A Proofs

In this section, we prove Prop. We start by
stating and proving a lemma. Then, by rewriting
Eq.[8} with R = Ry,, in such a way that the stated
lemma is applicable, we prove item 3 of Prop. [I}
We then proceed to show that items 2 and 1 of
Prop.[T]also hold. Finally, we prove that the analo-
gous of Prop. [I]does not hold, when replacing the
Euclidean norm by the ¢; matrix norm.

A.1 Euclidean Norm

We start by proving the following lemma, which
will be used to prove Prop.

Lemma 3. Assume K > L. Let matrices M €
RYS*VYs (invertible), V' € REXL (with full column
rank) and W € RYs*L pe arbitrary. Then, the
matrix
1
P = in —||M"P|? 11
arg  wmin o £ (11)
has rank at most L. Moreover, P* =
WV T (VV )L regardless of M.

Proof. Let ® denote the Kronecker product and
vec(.) the function that stacks together the
columns of a matrix into a column vector. We use
the well-known property (Petersen and Pedersen)
2012)): for any matrices A, B, X such that AX B
is a valid product, the following holds:

(BT ® A)vec(X) = vec(AXB). (12
Then, we have the following:
IMTPllg = || PTM||r = || vec(P " M)]|
= |(M" ® Ig)vec(P")|.
(13)

Furthermore, if we let p := vec(P") and w :=
vec(WT), by the same reasoning, the following
also holds:

vec(VIPT) = vec(W)

14
& (I, eV p=w. (9

Let H= M"oIg) ' M"®Ix) = (M ®
IK)(M—r X IK) = MMT ® I and G =
Iy ®@V . Given the above properties, we can then
pose the following optimization problem, which is
equivalent to the minimization in Eq.[TT}

. 1 +
min -p H

p 2P P (15)
st. Gp=w.

This problem is equivalent to the following linear
system (given by the Lagrangian conditions)

(6 ©)B)-(2)

where ) is a vector of Lagrange multipliers. The
solution to this system is

5)-(c5) () o

which gives

(16)

p* — H*lGT(GHflGT)flw

s (VVTV) D,

where the second line comes from expanding G
and H and canceling several terms. Let VT =
(VTV)~'V'T be the pseudo-inverse of V. Again
from the property of the Kronecker product in
Eq.[12] we have that

P =(VV'V)'whHT =wv*. 19
Note that this shows that the optimal P* does not
depend on M. Since rank(V*") < L, we have
that rank(P) < L. Note that, in order to conclude
this, we have not assumed anything about M or
V/, other than that they are full row and column
rank matrices, respectively. O

We now prove Prop. Let S be the matrix
whose columns are (1), ..., s(N)_ If we keep P
fixed and optimize only with respect to (Q, we ob-
tain

Q' =argmin 21STP ~ TTQIE + QI

(20)
Setting the gradient to zero, and noting that T" has
full row rank, we obtain the following closed-form
solution for Q*:

Q" = <:r:rT + ’“‘TIVT> TSTP. (1)
1

The equation above can be written in the form
Q* = RP, where R € RV"™*Y (ie., Q* depends
linearly on P). Therefore, we can write the objec-
tive function in Eq. [§|(with R = Ry,) as

o M P
F(P,Q") =5l(S" - T"R)P|z + 5| Pl

+ SIRP|R+ L(PV).
22)



Note that the first three terms of Eq. 22] are all
squared Frobenius norms of linear transformations
of P, hence we can collapse them all into a single
term ||M " P||Z for some matrix M € R"*",
Finally, we rewrite our objective function as

. T2
min (||M P||F+£(PV))

= min [( min HMTPH%) + E(W)} .
W |\ P.:PV=W
(23)
Invoking Lemma 3| and the fact that Q* is a linear
transformation of P*, we have item 3 of Prop.
To prove item 2, we start by replacing Eq. [19|in
Eq.[23] obtaining

min [MTWVHE+ L(W).  (24)

We can simplify the quadratic term

IMTWVH|E=[[(MT® (V) w|?

=w' (MM @ VH(VHHw

=w' (MM'" @ (V'V) Hw.

(25)

We can see from Eq. [25]that the classifier obtained

by optimizing Eq. [24] depends on V" only through

the matrix product V'V, as stated in item 2 of
Prop. [T}

We still need to show item 1 of Prop. [I]
For any V. ¢ RE*E (that is full col-
umn rank), let V! € RE*L pe such that
K'=LandV'V =V'"V' andlet W* = PV
be the minimizer of Eq.[24|and W"* = P'V" the
minimizer of the same expression, when using V'
instead of V. Since V'V = V'TV’, we have
that W* = W', Then, by our definitions of W
and W', we get

PV =PV’ (26)
Hence, the classifier for the source language is the
same when using V or V'. A similar reasoning
can be used to prove that QV = Q'V”, and con-
clude that the classifier for the target language is
also the same. This proves item 1 in Prop. |1} fin-
ishing our proof.

A.2 Generalization to Mahalanobis Norms

We define the Mahalanobis-Frobenius norm of a
matrix X € R’*” induced by a positive definite

matrix R € R™ as || X || g := \/Z;-]ZI zr:jTRa:j,

where x; denotes the jth column of X.

Lemma 4. Under the same assumptions as in
Lemma 5| for any Mahalanobis-Frobenius norm
induced by a positive definite matrix R € RV5*Vs,
the matrix

1
P = in_—||M"P|3 27
arg  min o [ S—r)

has rank at most L.

Proof. Since R is positive definite, it has a de-
composition R = N TN, where N € R"%*x
is invertible. From the definition of Mahalanobis-
Frobenius norm, we have that |M'P|gp =
|INMTP|g. Since N and M are both invert-
ible, so is M’ := MNT. Hence we can take
Lemma 3| with M’ in place of M. O

A.3 Other Norms

We now prove Prop. 2] We will start by showing
a counter-example to the analogous of Lemma 3]
when using R = Ry,. We choose Vs = N =
K=3L=2P*=M = I3 and

-2

2
v=w=|[2 2]. (28)
1 4

These choices verify

* : T
P _argp;g%/l'gw”M P|, (29)
and rank(P*) = 3 > L, which are the conditions
we needed to accomplish.

Since Lemma [3] is equivalent to item 3 in
Prop. [I] this proves that the analogous to item 3
in Prop. (1} when replacing Ry, by Ry,, does not
hold. The same counter-example can be used to

prove that the analogous to both items 1 and 2 in
Prop.[I} with R = Ry,, do not hold.

fo-norm. The same exact counter-example
above can also be used for the £y matrix “norm,”
defined as the number of non-zero entries in the
matrix—the solution P* is the same as in the
£1-norm case.

fs-norm. For the /., matrix norm, defined as
the maximum absolute value in the matrix, a very
similar counter-example can be found. The only
difference in this case is that the solution to

P = in |M'P
arg wmin || loos  (30)
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which also has rank 3.

These counter-examples have been verified with
the software Mathematica, using symbolic mini-
mization functions.



