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Extracting Open IE Assertions

We extracted over 63 million unique subject-
relation-object triplets from Google’s Syntactic N-
grams (Goldberg and Orwant, 2013), including the
number of times each one appeared in the corpus.
This collection represents over 1.5 billion distinct
appearances. The assertions may include multi-
word phrases as relations or arguments, for exam-
ple:

(chocolate, is made from, the cocoa bean) : 22

We extracted these triplets using the following
method:

1. Obtain the collection of biarcs, triarcs, and
quadarcs (the extended versions). The ex-
tended collections contain function words
such as modality and negation.

2. Select all syntactic n-grams that contain a
subject (including passive and controlling),
followed by a verb at the n-gram’s root, and
ending with an object (direct, prepositional,
or copular). Other tokens may appear in be-
tween these ones and before the subject.

3. Retain all n-grams that have exactly one sub-
ject and one root.

4. Define the subject as the subtree rooted at the
subject token.

5. Define the object as the subtree rooted at the
last token in the n-gram.

6. Verify that the noun-phrases describing sub-
jects or objects are continuous, and contain
only internal dependencies of the types: det,
amod, nn, or dep.

7. Verify that the tokens between the subject
noun-phrase and object noun-phrase form a
subtree that includes the root. This span is
the assertion’s relation.

8. Yield assertions of the form
(subject, relation, object) : count,
where each element is a string, discarding
syntactic information.

9. Aggregate the frequencies of identical asser-
tions.

10. Remove assertions whose relations appear
with less than 10 unique subject-object pairs.

Retrieving Answer Candidates

We defined three criteria for matching an answer
candidate to a question. We now translate them
into a process for retrieving answer candidates for
a given question q. Some of the filtering steps be-
low are applied to increase the diversity of answers
and reduce the amount of non-grammatical asser-
tions.

1. Retrieve all assertions where one of the argu-
ments (subject or object) is equal to qarg, ig-
noring stopwords and inflections. The match-
ing argument is named aarg, while the other
(non-matching) argument is named aanswer.

2. For each retrieved assertion, retain those
where aanswer is a type of qtype. We use
WordNet 3.0 (Fellbaum, 1998) as our tax-
onomy T . To determine the sense of qtype,
the first WordNet sense was selected. For
aanswer, we used Lesk (Lesk, 1986) via
NLTK (Bird et al., 2009) to choose the ap-
propriate sense. If qtype can be reached
from aanswer using only hypernym or in-
stance hypernym edges (including combina-
tions of both), then the assertion is retained.



Assertions in which a WordNet sense was not
found for aanswer were discarded.

3. Retain assertions that contain only maximal
relations and arguments; i.e. if some relation
xrel contains yrel as a subsequence, the as-
sertion y that contains yrel is discarded. A
similar rule is applied to aanswer, but not
to aarg. This phase significantly reduces
the number of candidates that have miss-
ing content words. For example, the asser-
tion (France, declared on,Germany) is mal-
formed, because its relation is missing the
content word “war”. Usually, another as-
sertion with a subsuming relation (“declared
war on”) will be present, indicating that the
shorter predicate should be discarded.

4. Discard all assertions where arel = qrel.

5. Order the remaining assertions by corpus fre-
quency, and remove less-frequent assertions
so that no arel appears more than 3 times and
no aanswer appears more than 7.

6. Remove duplicate candidate answers.

Improving Annotation Quality

To improve annotation quality, we implemented
two mechanisms. As an online mechanism, we
injected two hand-crafted candidate answers (one
positive and one negative) to roughly 300 of the
1,500 questionnaires (these were written for 120
of the 573 questions). Workers who did not an-
swer these examples correctly could not complete
the task, and were asked to go back and fix their
annotations.

As an offline mechanism, we tried to ignore
workers that consistently gave poor annotations.
We measured the amount of times each annotator
was in a sharp minority (1/5) with respect to other
annotators. We then calculated each annotator’s
“insurgency” rate as follows:

insurgency =
Nminority

Nexamples + 25

Where Nexamples is the total number of exam-
ples annotated by the worker, and 25 is a smooth-
ing constant. Annotations from workers with over
20% insurgency were discarded.

Embeddings

We create two sets of embeddings in this paper.

Relation Embeddings Similar to DIRT (Lin
and Pantel, 2001), we create vector representa-
tions for relations, which are then used to measure
semantic similarity using cosine similarity. From
the set of assertions extracted in Section 3, we cre-
ate a dataset of relation-argument pairs, each pair
containing a single argument. For example, the as-
sertion (chocolate, is made from, the cocoa bean)
is split into two relation-argument pairs:

is made from, x: chocolate

is made from, y: the cocoa bean

Notice that we add the argument’s position (x for
subject, y for object) in each case. Over this
dataset, we run word2vecf (Levy and Goldberg,
2014) to train the embeddings, where the relations
take the place of the target, and the arguments take
the place of the context. We use 500 dimensions, 1
negative sample per positive example, context dis-
tribution smoothing (α = 0.75), and 10 iterations.

Word Embeddings We used the extended
uniarcs from Google’s Syntactic N-grams (Gold-
berg and Orwant, 2013) to create a dataset of
word-context pairs. We follow Levy and Gold-
berg’s (2014) methodology and extract two in-
stances from each dependency arc, while collaps-
ing prepositional objects. For example, from the
syntactic n-gram “game of thrones”, we extract:

game, pobj:of↓thrones

thrones, pobj:of↑game

We discard instances containing words and/or con-
texts that appeared less than 100 times in total.
Over this dataset, we run word2vecf (Levy and
Goldberg, 2014) to train the embeddings. We use
500 dimensions, 5 negative sample per positive ex-
ample, context distribution smoothing (α = 0.75),
and 10 iterations.
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