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Cutoff
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 Removing low-frequency words from a corpus

 Common practice to save computational costs in learning

 Language modeling

 Needed even in a distributed environment, since the feature 

space of k-grams is quite large [Brants+ 2007]

 Topic modeling

 Enough for roughly analyzing topics, since low-frequency words 

have a small impact on the statistics [Steyvers&Griffiths 2007]



Question
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 How many low-frequency words can we remove while 

maintaining sufficient performance?

 More generally, how much can we reduce a corpus/model using 

a certain strategy?

 Many experimental studies addressing the question

 [Stoleke 1998], [Buchsbaum+ 1998], [Goodman&Gao 2000], 

[Gao&Zhang 2002], [Ha+ 2006], [Hirsimaki 2007], [Church+ 2007]

 Discussing trade-off relationships between the size of reduced 

corpus/model and its performance

 No theoretical study!



This work
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 First address the question from a theoretical standpoint

 Derive the trade-off formulae of the cutoff strategy for k-

gram models and topic models

 Perplexity vs. reduced vocabulary size

 Verify the correctness of our theory on synthetic corpora 

and examine the gap between theory and practice on 

several real corpora



Approach
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 Assume a corpus follows Zipf’s law (power law)

 Empirical rule representing a long-tail property in a corpus

 Essentially the same approach as in physics

 Constructing a theory while believing experimentally observed 

results (e.g., gravity acceleration g)

We can derive the landing point of a ball by believing g.

Similarly, we try to clarify the trade-off relationships by 

believing Zipf’s law.
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Zipf’s law
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 Empirical rule discovered on real corpora [Zipf, 1935]

 Word frequency f(w) is inversely proportional to its frequency 

ranking r(w)
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Real corpora roughly follow Zipf’s law

(Linear on a log-log graph)
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Perplexity (PP)
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 Widely used evaluation measure of statistical models

 Geometric mean of the inverse of the per-word likelihood on 

the held-out test corpus

 PP means how many possibilities one has for estimating the 

next word

 Lower perplexity means better generalization performance

Corpus size

Test corpus



Cutoff
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 Removing low frequency words

 f(remaining word) ≥ f(removed word) holds
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Constant restoring
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 Infer the prob. of the removed words as a constant 

 Approximate the result learned from the original corpus
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Perplexity of unigram models
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 Predictive distribution of unigram models

 Optimal restoring constant

 Obtained by minimizing PP w.r.t. a constant λ,  after substituting 

the restored probability          into PP
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Theorem (PP of unigram models)
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 For any reduced vocabulary size W’, the perplexity PP1 of 

the optimal restored distribution of a unigram model is 

calculated as 

Bertrand series (special form)

Harmonic series



Approximation of PP of unigrams
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 H(X) and B(X) can be approximated by definite integrals

 Approximate formula           o     is obtained as

 is quasi polynomial (quadratic)

 Behaves as a quadratic function on a log-log graph

Reduced vocab. size

Euler-Mascheroni const.



PP of unigrams vs. reduced vocab. size
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Log-log graph Real (Reuters)

Theory

Zipf random

same size as Reuters

Maximum f(w)

Zipf rand: 234,705

Reuters: 136,371

Our theory is suited for inferring the growth rate of perplexity

rather than the  perplexity value itself
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Perplexity of k-gram models
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 Simple model where k-grams are calculated from a 

random word sequence based on Zipf’s law

 The model is “stupid”

 Bigram “is is” is quite frequent

 Two bigrams “is a” and “a is” have the same frequency

 Later experiment will uncover the fact that the model can 

roughly capture the behavior of real corpora

)"is a(")"(")"(")"a is(" papispp 

)"(")"(")"is is(" ispispp 



Frequency of a k-gram
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 Frequency fk of a k-gram wk is defined by

 Decay function g2 of bigrams is as follows

 Decay function gk of k-grams is defined through its 

inverse:

Decay function

Piltz divisor function that

represents # of divisors of n



Exponent of k-gram distributions

19

 Assume k-gram frequencies follow a power law

 [Ha+ 2006] found k-gram frequencies roughly follow a power 

law, whose exponent πk is smaller than 1 (k>1)

 Optimal exponent in our model based on the assumption

 By minimizing the sum of squared errors between the inverse 

gradients gk
-1(r) and r1/πk on a log-log graph



Exponent of k-grams vs. gram size
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Normal graph

Real (Reuters)

Theory



Corollary (PP of k-gram models)
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 For any reduced vocabulary size W’, the perplexity of the 

optimal restored distribution of a k-gram model is 

calculated as 
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PP of k-grams vs. reduced vocab. size
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Log-log graph

Theory (Bigram)

Unigram

Theory (Trigram)

Zipf (Bigram)

Zipf (Trigram)Due to

Sparseness

We need to make assumptions that include 

backoff and smoothing for higher order k-grams



Additional properties by power-law
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 Treat as a variant of the coupon collector’s problem

 How many trials are needed for collecting all coupons whose 

occurrence probabilities follow some stable distribution

 There exists several works about power law distributions

 Corpus size for collecting all of the k-grams, according to  

[Boneh&Papanicolaou 1996]

 When πk = 1,              ,  otherwise, 

 Lower and upper bound of the number of k-grams from 

the corpus size N and vocab. size W, according to 

[Atsonios+ 2011]
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Perplexity of topic models
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 Latent Dirichlet Allocation (LDA) [Blei+ 2003]

 Learning with Gibbs sampling

 Obtain a “good” topic assignment zi for each word wi

 Posterior distributions of two hidden parameters
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[Griffiths&Steyvers 2004]

Document-topic distribution

Mixture rate of topic z in document d

Topic-word distribution

Occurrence rate of word w in topic z



Rough assumptions of ϕ and θ

26

 Assumption of ϕ

 Word distribution ϕz of each topic z follows Zipf’s law

 Assumptions of θ (two extreme cases)

 Case All: Each document evenly has all topics

 Case One: Each document only has one topic (uniform dist.)

 Case All:  PP of a topic model ≈ PP of a unigram

 Marginal predictive distribution is independent of d

=1/T

The curve of actual perplexity is expected to be between their values

It is natural, regarding each topic as a corpus



Theorem(PP of LDA models: Case One)
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 For any reduced vocabulary size W’, the perplexity of the 

optimal restored distribution of a topic model in the Case 

One is calculated as 

T :  # of topics in LDA



PP of LDA models vs. reduced vocab. size
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Theory (Case One)

(Case One + 

Case All) / 2

Zipf
Theory (Case All)

Mix of 20 Zipf

T=20

CGS w/ 100 iter.

α=β=0.1

Log-log graph
Real (Reuters)



Time, memory, and PP of LDA learning
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 Results of Reuters corpus

 Memory usage of the (1/10)-corpus is only 60% of that of 

the original corpus

 Helps in-memory computing for a larger corpus,

although the computational time decreased a little
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Conclusion
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 Trade-off formulae of the cutoff strategy for k-gram 

models and topic models based on Zipf’law

 Perplexity vs. reduced vocabulary size

 Experiments on real corpora showed that the estimation 

of the perplexity growth rate is reasonable

 We can get the best cutoff parameter by maximizing the 

reduction rate ensuring an acceptable (relative) perplexity

 Possibility that we can theoretically derive empirical 

parameters, or “rules of thumb”, for different NLP 

problems

Can we derive other “rules of thumb” based on Zipf’s law?



Thank you
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