A Proofs

In this section, we prove Prop. 1. We start by stating and proving a lemma. Then, by rewriting Eq. 8, with $\mathcal{R} = \mathcal{R}_{\ell_2}$, in such a way that the stated lemma is applicable, we prove item 3 of Prop. 1. We then proceed to show that items 2 and 1 of Prop. 1 also hold. Finally, we prove that the analogous of Prop. 1 does not hold, when replacing the Euclidean norm by the ℓ_1 matrix norm.

A.1 Euclidean Norm

We start by proving the following lemma, which will be used to prove Prop. 1.

Lemma 3. Assume $K \ge L$. Let matrices $\mathbf{M} \in \mathbb{R}^{V_{S} \times V_{S}}$ (invertible), $\mathbf{V} \in \mathbb{R}^{K \times L}$ (with full column rank) and $\mathbf{W} \in \mathbb{R}^{V_{S} \times L}$ be arbitrary. Then, the matrix

$$\boldsymbol{P}^* = \arg \min_{\boldsymbol{P}: \boldsymbol{P} \boldsymbol{V} = \boldsymbol{W}} \frac{1}{2} \| \boldsymbol{M}^\top \boldsymbol{P} \|_{\mathrm{F}}^2, \qquad (11)$$

has rank at most L. Moreover, $P^* = WV^{\top}(VV^{\top})^{-1}$, regardless of M.

Proof. Let \otimes denote the Kronecker product and vec(.) the function that stacks together the columns of a matrix into a column vector. We use the well-known property (Petersen and Pedersen, 2012): for any matrices A, B, X such that AXB is a valid product, the following holds:

$$(\boldsymbol{B}^{\top} \otimes \boldsymbol{A}) \operatorname{vec}(\boldsymbol{X}) = \operatorname{vec}(\boldsymbol{A}\boldsymbol{X}\boldsymbol{B}).$$
 (12)

Then, we have the following:

$$\|\boldsymbol{M}^{\top}\boldsymbol{P}\|_{\mathrm{F}} = \|\boldsymbol{P}^{\top}\boldsymbol{M}\|_{\mathrm{F}} = \|\operatorname{vec}(\boldsymbol{P}^{\top}\boldsymbol{M})\|$$
$$= \|(\boldsymbol{M}^{\top}\otimes\boldsymbol{I}_{K})\operatorname{vec}(\boldsymbol{P}^{\top})\|.$$
(13)

Furthermore, if we let $p := \text{vec}(P^{\top})$ and $w := \text{vec}(W^{\top})$, by the same reasoning, the following also holds:

$$\operatorname{vec}(\boldsymbol{V}^{\top}\boldsymbol{P}^{\top}) = \operatorname{vec}(\boldsymbol{W}^{\top})$$
$$\Leftrightarrow (\boldsymbol{I}_{V_{\mathrm{S}}} \otimes \boldsymbol{V}^{\top})\boldsymbol{p} = \boldsymbol{w}.$$
(14)

Let $\boldsymbol{H} = (\boldsymbol{M}^{\top} \otimes \boldsymbol{I}_K)^{\top} (\boldsymbol{M}^{\top} \otimes \boldsymbol{I}_K) = (\boldsymbol{M} \otimes \boldsymbol{I}_K) (\boldsymbol{M}^{\top} \otimes \boldsymbol{I}_K) = \boldsymbol{M} \boldsymbol{M}^{\top} \otimes \boldsymbol{I}_K$ and $\boldsymbol{G} = \boldsymbol{I}_{V_S} \otimes \boldsymbol{V}^{\top}$. Given the above properties, we can then pose the following optimization problem, which is equivalent to the minimization in Eq. 11:

$$\min_{\boldsymbol{p}} \quad \frac{1}{2} \boldsymbol{p}^{\top} \boldsymbol{H} \boldsymbol{p}$$
s.t. $\boldsymbol{G} \boldsymbol{p} = \boldsymbol{w}.$

$$(15)$$

This problem is equivalent to the following linear system (given by the Lagrangian conditions)

$$\begin{pmatrix} H & G^{\top} \\ G & 0 \end{pmatrix} \begin{pmatrix} p \\ \lambda \end{pmatrix} = \begin{pmatrix} 0 \\ w \end{pmatrix}, \quad (16)$$

where λ is a vector of Lagrange multipliers. The solution to this system is

$$\begin{pmatrix} \boldsymbol{p}^*\\\boldsymbol{\lambda}^* \end{pmatrix} = \begin{pmatrix} \boldsymbol{H} & \boldsymbol{G}^\top\\\boldsymbol{G} & \boldsymbol{0} \end{pmatrix}^{-1} \begin{pmatrix} \boldsymbol{0}\\\boldsymbol{w} \end{pmatrix}, \quad (17)$$

which gives

$$p^* = H^{-1}G^{\top}(GH^{-1}G^{\top})^{-1}w$$

= $[I_{V_{\mathrm{S}}} \otimes (V(V^{\top}V)^{-1})]w,$ (18)

where the second line comes from expanding Gand H and canceling several terms. Let $V^+ = (V^\top V)^{-1} V^\top$ be the pseudo-inverse of V. Again from the property of the Kronecker product in Eq. 12, we have that

$$\boldsymbol{P}^* = (\boldsymbol{V}(\boldsymbol{V}^\top \boldsymbol{V})^{-1} \boldsymbol{W}^\top)^\top = \boldsymbol{W} \boldsymbol{V}^+. \quad (19)$$

Note that this shows that the optimal P^* does not depend on M. Since $\operatorname{rank}(V^+) \leq L$, we have that $\operatorname{rank}(P) \leq L$. Note that, in order to conclude this, we have not assumed anything about M or V, other than that they are full row and column rank matrices, respectively.

We now prove Prop. 1. Let S be the matrix whose columns are $s^{(1)}, \ldots, s^{(N)}$. If we keep P fixed and optimize only with respect to Q, we obtain

$$\boldsymbol{Q}^* = \arg\min_{\boldsymbol{Q}} \frac{\mu}{2} \|\boldsymbol{S}^\top \boldsymbol{P} - \boldsymbol{T}^\top \boldsymbol{Q}\|_{\mathrm{F}}^2 + \frac{\mu_{\mathrm{T}}}{2} \|\boldsymbol{Q}\|_{\mathrm{F}}^2.$$
(20)

Setting the gradient to zero, and noting that T has full row rank, we obtain the following closed-form solution for Q^* :

$$\boldsymbol{Q}^* = \left(\boldsymbol{T}\boldsymbol{T}^\top + \frac{\mu_{\mathrm{T}}}{\mu}\boldsymbol{I}_{V_{\mathrm{T}}}\right)^{-1}\boldsymbol{T}\boldsymbol{S}^\top\boldsymbol{P}.$$
 (21)

The equation above can be written in the form $Q^* = RP$, where $R \in \mathbb{R}^{V_T \times V_S}$ (i.e., Q^* depends linearly on P). Therefore, we can write the objective function in Eq. 8 (with $\mathcal{R} = \mathcal{R}_{\ell_2}$) as

$$\mathcal{F}(\boldsymbol{P}, \boldsymbol{Q}^{*}) = \frac{\mu}{2} \| (\boldsymbol{S}^{\top} - \boldsymbol{T}^{\top} \boldsymbol{R}) \boldsymbol{P} \|_{\mathrm{F}}^{2} + \frac{\mu_{\mathrm{S}}}{2} \| \boldsymbol{P} \|_{\mathrm{F}}^{2} + \frac{\mu_{\mathrm{T}}}{2} \| \boldsymbol{R} \boldsymbol{P} \|_{\mathrm{F}}^{2} + \mathcal{L}(\boldsymbol{P} \boldsymbol{V}).$$

$$(22)$$

Note that the first three terms of Eq. 22 are all squared Frobenius norms of linear transformations of \boldsymbol{P} , hence we can collapse them all into a single term $\|\boldsymbol{M}^{\top}\boldsymbol{P}\|_{\text{F}}^2$ for some matrix $\boldsymbol{M} \in \mathbb{R}^{V_{\text{S}} \times V_{\text{S}}}$. Finally, we rewrite our objective function as

$$\min_{\boldsymbol{P}} \left(\|\boldsymbol{M}^{\top}\boldsymbol{P}\|_{\mathrm{F}}^{2} + \mathcal{L}(\boldsymbol{P}\boldsymbol{V}) \right)$$

=
$$\min_{\boldsymbol{W}} \left[\left(\min_{\boldsymbol{P}:\boldsymbol{P}\boldsymbol{V}=\boldsymbol{W}} \|\boldsymbol{M}^{\top}\boldsymbol{P}\|_{\mathrm{F}}^{2} \right) + \mathcal{L}(\boldsymbol{W}) \right].$$
(23)

Invoking Lemma 3 and the fact that Q^* is a linear transformation of P^* , we have item 3 of Prop. 1. To prove item 2, we start by replacing Eq. 19 in Eq. 23, obtaining

$$\min_{\boldsymbol{W}} \|\boldsymbol{M}^{\top} \boldsymbol{W} \boldsymbol{V}^{+}\|_{\mathrm{F}}^{2} + \mathcal{L}(\boldsymbol{W}).$$
(24)

We can simplify the quadratic term

$$\|\boldsymbol{M}^{\top}\boldsymbol{W}\boldsymbol{V}^{+}\|_{\mathrm{F}}^{2} = \|(\boldsymbol{M}^{\top}\otimes(\boldsymbol{V}^{+})^{\top})\boldsymbol{w}\|^{2}$$

$$= \boldsymbol{w}^{\top}(\boldsymbol{M}\boldsymbol{M}^{\top}\otimes\boldsymbol{V}^{+}(\boldsymbol{V}^{+})^{\top})\boldsymbol{w}$$

$$= \boldsymbol{w}^{\top}(\boldsymbol{M}\boldsymbol{M}^{\top}\otimes(\boldsymbol{V}^{\top}\boldsymbol{V})^{-1})\boldsymbol{w}.$$

(25)

We can see from Eq. 25 that the classifier obtained by optimizing Eq. 24 depends on V only through the matrix product $V^{\top}V$, as stated in item 2 of Prop. 1.

We still need to show item 1 of Prop. 1. For any $V \in \mathbb{R}^{K \times L}$ (that is full column rank), let $V' \in \mathbb{R}^{K' \times L}$ be such that K' = L and $V^{\top}V = V'^{\top}V'$, and let $W^* = PV$ be the minimizer of Eq. 24 and $W'^* = P'V'$ the minimizer of the same expression, when using V'instead of V. Since $V^{\top}V = V'^{\top}V'$, we have that $W^* = W'^*$. Then, by our definitions of Wand W', we get

$$PV = P'V'. \tag{26}$$

Hence, the classifier for the source language is the same when using V or V'. A similar reasoning can be used to prove that QV = Q'V', and conclude that the classifier for the target language is also the same. This proves item 1 in Prop. 1, finishing our proof.

A.2 Generalization to Mahalanobis Norms

We define the Mahalanobis-Frobenius norm of a matrix $\boldsymbol{X} \in \mathbb{R}^{I \times J}$ induced by a positive definite matrix $\boldsymbol{R} \in \mathbb{R}^{I \times I}$ as $\|\boldsymbol{X}\|_{\boldsymbol{R}} := \sqrt{\sum_{j=1}^{J} \boldsymbol{x}_{j}^{\top} \boldsymbol{R} \boldsymbol{x}_{j}}$, where \boldsymbol{x}_{j} denotes the *j*th column of \boldsymbol{X} .

Lemma 4. Under the same assumptions as in Lemma 3, for any Mahalanobis-Frobenius norm induced by a positive definite matrix $\mathbf{R} \in \mathbb{R}^{V_S \times V_S}$, the matrix

$$\boldsymbol{P}^* = \arg \min_{\boldsymbol{P}: \boldsymbol{P} \boldsymbol{V} = \boldsymbol{W}} \frac{1}{2} \| \boldsymbol{M}^\top \boldsymbol{P} \|_{\boldsymbol{R}}^2, \qquad (27)$$

has rank at most L.

Proof. Since R is positive definite, it has a decomposition $R = N^{\top}N$, where $N \in \mathbb{R}^{V_S \times V_S}$ is invertible. From the definition of Mahalanobis-Frobenius norm, we have that $||M^{\top}P||_R = ||NM^{\top}P||_F$. Since N and M are both invertible, so is $M' := MN^{\top}$. Hence we can take Lemma 3 with M' in place of M.

A.3 Other Norms

We now prove Prop. 2. We will start by showing a counter-example to the analogous of Lemma 3, when using $\mathcal{R} = \mathcal{R}_{\ell_1}$. We choose $V_s = N =$ $K = 3, L = 2, P^* = M = I_3$ and

$$\boldsymbol{V} = \boldsymbol{W} = \begin{pmatrix} -2 & 2\\ 2 & 2\\ 1 & 4 \end{pmatrix}.$$
 (28)

These choices verify

$$\boldsymbol{P}^* = \arg\min_{\boldsymbol{P}:\boldsymbol{P}\boldsymbol{V}=\boldsymbol{W}} \|\boldsymbol{M}^{\top}\boldsymbol{P}\|_1, \quad (29)$$

and $rank(\mathbf{P}^*) = 3 > L$, which are the conditions we needed to accomplish.

Since Lemma 3 is equivalent to item 3 in Prop. 1, this proves that the analogous to item 3 in Prop. 1, when replacing \mathcal{R}_{ℓ_2} by \mathcal{R}_{ℓ_1} , does not hold. The same counter-example can be used to prove that the analogous to both items 1 and 2 in Prop. 1, with $\mathcal{R} = \mathcal{R}_{\ell_1}$, do not hold.

 ℓ_0 -norm. The same exact counter-example above can also be used for the ℓ_0 matrix "norm," defined as the number of non-zero entries in the matrix—the solution P^* is the same as in the ℓ_1 -norm case.

 ℓ_{∞} -norm. For the ℓ_{∞} matrix norm, defined as the maximum absolute value in the matrix, a very similar counter-example can be found. The only difference in this case is that the solution to

$$\boldsymbol{P}^* = \arg\min_{\boldsymbol{P}:\boldsymbol{P}\boldsymbol{V}=\boldsymbol{W}} \|\boldsymbol{M}^\top\boldsymbol{P}\|_{\infty}, \quad (30)$$

is

$$\boldsymbol{P}^* = \begin{pmatrix} \frac{5}{8} & -\frac{5}{8} & \frac{1}{2} \\ -\frac{9}{40} & \frac{5}{8} & \frac{3}{10} \\ \frac{3}{8} & \frac{5}{8} & \frac{1}{2} \end{pmatrix}, \qquad (31)$$

which also has rank 3.

These counter-examples have been verified with the software Mathematica, using symbolic minimization functions.