
Supplementary Materials
A Encoder LSTM Equations

Suppose the input natural language description x

consists of n words {wi}
n
i=1. Let wi denote the

embedding of wi. We use two LSTMs to process
x in forward and backward order, and get the se-
quence of hidden states {

~hi}
n
i=1 and {

~hi}
n
i=1 in

the two directions:
~hi = f

!
LSTM(wi,

~hi�1)

~hi = f

LSTM(wi,

~hi+1),

where f

!
LSTM and f

LSTM are standard LSTM up-

date functions. The representation of the i-th
word, hi, is given by concatenating ~hi and ~hi.

B Inference Algorithm

Given an NL description, we approximate the best
AST ŷ in Eq. 1 using beam search. The inference
procedure is listed in Algorithm 1.

We maintain a beam of size K. The beam is
initialized with one hypothesis AST with a single
root node (line 2). At each time step, the decoder
enumerates over all hypotheses in the beam. For
each hypothesis AST, we first find its frontier node
nft (line 6). If nft is a non-terminal node, we col-
lect all syntax rules r with nft as the head node
to the actions set (line 10). If nft is a variable
terminal node, we add all terminal tokens in the
vocabulary and the input description as candidate
actions (line 13). We apply each candidate action
on the current hypothesis AST to generate a new
hypothesis (line 15). We then rank all newly gen-
erated hypotheses and keep the top-K scored ones
in the beam. A complete hypothesis AST is gener-
ated when it has no frontier node. We then convert
the top-scored complete AST into the surface code
(lines 18-19).

We remark that our inference algorithm can
be implemented efficiently by expanding multi-
ple hypotheses (lines 5-16) simultaneously using
mini-batching on GPU.

C Dataset Preprocessing

Infrequent Words We replace word types whose
frequency is lower than d with a special <unk> to-
ken (d = 5 for DJANGO, 3 for HS and IFTTT).
Canonicalization We perform simple canonical-
ization for the DJANGO dataset: (1) We ob-
serve that input descriptions often come with
quoted string literals (e.g., verbose name is a

string ‘cache entry’). We therefore replace quoted
strings with indexed placeholders using regular
expression. After decoding, we run a post-
processing step to replace all placeholders with
their actual values. (2) For descriptions with
cascading variable reference (e.g., call method
self.makekey), we append after the whole variable
name with tokens separated by ‘.’ (e.g., append
self and makekey after self.makekey). This gives
the pointer network flexibility to copy either par-
tial or whole variable names.
Generate Oracle Action Sequence To train our
model, we generate the gold-standard action se-
quence from reference code. For IFTTT, we sim-
ply parse the officially provided ASTs into se-
quences of APPLYRULE actions. For HS and
DJANGO, we first convert the Python code into
ASTs using the standard ast module. Values
inside variable terminal nodes are tokenized by
space and camel case (e.g., ClassName is tok-
enized to Class and Name). We then traverse the
AST in pre-order to generate the reference action
sequence according to the grammar model.

D Additional Decoding Examples

We provide extra decoding examples from the
DJANGO and HS datasets, listed in Table 6 and Ta-
ble 7, respectively. The model heavily relies on the
pointer network to copy variable names and con-
stants from input descriptions. We find the source
of errors in DJANGO is more diverse, with most
incorrect examples resulting from missing argu-
ments and incorrect words copied by the pointer
network. Errors in HS are mostly due to partially
or incorrectly implemented effects. Also note that
the first example in Table 6 is semantically cor-
rect, although it was considered incorrect under
our exact-match metric. This suggests more ad-
vanced evaluation metric that takes into account
the execution results in future studies.

Algorithm 1: Inference Algorithm
Input : NL description x

Output: code snippet c
1 call Encoder to encode x

2 Q = {y0 (root)} . Initialize a beam of size K

3 for time step t do
4 Q

0 = ;
5 foreach hypothesis yt 2 Q do
6 nft = FrontierNode(yt)
7 A = ; . Initialize the set of candidate actions
8 if nft is non-terminal then
9 foreach production rule r with nft as the head node do

10 A = A [{APPLYRULE[r]} . APPLYRULE actions for non-terminal nodes
11 else
12 foreach terminal token v do
13 A = A [{GENTOKEN[v]} . GENTOKEN actions for variable terminal nodes
14 foreach action at 2 A do
15 y

0
t = ApplyAction(yt, at)

16 Q

0 = Q

0 [{y 0
t}

17 Q = top-K scored hypotheses in Q

0

18 ŷ = top-scored complete hypothesis AST
19 convert ŷ to surface code c

20 return c

input for every i in range of integers from 0 to length of result, not included
pred. for i in range(0, len(result)): 3 ref. for i in range(len(result)):

input call the function blankout with 2 arguments: t.contents and ’B’, write the result to out.
pred. out.write(blankout(t.contents, ’B’)) 3 ref. out.write(blankout(t.contents, ’B’))

pred. code list.append(foreground[v]) 3 ref. code list.append(foreground[v])

input zip elements of inner result and inner args into a list of tuples, for every i item and i args in the result
pred. for i item, i args in zip(inner result,

inner args): 3
ref. for i item, i args in zip(inner result,

inner args):

input activate is a lambda function which returns None for any argument x.
pred. activate = lambda x: None 3 ref. activate = lambda x: None

input if elt is an instance of Choice or NonCapture classes
pred. if isinstance(elt, Choice): 7 ref. if isinstance(elt, (Choice, NonCapture)):

input get translation function attribute of the object t, call the result with an argument eol message, substitute the result for
result.

pred. translation function = getattr(t,
translation function) 7

ref. result = getattr(t, translation function)(
eol message)

input for every s in strings, call the function force text with an argument s, join the results in a string, return the result.
pred. return ’’.join(force text(s)) 7 ref. return ’’.join(force text(s) for s in strings)

input for every p in parts without the first element
pred. for p in p[1:]: 7 ref. for p in parts[1:]:

input call the function get language, split the result by ’-’, substitute the first element of the result for base lang.
pred. base lang = get language().split()[0] 7 ref. base lang = get language().split(’�’)[0]

Table 6: Predicted examples from DJANGO dataset. Copied contents (copy probability > 0.9) are highlighted

input <name> Burly Rockjaw Trogg </name> <cost> 5 </cost> <attack> 3 </attack> <defense> 5 </defense>

<desc> Whenever your opponent casts a spell, gain 2 Attack. </desc> <rarity> Common </rarity> ...
pred. class BurlyRockjawTrogg(MinionCard):

def init (self):
super(). init (’Burly Rockjaw Trogg’, 4, CHARACTER CLASS.ALL, CARD RARITY.COMMON)

def create minion(self, player):
return Minion(3, 5, effects=[Effect(SpellCast(player=EnemyPlayer()),

ActionTag(Give(ChangeAttack(2)), SelfSelector()))]) 3

input <name> Maexxna </name> <cost> 6 </cost> <attack> 2 </attack> <defense> 8 </defense> <desc> Destroy
any minion damaged by this minion. </desc> <rarity> Legendary </rarity> ...

pred. class Maexxna(MinionCard):
def init (self):

super(). init (’Maexxna’, 6, CHARACTER CLASS.ALL, CARD RARITY.LEGENDARY,
minion type=MINION TYPE.BEAST)

def create minion(self, player):
return Minion(2, 8, effects=[Effect(DidDamage(), ActionTag(Kill(),

TargetSelector(IsMinion())))]) 3

input <name> Hellfire </name> <cost> 4 </cost> <attack> -1 </attack> <defense> -1 </defense> <desc> Deal 3
damage to ALL characters. </desc> <rarity> Free </rarity> ...

pred. class Hellfire(SpellCard):
def init (self):

super(). init (’Hellfire’, 4, CHARACTER CLASS.WARLOCK, CARD RARITY.FREE)

def use(self, player, game):
super().use(player, game)
for minion in copy.copy(game.other player.minions):

minion.damage(player.effective spell damage(3), self) 7
ref. class Hellfire(SpellCard):

def init (self):
super(). init (’Hellfire’, 4, CHARACTER CLASS.WARLOCK, CARD RARITY.FREE)

def use(self, player, game):
super().use(player, game)
targets = copy.copy(game.other player.minions)
targets.extend(game.current player.minions)
targets.append(game.other player.hero)
targets.append(game.current player.hero)
for minion in targets:

minion.damage(player.effective spell damage(3), self)
reason Partially implemented effect: only deal 3 damage to opponent’s characters

input <name> Darkscale Healer </name> <cost> 5 </cost> <attack> 4 </attack> <defense> 5 </defense> <desc>

Battlecry: Restore 2 Health to all friendly characters. </desc> <rarity> Common </rarity> ...
pred. class DarkscaleHealer(MinionCard):

def init (self):
super(). init (’Darkscale Healer’, 5, CHARACTER CLASS.ALL,

CARD RARITY.COMMON, battlecry=Battlecry(Damage(2),
CharacterSelector(players=BothPlayer(), picker=UserPicker())))

def create minion(self, player):
return Minion(4, 5) 7

ref. class DarkscaleHealer(MinionCard):
def init (self):

super(). init (’Darkscale Healer’, 5, CHARACTER CLASS.ALL,
CARD RARITY.COMMON, battlecry=Battlecry(Heal(2), CharacterSelector()))

def create minion(self, player):
return Minion(4, 5)

reason Incorrect effect: damage 2 health instead of restoring. Cast effect to all players instead of friendly players only.

Table 7: Predicted card examples from HS dataset. Copied contents (copy probability > 0.9) are highlighted.

