithm 2.

1. C (Center)

2. N (Connector)

3. H (ParallelScene)

4. P (Process)

5. S (State)

6. A (Participant)

7. D (Adverbial)

8. T (Time)

9. E (Elaborator)

10. R (Relator)

11. F (Function)

12. L (Linker)

13. LR (LinkRelation)

14. LA (LinkArgument)

15. G (Ground)

16. Terminal (Terminal)

17. U (Punctuation)

Figure 4: Priority order of edge labels used by h(u).

E Proof Sketch for Completeness of the TUPA Transition Set

Here we sketch a proof for the fact that the transition set defined in Section 3 is capable of producing any
rooted, labeled, anchored DAG. This proves that the transition set is complete with respect to the class
of graphs that comprise UCCA.

Let G = (V,E, `) be a graph with labels ` : E → L over a sequence of tokens w1, . . . , wn. Parsing
starts with w1, . . . , wn on the buffer, and the root node on the stack.

First we show that every node can be created, by induction on the node height: every terminal (height
zero) already exists at the beginning of the parse (and so does the root node). Let v ∈ V be of height
k, and assume all nodes of height less than k can be created. Take any (primary) child u of v: its height
must be less than k. If u is a terminal, apply SHIFT until it lies at the head of the buffer. Otherwise, by

Data: list T of terminals, set A of labeled bilexical arcs
Result: UCCA graph G = (V,E, `)
V ← ∅, E ← ∅;
foreach t ∈ TopologicalSort(T,A) do

ut ← Node();
V ← V ∪ {ut, t}, E ← E ∪ {(ut, t)};
`(ut, t)← Terminal ;
foreach t′ ∈ T, l ∈ L do

if (t′, l, t) ∈ A then
if ∃t′′ ∈ T, l′ ∈ L : (t, l′, t′′) ∈ A then

u← Node();
V ← V ∪ {u}, E ← E ∪ {(u, ut)};
`(u, ut)← Label(t);

else
u← ut;

end
E ← E ∪ {(ut′ , u)};
`(ut′ , u)← l;

end
end

end
Function Label

Data: node t ∈ T
Result: label l ∈ L
if IsPunctuation(t) then

return Punctuation;
else if ∃t′ ∈ T : (t,ParallelScene, t′) ∈ A then

return ParallelScene;
else if ∃t′ ∈ T : (t,Participant, t′) ∈ A then

return Process;
else

return Center;
Algorithm 2: Conversion from bilexical graphs.

our assumption, u can still be created. Right after u is created, it lies at the head of the buffer. A SHIFT

transition followed by a NODE`(v,u) transition will move u to the stack and create v on the buffer, with
the correct edge label.

Next, we show that every edge can be created. Let (v, u) ∈ E be any edge with parent v and child u.
Assume v and u have both been created (we already showed that both are created eventually). If either
v or u are in the buffer, apply SHIFT until both are in the stack. If both are in the stack but neither is
at the stack top, apply SWAP transitions until either moves to the buffer, and then apply SHIFT. Now,
assume either v or u is at the stack top. If the other is not the second element on the stack, apply SWAP

transitions until it is. Finally, v and u are the top two elements on the stack. If they are in that order,
apply RIGHT-EDGE`(v,u) (or RIGHT-REMOTE`(v,u) if the edge between them is remote). Otherwise,
apply LEFT-EDGE`(v,u) (or LEFT-REMOTE`(v,u) if the edge between them is remote). This creates (v, u)
with the correct edge label.

Once all nodes and edges have been created, we can apply REDUCE until only the root node remains
on the stack, and then FINISH. This yields exactly the graph G.

Note that the distinction we made between primary and remote transitions is suitable for UCCA pars-
ing. For general graph parsing without this distinction, the REMOTE transitions can be removed, as well
as the single-primary-parent restriction on EDGE transition.

References
Michael Collins. 1997. Three generative lexicalized models for statistical parsing. In Proc. of ACL. ACL, Madrid,

pages 16–23.

Wolfgang Maier. 2015. Discontinuous incremental shift-reduce parsing. In Proc. of ACL. pages 1202–1212.
http://aclweb.org/anthology/P15-1116.

Wolfgang Maier and Timm Lichte. 2009. Characterizing discontinuity in constituent treebanks. In Proc. of Formal
Grammar. Springer, Bordeaux, France, number 5591 in Lecture Notes in Artificial Intelligence, pages 167–182.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao, Daniel Zeman, Silvie Cinková, Dan Flickinger, Jan Hajič, and
Zdeňka Urešová. 2015. SemEval 2015 task 18: Broad-coverage semantic dependency parsing. In Proc. of
SemEval. pages 915–926. http://aclweb.org/anthology/S15-2153.

Michael Roth and Anette Frank. 2015. Inducing Implicit Arguments from Comparable Texts: A Framework and
its Applications. Computational Linguistics 41:625–664.

Alper Tokgöz and Gülsen Eryiğit. 2015. Transition-based dependency DAG parsing using dynamic oracles. In
Proc. of ACL Student Research Workshop. pages 22–27. http://aclweb.org/anthology/P15-3004.

Yue Zhang and Stephen Clark. 2009. Transition-based parsing of the Chinese treebank using a global
discriminative model. In Proc. of IWPT . Association for Computational Linguistics, pages 162–171.
http://aclweb.org/anthology/W09-3825.

Muhua Zhu, Yue Zhang, Wenliang Chen, Min Zhang, and Jingbo Zhu. 2013. Fast and accurate shift-reduce
constituent parsing. In Proc. of ACL. pages 434–443. http://aclweb.org/anthology/P13-1043.

http://aclweb.org/anthology/P15-1116
http://aclweb.org/anthology/P15-1116
http://aclweb.org/anthology/S15-2153
http://aclweb.org/anthology/S15-2153
http://aclweb.org/anthology/P15-3004
http://aclweb.org/anthology/P15-3004
http://aclweb.org/anthology/W09-3825
http://aclweb.org/anthology/W09-3825
http://aclweb.org/anthology/W09-3825
http://aclweb.org/anthology/P13-1043
http://aclweb.org/anthology/P13-1043
http://aclweb.org/anthology/P13-1043

