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Appendix: Proof of Lemma 2.2.1

Anonymous ACL submission

Lemma 1. Let P ∈ P1
addsub be a arithmetic word

problem with n variables (|VP | = n), then the fol-
lowings are true:

1. The number of possible applications of part
whole formula to the problem P , Npartwhole

is (n+ 1)2n−2 + 1.

2. The number of possible applications of
change formula to the problem P , Nchange

is 3n−3(2n2 + 6n+ 1)− 2n+ 1.

3. The number of possible applications of
comparison formula to the problem P ,
Ncomparison is 3(n− 1)(n− 2).

4. The number of all possible applications to
the problem P is Npartwhole + Nchange +
Ncomparison.

Proof. Note that for any application, the set of as-
sociated variables must contain the unknown vari-
able x.

1. The applications of the part whole formula
can be divided into two disjoint cases:

Case I In this case, the unknown x is as-
signed to the slot whole. The set parts
then must contain at least 2 elements from
VP \ {x}. The Numbers of such sets are
2n−1−

(
n−1
1

)
−
(
n−1
0

)
= 2n−1−n. Hence, the

number of part whole applications where the
unknown variable plays the role of the whole
is 2n−1 − n.
Case II In this case, the unknown x is a mem-
ber of the set parts. The slot whole then can
be assigned to any of the remaining n − 1
variables in n − 1 ways. For each assign-
ment of a variable to the slot whole, the rest
of the set parts can be filled with a set s ⊆
VP \{x,whole} with size at least 1. Number

of such set s is 2n−2 − 1. Thus, the number
of such applications are (n−1)∗ (2n−2−1).

Any application of the part-whole concept
must either fall in case 1 or case 2 but not
both. Thus the number of total part-whole
applications to a problem P ∈ P1

addsub with
n variables is 2n−1−n+(n−1)∗(2n−2−1)
= (n+ 1)2n−2 + 1.

2. First see that, the number of ways in
which the gains, losses slots can be filled
with a set S of n variables, such that
gains

⋃
losses ⊆ S, gains

⋂
losses = φ

and gains
⋃
losses 6= φ is 3n − 1. This

is because for each variable in S we have
3 options. We can put it in gains, or in
losses or we can ignore it creating 3n pos-
sibilities. However, the union of gains and
losses should not be empty so want to ignore
the case where all the variables in S are ig-
nored.

All the applications of change concepts can
be divided into two sets:

Case I: In this this case, the start is not
missing. Let us say T (n) denote the num-
ber of ways in which a change concept can
be instantiated by the n variables in VP with-
out the restriction that the associated vari-
ables must contain an unknown and where
the start is not missing. Note that, T (n) =
n(n − 1)(3n−2 − 1). Since, the start and
the end slots can be filled in n(n − 1) ways
and for each such choice the gains and the
losses slots can be filled with the remaining
n − 2 variables in 3n−2 − 1 ways. Then the
number of valid change applications in this
case is equal to T (n) − T (n − 1) i.e. the
number of instantiations with or without the
unknown minus the number of instantiations
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without the unknown.

Case II: In this case, the start is missing. Let
us say T ′(n) denote the number of ways in
which a change concept can be instantiated
by the n variables in VP without the restric-
tion that the associated variables must contain
an unknown and where the start is missing.
Note that, T ′(n) = n(3n−1 − 1). Following
the similar argument as above, the number of
valid change applications in this case is equal
to T ′(n)− T ′(n− 1).

Thus the total number of change applications
is equal to T (n)+T ′(n)−T (n−1)−T ′(n−
1). After simplifying this we get the desired
result.

3. The unknown x can be assigned to any of
the three slots large, small, differenece in 3
ways. For each such choice for the unknown
the remaining one of two slots can be filled in
n−1 ways and for each assignment of the un-
known and the one of the two slots, the other
can be filled in n− 2 ways.

4. This follows as we currently consider only
three applications and applications of differ-
ent formulas are different from each other.


