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Cutoft

» Removing low-frequency words from a corpus

» Common practice to save computational costs in learning

» Language modeling

Needed even in a distributed environment, since the feature
space of k-grams is quite large [Brants+ 2007]

» Topic modeling

Enough for roughly analyzing topics, since low-frequency words
have a small impact on the statistics [Steyvers&Griffiths 2007]



Question

» How many low-frequency words can we remove while
maintaining sufficient performance?

More generally, how much can we reduce a corpus/model using
a certain strategy!?

» Many experimental studies addressing the question

[Stoleke 1998], [Buchsbaum+ 1998], [Goodman&Gao 2000],
[Gao&Zhang 2002], [Ha+ 2006], [Hirsimaki 2007], [Church+ 2007]

Discussing trade-off relationships between the size of reduced
corpus/model and its performance

» No theoretical study!



This work

» First address the question from a theoretical standpoint

» Derive the trade-off formulae of the cutoff strategy for k-
gram models and topic models

Perplexity vs. reduced vocabulary size
» Verify the correctness of our theory on synthetic corpora

and examine the gap between theory and practice on
several real corpora



Approach

» Assume a corpus follows Zipf’s law (power law)

Empirical rule representing a long-tail property in a corpus

» Essentially the same approach as in physics

Constructing a theory while believing experimentally observed
results (e.g., gravity acceleration g)
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We can derive the landing point of a ball by believing g.
Similarly, we try to clarify the trade-off relationships by
believing Zipf’s law.
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Zipt’s law

» Empirical rule discovered on real corpora [Zipf, [935]

Word frequency f(w) is inversely proportional to its frequency

ranking r(w)

Max. frequency

C
r(w)

Frequency ranking

T(w) =

Frequency

(Linear on a log-log graph)

Real corpora roughly follow Zipf’s law

10’

e—e Reuters
=—a 20news||
—v Enwiki
»—x Zipfl

10°

10° F

10% |

Zipf random

Log-log graph
10° 10" 107 10° 10° 10° BT

r(w)




Perplexity (PP)

» Widely used evaluation measure of statistical models

Geometric mean of the inverse of the per-word likelihood on
the held-out test corpus

.\ 2
PP  — Corpus size
[l p(w)
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Test corpus

PP means how many possibilities one has for estimating the
next word

Lower perplexity means better generalization performance



Cutoft

» Removing low frequency words

f(remaining word) 2 f(removed word) holds
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Constant restoring

» Infer the prob. of the removed words as a constant

Approximate the result learned from the original corpus

Learned from w’
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Perplexity of unigram models

» Predictive distribution of unigram models

p(w) =+

N’
— Reduced corpus size
» Optimal restoring constant

Obtained by minimizing PP w.r.t.a constant A, after substituting
the restored probability p(W) into PP

Corpus size

)\*_ i_N,
~ W - W)N

Vocab. size Reduced vocab. size




Theorem (PP of unigram models)

» For any reduced vocabulary size W', the perplexity PP, of
the optimal restored distribution of a unigram model is
calculated as

PP, (W') —H(W) exp (i%’)))

HW"
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H(X) o Em:l r  Harmonic series

x Bertrand series (special form)




Approximation of PP of unigrams

» H(X) and B(X) can be approximated by definite integrals

H(X) ~ In X""V_ Euler-Mascheroni const.

~ 11,42
» Approximate formula PP1(W') is obtained as
Reduced vocab. size

_ ] I 2
PPi(W") = VW In W exp (In W —In W)
2In W

» PP1(W') is quasi polynomial (quadratic)

Behaves as a quadratic function on a log-log graph



PP of unigrams vs. reduced vocab. size
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Perplexity of k-gram models

» Simple model where k-grams are calculated from a
random word sequence based on Zipf’s law

» The model is “stupid”
Bigram “is is” is quite frequent
p("1s1s") = p("Is”) p("1s")
Two bigrams “is a” and “a is”’ have the same frequency

p("1sa”) = p("1s”) p("a”) = p(*as’)

» Later experiment will uncover the fact that the model can
roughly capture the behavior of real corpora



Frequency of a k-gram

» Frequency f, of a k-gram w,_ is defined by

C
Felw) = 5.5
LA ANl Decay function

» Decay function g, of bigrams is as follows
(92(2))i :== (92(1), 92(2), g2(3),--+)
(1-1,1-2,2-1,1-3,3-1,---)
(11 2: 21 3: 31 4:! 41 41 5: 51 6:)
» Decay function g, of k-grams is defined through its
’ . —1 14
inverse: o -1(g) = S dp(n)

di(n) = o 1 Piltz divisor function that
k( ) 231-32---%:73 represents # of divisors of n




Exponent of k-gram distributions

» Assume k-gram frequencies follow a power law

[Ha+ 2006] found k-gram frequencies roughly follow a power
law, whose exponent T, is smaller than | (k>1)

fr(wg) o< ri(wg)

» Optimal exponent in our model based on the assumption

By minimizing the sum of squared errors between the inverse
gradients g,”'(r) and r'™ on a log-log graph

In W
(k—DIn(InW)+1InW

T —



Exponent of k-grams vs. gram size
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Corollary (PP of k-gram models)

» For any reduced vocabulary size W’, the perplexity of the
optimal restored distribution of a k-gram model is
calculated as

PPy(W') =H, (W) exp (fz %))

H'ﬂ'k (WI)

( W — W’ )1_ oy (W)
H’frk (W) o H’frk(W,)

1
Ha(X) = Z:ﬂF

x aln
B,(X) = szl .

XHyper harmonic series

Bertrand series (another special form)
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PP of k-

grams vs. reduced vocab. size
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Reduced Vocabulary Size
We need to make assumptions that include

backoff and smoothing for higher order k-grams



Additional properties by power-law

» Treat as a variant of the coupon collector’s problem

How many trials are needed for collecting all coupons whose
occurrence probabilities follow some stable distribution

There exists several works about power law distributions
» Corpus size for collecting all of the k-grams, according to
[Boneh&Papanicolaou 1996] kW
When T, = |, WIn°W, otherwise, 1-r,

» Lower and upper bound of the number of k-grams from

the corpus size N and vocab. size W, according to
[Atsonios+ 201 | ]
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Perplexity of topic models
» Latent Dirichlet Allocation (LDA) [Blei+ 2003]

04, ~ Dirichlet(o) @ @
2 ’9dz ~ Multi(gdi ) <
¢,, ~ Dirichlet([3) @@_.
wy ’Z‘ia (bzz ~ Multl((bzz), - M

. o . — y
» Learning with Gibbs sampling [Griffiths&Steyvers 2004]

Obtain a “good” topic assighment z, for each word w,

» Posterior distributions of two hidden parameters
éd (Z) oc ngd) +a D?cument-topic di§trib}1tion
Mixture rate of topic z in document d
gﬁz (W) oc ngw) + 3 Topic-word distribution
Occurrence rate of word w in topic z
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Rough assumptions of ¢ and 6

» Assumption of ¢
Word distribution ¢, of each topic z follows Zipf’s law

It is natural, regarding each topic as a corpus
» Assumptions of B (two extreme cases)

Case All: Each document evenly has all topics

Case One: Each document only has one topic (uniform dist.)

The curve of actual perplexity is expected to be between their values

» Case All: PP of a topic model = PP of a unigram

Marginal predictive distribution is independent of d

ST Ba2)ba(w) o STy 4B o f(a)
9 =1/T




Theorem (PP of LDA models: Case One)

» For any reduced vocabulary size W’, the perplexity of the
optimal restored distribution of a topic model in the Case
One is calculated as

ﬁPMﬁ(WI) =H(W/T) exp (ff(g;;))>

_HW'/T)

W — W’ L ="Ew/T)
(H(W/T) - H(W’/T))
T : # of topics in LDA
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PP of LDA models vs. reduced vocab. size
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Time, memory, and PP of LDA learning

» Results of Reuters corpus

corpus time memory | perplexity
original | 4m3.80s | 71,548KB 500
(1/10) | 3m55.70s | 46,648KB 550
(1/20) | 3m42.63s | 34,024KB 611

» Memory usage of the (1/10)-corpus is only 60% of that of
the original corpus

Helps in-memory computing for a larger corpus,

although the computational time decreased a little
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Conclusion

» Trade-off formulae of the cutoff strategy for k-gram
models and topic models based on Zipf’law

Perplexity vs. reduced vocabulary size

» Experiments on real corpora showed that the estimation
of the perplexity growth rate is reasonable

» We can get the best cutoff parameter by maximizing the
reduction rate ensuring an acceptable (relative) perplexity

» Possibility that we can theoretically derive empirical
parameters, or “rules of thumb”, for different NLP
problems

Can we derive other “rules of thumb” based on Zipf’s law!?
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Thank you
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