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Introduction

● End-to-end dialog models based on encoder-decoder models have shown great promises for 

modeling open-domain conversations, due to its flexibility and scalability.
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Introduction

However, dull response problem! [Li et al 2015, Serban et al. 2016].  Current solutions 
include:

● Add more info to the dialog context  [Xing et al 2016,  Li et al 2016]

● Improve decoding algorithm, e.g. beam search [Wiseman and Rush 2016]

YesI don’t knowsure

Encoder Decoder

User: I am feeling quite happy today.
… (previous utterances)



Our Key Insights

● Response generation in conversation is a ONE-TO-MANY mapping problem at the 

discourse level. 

● A similar dialog context can have many  different yet valid responses.

● Learn a probabilistic distribution over the valid responses instead of only keep the  

most likely one.
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Our Contributions

1. Present an E2E dialog model adapted from Conditional Variational Autoencoder 

(CVAE). 

2. Enable integration of expert knowledge via knowledge-guided CVAE.

3. Improve the training method of optimizing CVAE/VAE for text generation.



Conditional Variational Auto Encoder (CVAE)

● C is dialog context 

○ B: Do you like cats? A: Yes I do

● Z is the latent variable (gaussian)

● X is the next response 

○ B: So do I.



Conditional Variational Auto Encoder (CVAE)

● C is dialog context 

○ B: Do you like cats? A: Yes I do

● Z is the latent variable (gaussian)

● X is the next response 

○ B: So do I.

● Trained  by Stochastic Gradient Variational 

Bayes (SGVB) [Kingma and Welling 2013]



Knowledge-Guided CVAE (kgCVAE)

● Y is linguistic features extracted from responses

○ Dialog act: statement -> “So do I”.

● Use Y to guide the learning of latent Z



Training of (kg)CVAE
Reconstruction loss

KL-divergence loss



Testing of (kg)CVAE



Optimization Challenge
Training CVAE with RNN decoder is hard due to the vanishing latent variable problem 

[Bowman et al., 2015]

● RNN decoder can cheat by using LM information and ignore Z!  

Bowman et al. [2015] described two methods to alleviate the problem :

1. KL annealing (KLA): gradually increase the weight of KL term from 0 to 1 (need early stop).

2. Word drop decoding: setting a proportion of target words to 0 (need careful parameter 

picking).



BOW Loss
● Predict the bag-of-words in the responses X at once (word counts in the response)

● Break the dependency between words and eliminate the chance of cheating based on LM.
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Dataset

Data Name Switchboard Release 2

Number of dialogs 2,400 (2316/60/62 - train/valid/test)

Number of context-response pairs 207,833/5,225/5,481 

Vocabulary Size Top 10K

Dialog Act Labels 42 types, tagged by SVM and human

Number of Topics 70 tagged by humans



Quantitative Metrics
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Quantitative Metrics

d(r, h) is a distance function [0, 1] to measure the similarity between a reference and a hypothesis.

 

Appropriateness

Diversity
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Distance Functions used for Evaluation
1. Smoothed Sentence-level BLEU (1/2/3/4): lexical similarity

2. Cosine distance of Bag-of-word Embeddings: distributed semantic similarity. 

(pre-trained Glove embedding on twitter)

a. Average of embeddings (A-bow) 

b. Extrema of embeddings (E-bow) 

3. Dialog Act Match: illocutionary force-level similarity 

a. (Use pre-trained dialog act tagger for tagging)



Models (trained with BOW loss)

Encoder Sampling Decoder

Encoder Greedy Decoder

Encoder Greedy Decoder
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Quantitative Analysis Results

Metrics Perplexi
ty (KL)

BLEU-1 
(p/r)

BLEU-2 
(p/r)

BLEU-3 
(p/r)

BLEU-4 
(p/r)

A-bow 
(p/r)

E-bow 
(p/r)

DA   
(p/r)

Baseline 
(sample)

35.4 
(n/a)

0.405/
0.336

0.3/
0.281

0.272/
0.254

0.226/
0.215

0.387/
0.337

0.701/
0.684

0.736/
0.514

CVAE
(greedy)

20.2 
(11.36)

0.372/
0.381

0.295/
0.322

0.265/
0.292

0.223/
0.248

0.389/
0.361

0.705/
0.709

0.704/
0.604

kgCVAE
(greedy)

16.02 
(13.08)

0.412/
0.411

0.350/
0.356

0.310/
0.318

0.262/
0.272

0.373/
0.336

0.711/
0.712

0.721/
0.598

Note: BLEU are normalized into [0, 1] to be valid precision and recall distance function



Qualitative Analysis
Topic: Recycling Context: A: are they doing a lot of recycling out in Georgia? 
Target (statement): well at my workplace we have places for aluminium cans 

Baseline + Sampling kgCVAE + Greedy

1.  well I’m a graduate student and have two 
kids.

1. (non-understand) pardon.

2. well I was in last year and so we’ve had 
lots of recycling.

2. (statement) oh you’re not going to have a 
curbside pick up here.

3. I’m not sure. 3. (statement) okay I am sure about a recycling 
center.

4. well I don’t know I just moved here in new 
york. 

4. (yes-answer) yeah so.



Latent Space Visualization

● Visualization of the posterior Z on the test 

dataset in 2D space using t-SNE.

● Assign different colors to the top 8 frequent 

dialog acts. 

● The size of circle represents the response 

length.

● Exhibit clear clusterings of responses w.r.t the 

dialog act



The Effect of BOW Loss

Same setup on PennTree Bank for LM 
[Bowman 2015]. Compare 4 setups: 

1. Standard VAE 
2. KL Annealing (KLA) 
3. BOW 
4. BOW + KLA

Goal: low reconstruction loss + small 
but non-trivial KL cost 

Model Perplexity KL Cost

Standard 122.0 0.05

KLA 111.5 2.02

BOW 97.72 7.41

BOW+KLA 73.04 15.94



KL Cost during Training

● Standard model suffers from vanishing 

latent variable.

● KLA requires early stopping.

● BOW leads to stable convergence 

with/without KLA.

● The same trend is observed on CVAE.



Conclusion and Future Work
● Identify the ONE-TO-MANY nature of open-domain dialog modeling

● Propose two novel models based on latent variables models for generating diverse yet 

appropriate responses.

● Explore further in the direction of leveraging both past linguistic findings and deep models 

for controllability and explainability. 

● Utilize crowdsourcing to yield more robust evaluation. 

Code available here! https://github.com/snakeztc/NeuralDialog-CVAE



Thank you!

Questions?
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Training Details

Word Embedding 200 Glove pre-trained on Twitter

Utterance Encoder Hidden Size 300

Context Encoder Hidden Size 600

Response Decoder Hidden Size 400

Latent Z Size 200

Context Window Size 10 utterances

Optimizer Adam learning rate=0.001



Testset Creation

● Use 10-nearest neighbour to collect similar context in the training data 

● Label a subset of the appropriateness of the 10 responses by 2 human 

annotators 

● bootstrap via SVM on the whole test set (5481 context/response)

● Resulting 6.79 Avg references responses/context

● Distinct reference dialog acts 4.2


