A Tutorial on

Graph-based Semi-Supervised Learning Algorithms for NLP

Amarnag Subramanya (Google Research)

Partha Pratim Talukdar (Carnegie Mellon University)

ACL 2012, South Korea

http://graph-ssl.wikidot.com/

Supervised Learning

Semi-Supervised Learning (SSL)

Why SSL?

How can unlabeled data be helpful?

Without Unlabeled Data

More accurate decision boundary in the presence of unlabeled instances 00⁰⁰ 00**00**0 Unlabeled Instances

With Unlabeled Data

Example from [Belkin et al., JMLR 2006]

Inductive vs Transductive

Most Graph SSL algorithms are non-parametric

See Chapter 25 of SSL Book: http://olivier.chapelle.cc/ssl-book/discussion.pdf

Why Graph-based SSL?

- Some datasets are naturally represented by a graph
 - web, citation network, social network, ...
- Uniform representation for heterogeneous data
- Easily parallelizable, scalable to large data

Smoothness Assumption

If two instances are <u>similar</u> according to the graph, then <u>output labels</u> should be <u>similar</u>

- Effective for both relational and IID data
- Two stages
 - Graph construction (if not already present)
 - Label Inference

Outline

- Motivation
- Graph Construction
- Inference Methods
- Scalability
- Applications
- Conclusion & Future Work

Outline

- Motivation
- Graph Construction
- Inference Methods
- Scalability
- Applications
- Conclusion & Future Work

Graph Construction

- Neighborhood Methods
 - k-NN Graph Construction
 - e-Neighborhood Method
- Metric Learning
- Other approaches

Neighborhood Methods

- k-Nearest Neighbor (k-NN)
 - add edges between an instance and its k-nearest neighbors

- e-Neighborhood
 - add edges to all instances inside a ball of radius e \bigcirc

Issues with k-NN graphs

- Not scalable (quadratic)
- Results in an asymmetric graph
- Results in irregular graphs
 - some nodes may end up with higher degree than other nodes

Issues with *e*-Neighborhood

- Fragmented Graph: disconnected components
- Sensitive to value of e : not invariant to scaling
- Not scalable

Graph Construction using Metric Learning

$$(x_i) \quad w_{ij} \propto \exp(-D_A(x_i, x_j)) \quad (x_j)$$

$$D_A(x_i, x_j) = (x_i - x_j)^T A(x_i - x_j)$$

- Supervised Metric Learning
 - ITML [Kulis et al., ICML 2007]
 - LMNN [Weinberger and Saul, JMLR 2009]
- Semi-supervised Metric Learning
 - IDML [Dhillon et al., UPenn TR 2010]

Estimated using Mahalanobis metric learning algorithms

	Graph constructed using supervised metric learning					using se superv metric l [Dhillon	vised	
Datasets C	Original	RP	PCA	ITML	LMNN	IDML-LM	IDML-IT	
Amazon	0.4046	0.3964	0.1554	0.1418	0.2405	0.2004	0.1265	
Newsgroups (0.3407	0.3871	0.3098	0.1664	0.2172	0.2136	0.1664	
Reuters	0.2928	0.3529	0.2236	0.1088	0.3093	0.2731	0.0999	
EnronA	0.3246	0.3493	0.2691	0.2307	0.1852	0.1707	0.2179	
Text	0.4523	0.4920	0.4820	0.3072	0.3125	0.3125	0.2893	
USPS 0	0.0639	0.0829	—	0.1096	0.1336	0.1225	0.0834	
BCI	0.4508	0.4692	-	0.4217	0.3058	0.2967	0.4081	
Digit 0	0.0218	0.0250		0.0281	0.1186	0.0877	0.0281	

Table 3. Comparison of transductive classification performance over graphs constructed using different methods (see Section 6.1), with $n_l = 100$ and $n_u = 1400$.

Careful graph construction is critical!

[Dhillon et al., UPenn TR 2010]

Other Graph Construction Approaches

- Local Reconstruction
 - Linear Neighborhood [Wang and Zhang, ICML 2005]
 - Regular Graph: b-matching [Jebara et al., ICML 2008]
 - Fitting Graph to Vector Data [Daitch et al., ICML 2009]
- Graph Kernels
 - [Zhu et al., NIPS 2005]

Outline

- Motivation
- Graph Construction
- Inference Methods
- Scalability

- Label Propagation
- Modified Adsorption
- Manifold Regularization
- Spectral Graph Transduction
- Measure Propagation Sparse Label Propagation

- Applications
- Conclusion & Future Work

Graph Laplacian

• Laplacian (un-normalized) of a graph:

$$L = D - W, \text{ where } D_{ii} = \sum_{j} W_{ij}, \ D_{ij(\neq i)} = 0$$

Graph Laplacian (contd.)

- L is positive semi-definite (with non-negative weights)
- Smoothness of function *f* over the graph in terms of the Laplacian:

Spectrum of the Laplacian

(b) the eigenvectors and eigenvalues of the Laplacian L

Figure from [Zhu et al., 2005]

Notations

- $Y_{v,l}$: score of estimated label I on node v
- $Y_{v,l}$: score of seed label I on node v
- $R_{v,l}\,$: regularization target for label I on node ${\bf v}$

- S : seed node indicator (diagonal matrix)
- W_{uv} : weight of edge (u, v) in the graph

Outline

- Motivation
- Graph Construction
- Inference Methods
- Scalability

- Label Propagation
- Modified Adsorption
- Manifold Regularization
- Spectral Graph Transduction
- Measure Propagation
- Sparse Label Propagation

- Applications
- Conclusion & Future Work

LP-ZGL [Zhu et al., ICML 2003]

Smooth

Smoothness

- two nodes connected by an edge with high weight should be assigned similar labels
- Solution satisfies harmonic property

Outline

- Motivation
- Graph Construction
- Inference Methods
- Scalability
- Applications
- Conclusion & Future Work

- Label Propagation
- Modified Adsorption
- Manifold Regularization
- Spectral Graph Transduction
- Measure Propagation
- Sparse Label Propagation

Two Related Views

Random Walk View

- \bullet Continue walk with probability p_v^{cont}
- \bullet Assign V's seed label to U with probability p_v^{inj}
- \bullet Abandon random walk with probability p_v^{abnd}
 - assign U a dummy label

Discounting Nodes

- Certain nodes can be unreliable (e.g., high degree nodes)
 - do not allow propagation/walk through them

 $\mathbf{p_v^{abnd}} \propto \operatorname{degree}(v)$

Solution: increase abandon probability on such nodes:

Redefining Matrices

New Edge
$$W_{uv}' = p_u^{cont} \times W_{uv}$$

New Edge $S_{uu} = \sqrt{p_u^{inj}}$
 $R_{u\top} = p_u^{abnd}$, and 0 for non-dummy labels

Modified Adsorption (MAD)

[Talukdar and Crammer, ECML 2009]

Modified Adsorption (MAD)

[Talukdar and Crammer, ECML 2009]

$$\arg\min_{\hat{\boldsymbol{Y}}} \sum_{l=1}^{m+1} \left[\| \boldsymbol{S} \hat{\boldsymbol{Y}}_l - \boldsymbol{S} \boldsymbol{Y}_l \|^2 + \mu_1 \sum_{u,v} \boldsymbol{M}_{uv} (\hat{\boldsymbol{Y}}_{ul} - \hat{\boldsymbol{Y}}_{vl})^2 + \mu_2 \| \hat{\boldsymbol{Y}}_l - \boldsymbol{R}_l \|^2 \right]$$

- m labels, +1 dummy label
- $M = W'^{\top} + W'$ is the symmetrized weight matrix
- \hat{Y}_{vl} : weight of label l on node v
- Y_{vl} : seed weight for label l on node v
- S: diagonal matrix, nonzero for seed nodes
- \mathbf{R}_{vl} : regularization target for label l on node v

[Talukdar and Crammer, ECML 2009]

$$\arg\min_{\hat{\boldsymbol{Y}}} \sum_{l=1}^{m+1} \begin{bmatrix} \|\boldsymbol{S}\hat{\boldsymbol{Y}}_{l} - \boldsymbol{S}\boldsymbol{Y}_{l}\|^{2} \\ \|\boldsymbol{S}\hat{\boldsymbol{Y}}_{l} - \boldsymbol{S}\boldsymbol{Y}_{l}\|^{2} \end{bmatrix} + \mu_{1} \sum_{u,v} \boldsymbol{M}_{uv} (\hat{\boldsymbol{Y}}_{ul} - \hat{\boldsymbol{Y}}_{vl})^{2} + \mu_{2} \|\hat{\boldsymbol{Y}}_{l} - \boldsymbol{R}_{l}\|^{2} \end{bmatrix}$$

- m labels, +1 dummy label
- $M = W'^{\top} + W'$ is the symmetrized weight matrix
- \hat{Y}_{vl} : weight of label l on node v
- Y_{vl} : seed weight for label l on node v
- S: diagonal matrix, nonzero for seed nodes
- \mathbf{R}_{vl} : regularization target for label l on node v

[Talukdar and Crammer, ECML 2009]

$$\arg\min_{\hat{\boldsymbol{Y}}} \sum_{l=1}^{m+1} \begin{bmatrix} \|\boldsymbol{S}\hat{\boldsymbol{Y}}_{l} - \boldsymbol{S}\boldsymbol{Y}_{l}\|^{2} \\ \|\boldsymbol{S}\hat{\boldsymbol{Y}}_{l} - \boldsymbol{S}\boldsymbol{Y}_{l}\|^{2} \end{bmatrix} + \mu_{1} \underbrace{\left[\sum_{u,v} \boldsymbol{M}_{uv} (\hat{\boldsymbol{Y}}_{ul} - \hat{\boldsymbol{Y}}_{vl})^{2} \\ + \mu_{2} \|\hat{\boldsymbol{Y}}_{l} - \boldsymbol{R}_{l}\|^{2} \right]}_{u,v}$$

- m labels, +1 dummy label
- $M = W'^{\top} + W'$ is the symmetrized weight matrix
- \hat{Y}_{vl} : weight of label l on node v
- Y_{vl} : seed weight for label l on node v
- S: diagonal matrix, nonzero for seed nodes
- \mathbf{R}_{vl} : regularization target for label l on node v

[Talukdar and Crammer, ECML 2009]

- m labels, +1 dummy label
- $M = W'^{\top} + W'$ is the symmetrized weight matrix
- \hat{Y}_{vl} : weight of label l on node v
- Y_{vl} : seed weight for label l on node v
- S: diagonal matrix, nonzero for seed nodes
- \mathbf{R}_{vl} : regularization target for label l on node v

[Talukdar and Crammer, ECML 2009]

- m labels, +1 dummy label
- ullet M =

for none-of-the-above label

d weight matrix

- \hat{Y}_{vl} : weight of label l on node v
- \mathbf{Y}_{vl} : seed weight for label l on node v
- S: diagonal matrix, nonzero for seed nodes
- \mathbf{R}_{vl} : regularization target for label l on node v

[Talukdar and Crammer, ECML 2009]

 $\arg\min_{\hat{\boldsymbol{Y}}} \sum_{l=1}^{m+1} \begin{bmatrix} \|\boldsymbol{S}\hat{\boldsymbol{Y}}_{l} - \boldsymbol{S}\boldsymbol{Y}_{l}\|^{2} + \mu_{1} \underbrace{\sum_{u,v} \boldsymbol{M}_{uv} (\hat{\boldsymbol{Y}}_{ul} - \hat{\boldsymbol{Y}}_{vl})^{2}}_{u,v} + \underbrace{\mu_{2} \|\hat{\boldsymbol{Y}}_{l} - \boldsymbol{R}_{l}\|^{2}}_{u,v} \end{bmatrix}$

• m labels, +1 dummy label

 $\bullet M =$

for none-of-the-above label d weight matrix

- \hat{Y}_{vl} : weight of label l on node v
- \mathbf{Y}_{vl} : seed weight for label l on node v
- S: diagonal matrix, nonzero for seed nodes
- \mathbf{R}_{vl} : regularization target for label l on node v

MAD has extra regularization compared to LP-ZGL [Zhu et al, ICML 03]; similar to QC [Bengio et al, 2006]

 Y_v Seed Scores R_v Label Priors \hat{Y}_v EstimatedScores

[Talukdar and Crammer, ECML 2009]

 $\arg\min_{\hat{\boldsymbol{Y}}} \sum_{l=1}^{m+1} \begin{bmatrix} \|\boldsymbol{S}\hat{\boldsymbol{Y}}_{l} - \boldsymbol{S}\boldsymbol{Y}_{l}\|^{2} + \mu_{1} \underbrace{\sum_{u,v} \boldsymbol{M}_{uv} (\hat{\boldsymbol{Y}}_{ul} - \hat{\boldsymbol{Y}}_{vl})^{2}}_{u,v} + \underbrace{\mu_{2} \|\hat{\boldsymbol{Y}}_{l} - \boldsymbol{R}_{l}\|^{2}}_{u,v} \end{bmatrix}$

• m labels, +1 dummy label

for none-of-the-above label d weight matrix

- \hat{Y}_{vl} : weight of label l on node v
- Y_{vl} : seed weight for label l on node v
- S: diagonal matrix, nonzero for seed nodes

• \mathbf{R}_{vl} : regularization target for label l on node v

MAD's Objective is Convex

 $\bullet M =$

MAD has extra regularization compared to LP-ZGL [Zhu et al, ICML 03]; similar to QC [Bengio et al, 2006]

Solving MAD Objective

- Can be solved using matrix inversion (like in LP)
 - but matrix inversion is expensive (cubic)
- Instead solved exactly using a system of linear equations
 - solved using Jacobi iterations
 - results in iterative updates
 - guaranteed convergence
 - see [Bengio et al., 2006] and [Talukdar and Crammer, ECML 2009] for details

Solving MAD using Iterative Updates

Solving MAD using Iterative Updates

Solving MAD using Iterative Updates

When is MAD most effective?

MAD is particularly effective in denser graphs, where there is greater need for regularization.

Extension to Dependent Labels

Labels are not always mutually exclusive

MAD with Dependent Labels (MADDL) [Talukdar and Crammer, ECML 2009]

MADDL Objective

MADDL generates smoother ranking, while preserving accuracy of prediction.

Outline

- Motivation
- Graph Construction
- Inference Methods
- Scalability
- Applications
- Conclusion & Future Work

- Label Propagation
- Modified Adsorption
 - Manifold Regularization
- Spectral Graph Transduction
- Measure Propagation
- Sparse Label Propagation

$$f^* = \arg\min_{f} \frac{1}{l} \sum_{i=1}^{l} V(y_i, f(x_i)) + \gamma_A ||f||_K^2 + \beta f^T L f$$

$$Loss Function$$
(e.g., soft margin)
$$Laplacian of graph over labeled and unlabeled data$$

Trains an <u>inductive</u> classifier (e.g., SVM) which can generalize to unseen instances

Trains an <u>inductive</u> classifier (e.g., SVM) which can generalize to unseen instances

Trains an <u>inductive</u> classifier (e.g., SVM) which can generalize to unseen instances

Trains an <u>inductive</u> classifier (e.g., SVM) which can generalize to unseen instances

Spectral Graph Transduction [Joachims, ICML 2003]

- Approximation to normalized graph cut with constraints
- Performs spectral analysis (finds eigenvalues and eigenfunctions) of the normalized Laplacian
- Code: <u>http://sgt.joachims.org/</u>

Outline

- Motivation
- Graph Construction
- Inference Methods
- Scalability
- Applications
- Conclusion & Future Work

- Label Propagation
- Modified Adsorption
- Manifold Regularization
- Spectral Graph Transduction
- Measure Propagation
- Sparse Label Propagation

Solving MP Objective

• For ease of optimization, reformulate MP objective:

C_{MP} can be solved using Alternating Minimization (AM)

Given distance d(P,Q)with $P \in \mathcal{P}$ and $Q \in \mathcal{Q}$.

Start with $Q_0 \in \mathcal{Q}$

Why AM?

Criteria	MOM	AM		
Iterative	YES	YES		
Learning Rate	Armijo Rule	None		
Number of Hyper-parameters	7	1 (α)		
Test for Convergence	Requires Tuning	Automatic		
Update Equations	Not Intuitive	Intuitive and easily Parallelized		

Table 1: There are two ways to solving the proposed objective, namely, the popular numerical optimization tool method of multipliers (MOM), and the proposed approach based on alternating minimization (AM). This table compares the two approaches on various fronts.

$$p_i^{(n)}(y) = \frac{\exp\{\frac{\mu}{\gamma_i}\sum_j w_{ij}' \log q_j^{(n-1)}(y)\}}{\sum_y \exp\{\frac{\mu}{\gamma_i}\sum_j w_{ij}' \log q_j^{(n-1)}(y)\}}$$
$$q_i^{(n)}(y) = \frac{r_i(y)\delta(i \le l) + \mu\sum_j w_{ji}' p_j^{(n)}(y)}{\delta(i \le l) + \mu\sum_j w_{ji}'}$$
$$\frac{k}{\delta(i \le l) + \mu\sum_j w_{ji}'}{where \gamma_i = v + \mu\sum_j w_{ij}'}$$

Performance of SSL Algorithms

	COIL					OPT						
l	10	20	50	80	100	150	10	20	50	80	100	150
k-NN	34.5	53.9	66.9	77.9	79.2	83.5	79.6	83.9	85.5	90.5	92.0	93.8
SGT	40.1	61.2	78.0	88.5	89.0	89.9	90.4	90.6	91.4	94.7	97.4	97.4
LapRLS	49.2	61.4	78.4	80.1	84.5	87.8	89.7	91.2	92.3	96.1	97.6	97.3
SQ-Loss-I	48.9	63.0	81.0	87.5	89.0	90.9	92.2	90.2	95.9	97.2	97.3	97.7
MP	47.7	65.7	78.5	89.6	90.2	91.1	90.6	90.8	94.7	96.6	97.0	97.1

Comparison of accuracies for different number of labeled samples across COIL (6 classes) and OPT (10 classes) datasets

Graph SSL can be effective when the data satisfies manifold assumption. More results and discussion in Chapter 21 of the SSL Book (Chapelle et al.)

Outline

- Motivation
- Graph Construction
- Inference Methods
- Scalability
- Applications
- Conclusion & Future Work

- Label Propagation
- Modified Adsorption
- Manifold Regularization
- Spectral Graph Transduction
 Measure Propagation
- Sparse Label Propagation

Background: Factor Graphs [Kschischang et al., 2001]

Factor Graph

- bipartite graph
- variable nodes (e.g., label distribution on a node)
- factor nodes: fitness function over variable assignment

Distribution over all variables' values

$$\log P\left(\{v\}_{v \in V}\right) = -\log Z + \sum_{f \in F} \log \alpha_f\left(\{v\}_{(v,f) \in E}\right)$$
variables connected to factor f

Factor Graph Interpretation of Graph SSL [Zhu et al., ICML 2003] [Das and Smith, NAACL 2012]

Label Propagation with Sparsity

Enforce through sparsity inducing unary factor

Lasso (Tibshirani, 1996)
$$\log \psi_t(q_t) = -\lambda \|q_t\|_1$$

Elitist Lasso (Kowalski and Torrésani, 2009) $\log \psi_t(q_t) = -\lambda \left(\|q_t\|_1 \right)^2$

For more details, see [Das and Smith, NAACL 2012]

Other Graph-SSL Methods

- SSL on Directed Graphs
 - [Zhou et al, NIPS 2005], [Zhou et al., ICML 2005]
- Learning with dissimilarity edges
 - [Goldberg et al., AISTATS 2007]
- Graph Transduction using Alternating Minimization
 - [Wang et al., ICML 2008]
- Graph as regularizer for Multi-Layered Perceptron
 - [Karlen et al., ICML 2008], [Malkin et al., Interspeech 2009]

Outline

- Motivation
- Graph Construction
- Inference Methods
- Scalability

- Scalability Issues
- Node reordering MapReduce Parallelization

- Applications
- Conclusion & Future Work

More (Unlabeled) Data is Better Data

[[]Subramanya & Bilmes, JMLR 2011]

Outline

- Motivation
- Graph Construction
- Inference Methods
- Scalability

Scalability Issues

- Node reordering
- MapReduce Parallelization

- Applications
- Conclusion & Future Work

Scalability Issues (I) Graph Construction

- Brute force (exact) k-NN too expensive (quadratic)
- Approximate nearest neighbor using kd-tree [Friedman et al., 1977]
- Approximate Nearest Neighbor library (<u>http://www.cs.umd.edu</u>/~mount/)

- Sub-sample the data
 - Construct graph over a subset of a unlabeled data [Delalleau et al., AISTATS 2005]
 - Sparse Grids [Garcke & Griebel, KDD 2001]

Scalability Issues (II) Label Inference

- Sub-sample the data
 - Construct graph over a subset of a unlabeled data [Delalleau et al., AISTATS 2005]
 - Sparse Grids [Garcke & Griebel, KDD 2001]
- How about using more compute? (next section)
 - Symmetric multi-processor (SMP)
 - Distributed Computer

Outline

- Motivation
- Graph Construction
- Inference Methods
- Scalability
- Applications

Scalability Issues
 Node reordering

 [Subramanya & Bilmes, JMLR 2011;
 Bilmes & Subramanya, 2011]

 MapReduce Parallelization

Conclusion & Future Work

Label Update using Message Passing

Label Update using Message Passing

Speed-up on SMP

Speed-up on SMP

Speed-up on SMP

Node Reordering Algorithm

- Input: Graph G = (V, E)
- Result: Node ordered graph
 - I. Select an arbitrary node v
 - 2. while unselected nodes remain do
 - 2.1. select an unselected node v` from among the neighbors' neighbors of v that has maximum overlap with v' neighbors
 - 2.2. mark v` as selected
 - 2.3. set v to v`

Node Reordering Algorithm

- Input: Graph G = (V, E)
- Result: Node ordered graph
 - I. Select an arbitrary node v
 - 2. while unselected nodes remain do

2.1. select an unselected node v` from among the neighbors' neighbors of v that has maximum overlap with v neighbors

- 2.2. mark v` as selected
- 2.3. set v to v`

Node Reordering Algorithm

Speed-up on SMP after Node Ordering

Distributed Processing

- **Maximize** overlap between consecutive nodes within the same machine
- **Minimize** overlap across machines (reduce inter machine communication)

Distributed Processing

Node reordering for Distributed Computer

Node reordering for Distributed Computer

Node reordering for Distributed Computer

Distributed Processing Results

[Bilmes & Subramanya, 2011]

Distributed Processing Results

[Bilmes & Subramanya, 2011]

Outline

- Motivation
- Graph Construction
- Inference Methods
- Scalability -

- Scalability Issues

- Node reordering
- MapReduce Parallelization

- Applications
- Conclusion & Future Work

- Map
 - Each node send its current label assignments to its neighbors

- Map
 - Each node send its current label assignments to its neighbors

- Map
 - Each node send its current label assignments to its neighbors

Reduce

- Each node updates its own label assignment using messages received from neighbors, and its own information (e.g., seed labels, reg. penalties etc.)
- Repeat until convergence

Outline

- Motivation
- Graph Construction
- Inference Methods
- Scalability
- Applications

Text Categorization

- Sentiment Analysis
- Class Instance Acquisition
- POS Tagging
- MultiLingual POS Tagging
- Semantic Parsing
- Conclusion & Future Work

Problem Description & Motivation

- Given a document (e.g., web page, news article), assign it to a fixed number of semantic categories (e.g., sports, politics, entertainment)
- <u>Multi-label</u> problem
- Training supervised models requires large amounts of labeled data [Dumais et al., 1998]

Corpora

- Reuters [Lewis, et al., 1978]
 - Newswire
 - About 20K document with 135 categories. Use top 10 categories (e.g., "earnings", "acquistions", "wheat", "interest") and label the remaining as "other"

Corpora

- Reuters [Lewis, et al., 1978]
 - Newswire
 - About 20K document with 135 categories. Use top 10 categories (e.g., "earnings", "acquistions", "wheat", "interest") and label the remaining as "other"
- WebKB [Bekkerman, et al., 2003]
 - 8K webpages from 4 academic domains
 - Categories include "course", "department", "faculty" and "project"

Showers continued throughout the week in the Bahia cocoa zone, alleviating the drought since early January and improving prospects for the coming temporao, ...

Document [Lewis, et al., 1978]

Document [Lewis, et al., 1978] Showers continued week Bahia cocoa zone alleviating drought early January improving prospects coming temporao, ...

> Stop-word Removal

Showers continued throughout the week in the Bahia cocoa zone, alleviating the drought since early January and improving prospects for the coming temporao, ...

Document [Lewis, et al., 1978] Showers continued week Bahia cocoa zone alleviating drought early January improving prospects coming temporao, ... → shower continu week bahia cocoa zone allevi drought earli januari improv prospect come temporao, ...

Stop-word Removal

Stemming

Average PRBEP	SVM	TSVM	SGT	LP	MP	MAD
Reuters	48.9	59.3	60.3	59.7	66.3	-
WebKB	23.0	29.2	36.8	41.2	51.9	53.7

Support Vector Machine (Supervised) Transductive SVM [Joachims 1999]								
Average PRBEP	SVM	TSVM	SGT	LP	MP	MAD		
Reuters	48.9	59.3	60.3	59.7	66.3	-		
WebKB	23.0	29.2	36.8	41.2	51.9	53.7		

Results on WebKB

Results on WebKB

Results on WebKB

Outline

- Motivation
- Graph Construction
- Inference Methods
- Scalability
- Applications

Text Categorization
Sentiment Analysis
Class Instance Acquisition
POS Tagging
MultiLingual POS Tagging
Semantic Parsing

Conclusion & Future Work

Problem Description

- fortunately, they managed to do it in an interesting and funny way.
- he is one of the most exciting martial artists on the big screen.
- the romance was enchanting.

- A woman in peril. A confrontation. An explosion.
 The end. Yawn. Yawn. Yawn.
- don't go see this movie

Movie review dataset [Pang et al. EMNLP 2002]

Problem Description

- Given a document either
 - classify it as expressing a positive or negative sentiment or
 - assign a star rating
- Similar to text categorization
 - Can be solved using standard machine learning approaches [Pang, Lee & Vaidyanathan, EMNLP 2002]

- Large lists of phrases that encode the polarity (positive or negative) of each phrase
 - Positive polarity: "enjoyable", "breathtakingly", "once in a life time"
 - Negative polarity: "bad", "humorless", "unbearable", "out of touch", "bumps in the road"
- Best results obtained by combining with machine learning approaches [Wilson et al., HLT-EMNLP 05; Blair-Goldensohn et al. 08; Choi & Cardie EMNLP 09]

- Common strategy: start with two **small** seed sets
 - P: positive phrases, e.g., "great" "fantastic"
 - N: negative phrases, e.g., "awful", "dreadful"
- Grow lexicons with graph propagation algorithms

- Common strategy: start with two **small** seed sets
 - P: positive phrases, e.g., "great" "fantastic"
 - N: negative phrases, e.g., "awful", "dreadful"
- Grow lexicons with graph propagation algorithms

- Common strategy: start with two **small** seed sets
 - P: positive phrases, e.g., "great" "fantastic"
 - N: negative phrases, e.g., "awful", "dreadful"
- Grow lexicons with graph propagation algorithms

- Common strategy: start with two **small** seed sets
 - P: positive phrases, e.g., "great" "fantastic"
 - N: negative phrases, e.g., "awful", "dreadful"
- Grow lexicons with graph propagation algorithms

- Common strategy: start with two **small** seed sets
 - P: positive phrases, e.g., "great" "fantastic"
 - N: negative phrases, e.g., "awful", "dreadful"
- Grow lexicons with graph propagation algorithms

Graph Construction (I)

- WordNet [Hu & Liu, KDD 04; Kim & Hovy, ICCL 04; Blair-Goldensohn 08; Rao & Ravichandran EACL 09]
 - Defines synonyms, antonyms, hypernyms, etc.
 - Make edges between synonyms
 - Enforce constraints between antonyms
 - Issues
 - coverage
 - hard to find resources for all languages
Graph Construction (II)

- Use web data!
- All n-grams (phrases) up to length 10 from 4 billion web pages
 - Pruned down to 20 million candidate phrases
 - Feature vector obtained by aggregating words that occurred in **local** context
- Graph is more "syntactic" than "semantic"

Graph Propagation (I)

Graph Propagation (I)

Graph Propagation (II)

Graph Propagation (III)

Key observation: sentiment phrases are those that have short highly weighted paths to multiple seeds

Results

Lexicon	Phrases	Positive	Negative
Wilson et al. 2005	7,618	2,718	4,900
WordNet LP [Blair-Goldensohn et al. 07]	12,310	5,705	6,605
Web GP [Velikovich et al. 2010]	178,104	90,337	87,767

Size of the output lexicon

Results

Positive

What you'd expect

excellent fabulous beautiful inspiring awesome plucky ravishing brilliant nice delightful splendid incredible stupendous comfortable

Spelling variations loveable nicee niice cooool coooool koool kewl cozy cosy sikk

Multi-word expressions once in a life time state - of - the - art fail - safe operation just what you need just what the doctor ordered out of this world top of the line melt in your mouth snug as a bug up to the job out of the box more good than bad

Negative

What you'd expect bad awful terrible dirty repulsive crappy sucky subpar horrendous miserable lousy abysmal stupid wretched Vulgarity, ??? \$#%! face \$#%!ed up shut your \$#%!ing mouth complete bull\$#%! bladder spasms green slime vacuum of leadership electro - static discharge muttered under his breath harm to the environment

Multi-word expressions run of the mill out of touch over the hill flash in the pan bumps in the road hit or miss foaming at the mouth dime a dozen pie - in - the - sky cast a pall over sick to my stomach pain in my ass

Results

Results

Outline

- Motivation
- Graph Construction
- Inference Methods
- Scalability

 Class Instance Acquisition [Talukdar et al., EMNLP 2008]
POS Tagging
MultiLingual POS Tagging

r Text Categorization

Sentiment Analysis

- Applications ______ Semantic Parsing
- Conclusion & Future Work

Problem Description

- Given an entity, assign human readable descriptors to it
 - Toyota is a car manufacturer, japanese company, multinational company
 - African countries such as Uganda and Angola
- Large scale, open domain (> 100 classes)
- Applications
 - web search, advertising, etc.

••••

What Other Musicians Would Fans of the Album Listen to:

Storytelling musicians come to mind. Musicians *such as Johnny Cash*, and Woodie Guthrie.

What is Distinctive About this Release?:

Every song on the album has its own unique sound. From the fast paced *That Texas Girl* to the acoustic

[van Durme and Pasca, AAAI 2008]

- Uses "<Class> such as <Instance>" patterns
- Extracts both class (musician) and instance (Johnny Cash)

••••

What Other Musicians Would Fans of the Album Listen to:

Storytelling musicians come to mind. Musicians such as Johnny Cash, and Woodie Guthrie.

What is Distinctive About this Release?:

Every song on the album has its own unique sound. From the fast paced *That Texas Girl* to the acoustic

[van Durme and Pasca, AAAI 2008]

- Uses "<Class> such as <Instance>" patterns
- Extracts both class (musician) and instance (Johnny Cash)

Extractions from HTML lists and tables

- [Wang and Cohen, ICDM 2007]
- WebTables [Cafarella et al.,VLDB 2008], 154 million HTML tables

What Other Musicians Would Fans of the Album Listen to:

Storytelling musicians come to mind. Musicians *such as Johnny Cash*, and Woodie Guthrie.

[van Durme and Pasca, AAAI 2008]

 Uses "<Class> such as <Instance>" patterns

What is Distinctive About this Release?

F

Pattern-based methods are usually tuned for high-precision, resulting in low coverage

Can we combine extractions from all methods (and sources) to improve coverage?

	view lyrics (63 views)	view lyrics (59 views)
~ 	7. Onyx	8. The Hydrant
	Shout view lyrics (176 views)	Shout view lyrics (167 views)
ella On 7 y Best Of SO7 lan Terus'	9. TLC	10. Tie
	Shout view lyrics (58 views)	Shout view lyrics (62 views)
-	11. T.a.t.u.	12. Beatles
ay Chou fantasy	We Shout Lyrics view lyrics (224 views)	Twist And Shout view lyrics (183 views)
and the second	13. Tic	14. The Beatles
Pole a	Shout view lyrics (55 views)	Twist And Shout view lyrics (175 views)

• WebTables [Cafarella et al.,VLDB 2008], 154 million HTML tables

Graph Construction

Graph Construction

Graph Construction

• Bi-partite graph (not a k-NN graph)

 "Set" nodes encourage members of the set to have similar labels

 Natural way to represent extractions from many sources and methods

Goal

Extraction for Known Instances

Graph with I.4m nodes, 75m edges used.

Evaluation against WordNet Dataset (38 classes, 8910 instances)

Recall

Extraction for Known Instances

Adsorption is able to assign **better** class labels to **more** instances.

Graph with I.4m nodes, 75m edges used.

Evaluation against WordNet Dataset (38 classes, 8910 instances)

Extracted Pairs

Total classes: 908

Class	A few non-seed Instances found by Adsorption
Scientific Journals	Journal of Physics, Nature, Structural and Molecular Biology, Sciences Sociales et sante, Kidney and Blood Pressure Research, American Journal of Physiology-Cell Physiology,
NFL Players	Tony Gonzales, Thabiti Davis, Taylor Stubblefield, Ron Dixon, Rodney Hannan,
Book Publishers	Small Night Shade Books, House of Ansari Press, Highwater Books, Distributed Art Publishers, Cooper Canyon Press,

Extracted Pairs

Total classes: 908

Class	A few non-seed Instances found by Adsorption
Scientific Journals	Journal of Physics, Nature, Structural and Molecular Biology, Sciences Sociales et sante, Kidney and Blood Pressure Research, American Journal of Physiology-Cell Physiology,
NFL Players	Tony Gonzales, Thabiti Davis, Taylor Stubblefield, Ron Dixon, Rodney Hannan,
Book Publishers	Small Night Shade Books, House of Ansari Press, Highwater Books, Distributed Art Publishers, Cooper
Graph-based methods can easily handle large	

Graph-based methods can easily handle large number of classes

Results

Data available @ http://www.talukdar.net/datasets/class_inst/

Results

Semantic Constraints

Semantic Constraints

Suppose we knew that both "Johnny Cash" and "Billy Joel" have albums.

How do we encode this constraint?

Graph is no longer bi-partite (not necessarily bad)
Can lead to cliques of size of number of instances in the constraint (bad)

Semantic Constraints may be easily encoded

Results with Semantic Constraints

Results with Semantic Constraints

105

Results with Semantic Constraints

105

Outline

- Motivation
- Graph Construction
 Inference Methods
 Scalability
 Applications
- Conclusion & Future Work

... DT NN VBZ PP DT the book is about the ...

... the book is about the ...

"when do you book plane tickets?")

"do you read a book on the plane?")

can you book a day room at hilton hawaiian village ?

what was the book that has no letter e ?

how much does it cost to book a band ?

how to get a book agent ?

can you book a day room at hilton hawaiian village ?

what was the book that has no letter e ?

how much does it cost to book a band ?

how to get a book agent ?

can you book a day room at hilton hawaiian village ?

what was the book that has no letter e ?

how much does it cost to book a band ?

how to get a book agent ?

Trigram + Context	cost to book a band

Trigram + Context	cost to book a band
Left Context	cost to

Trigram + Context	cost to book a band
Left Context	cost to
Right Context	a band

Trigram + Context	cost to book a band
Left Context	cost to
Right Context	a band
Center Word	book

Trigram + Context	cost to book a band
Left Context	cost to
Right Context	a band
Center Word	book
Trigram - Center Word	toa
Left Word + Right Context	toa band
Left Context + Right Word	cost toa
Suffix	none

how much to book a flight to paris?

• to book a Trigram + Context

Left Context

Right Context

Center Word

Trigram - Center Word

LeftWord + Right Context

Left Context + Right Word

Suffix

Trigram + Context

Left Context

Right Context

Center Word

Trigram - Center Word

LeftWord + Right Context

Left Context + Right Word

Suffix

Approach (I)

I. Train a CRF on labeled data

2. While not converged do:

2.1. Posterior decode unlabeled data using CRF
1. Train a CRF on labeled data
2. While not converged do:

2.1. Posterior decode unlabeled data using CRF

can you book a day room at hilton hawaiian village ?

how to unrar a zipped file ?

how to get a book agent?

how do you book a flight to multiple cities ?

I. Train a CRF on labeled data

2. While not converged do:

2.1. Posterior decode unlabeled data using CRF

can you book a day room at hilton hawaiian village ?

how to unrar a zipped file ?

how to get a book agent?

how do you book a flight to multiple cities ?

I. Train a CRF on labeled data2. While not converged do:

2.1. Posterior decode unlabeled data using CRF

Liu Liu Liu Liu Liu Liu Liu Liu Liu can you book a day room at hilton hawaiian village ? Liu Liu Liu Liu Liu Liu how to unrar a zipped file ? Liu Liu Liu Liu Liu Liu how to get a book agent ? Liu Liu Liu Liu Liu Liu Liu how do you book a flight to multiple cities ?

I. Train a CRF on labeled data

2. While not converged do:

- 2.1. Posterior decode unlabeled data using CRF
- 2.2. Aggregate posteriors (token-to-type mapping)

I. Train a CRF on labeled data

2. While not converged do:

- 2.1. Posterior decode **unlabeled data** using CRF
- 2.2. Aggregate posteriors (token-to-type mapping)

can you book a day room at hilton hawaiian village ?

how do you book a flight to multiple cities ?

I. Train a CRF on labeled data

2. While not converged do:

2.1. Posterior decode **unlabeled data** using CRF

2.2. Aggregate posteriors (token-to-type mapping)

can you book a day room at hilton hawaiian village ?

you book a

I. Train a CRF on labeled data

2. While not converged do:

2.1. Posterior decode **unlabeled data** using CRF

2.2. Aggregate posteriors (token-to-type mapping)

I. Train a CRF on labeled data 2. While not converged do: 2.1. Posterior decode unlabeled data using CRF 2.2. Aggregate posteriors (token-to-type mapping)'

2.3. Graph propagation

I. Train a CRF on labeled data
While not converged do:
2.1. Posterior decode unlabeled data using CRF
2.2. Aggregate posteriors (token-to-type mapping)'

2.3. Graph propagation

I. Train a CRF on labeled data2. While not converged do:2. I. Posterior decode unlabeled data using CRF

2.2. Aggregate posteriors (token-to-type mapping)'2.3. Graph propagation

I. Train a CRF on labeled data2. While not converged do:2. I. Posterior decode unlabeled data using CRF

2.2. Aggregate posteriors (token-to-type mapping)'2.3. Graph propagation

Train a CRF on labeled data
 While not converged do:
 Posterior decode unlabeled data using CRF

2.2. Aggregate posteriors (token-to-type mapping)'2.3. Graph propagation

If two n-grams are <u>similar</u> according to the graph then their output distributions should be <u>similar</u>

1. Train a CRF on labeled data
2. While not converged do:
2.1. Posterior decode **unlabeled data** using CRF
2.2. Aggregate posteriors (token-to-type mapping)'
2.3. Graph propagation
2.4. Viterbi Decode

I. Train a CRF on labeled data
While not converged do:
2.1. Posterior decode unlabeled data using CRF
2.2. Aggregate posteriors (token-to-type mapping)'
2.3. Graph propagation
2.4. Viterbi Decode

Can you unrar a zipped file?

I. Train a CRF on labeled data
While not converged do:
2.1. Posterior decode **unlabeled data** using CRF
2.2. Aggregate posteriors (token-to-type mapping)'
2.3. Graph propagation
2.4. Viterbi Decode

Can you unrar a zipped file?

I. Train a CRF on labeled data2. While not converged do:2.1. Posterior decode unlabeled data using CRF

2.2. Aggregate posteriors (token-to-type mapping)'

- 2.3. Graph propagation
- 2.4. Viterbi Decode

I. Train a CRF on labeled data
While not converged do:
2.1. Posterior decode **unlabeled data** using CRF
2.2. Aggregate posteriors (token-to-type mapping)'
2.3. Graph propagation
2.4. Viterbi Decode

1. Train a CRF on labeled data
2. While not converged do:
2.1. Posterior decode **unlabeled data** using CRF
2.2. Aggregate posteriors (token-to-type mapping)'
2.3. Graph propagation
2.4. Viterbi Decode

I. Train a CRF on labeled data
While not converged do:
2.1. Posterior decode unlabeled data using CRF
2.2. Aggregate posteriors (token-to-type mapping)'
2.3. Graph propagation
2.4. Viterbi Decode
2.5. Retrain CRF on labeled & automatically
labeled unlabeled data

.....

Space of all distributions **realizable** using a CRF

Current estimate

- Source Domain (labeled): Wall Street Journal (WSJ) section of the Penn Treebank.
- Target Domain:
 - QuestionBank: 4000 labeled sentences
 - Penn BioTreebank: 1061 labeled sentences

Graph Construction: Bio

Baseline (Supervised)

Not the same as features used using graph construction

- Features: word identity, suffixes, prefixes & special character detectors (dashes, digits, etc.).
- Achieves 97.17% accuracy on WSJ development set.
| | Questions | Bio | |
|------------------------|-----------|------|--|
| Baseline | 83.8 | 86.2 | |
| Self-training | 84.0 | 87.I | |
| Semi-supervised
CRF | 86.8 | 87.6 | |

Analysis

	Questions	Bio
percentage of unlabeled trigrams not connected to and any labeled trigram	12.4	46.8
average path length between an unlabeled trigram and its nearest labeled trigram	9.4	22.4

Analysis

- Pros
 - Inductive
 - Produces a CRF (standard CRF inference infrastructure may be used)
- Issues
 - Graph construction
 - Graph is not integrated with CRF training

Outline

- Motivation
- Graph Construction
 Inference Methods
 Scalability
 Applications
 Text Categorization
 Sentiment Analysis
 Class Instance Acquisition
 POS Tagging
 MultiLingual POS Tagging

 [Das & Petrov, ACL 2011]
 Semantic Parsing
- Conclusion & Future Work

Motivation

- Supervised POS taggers for English have accuracies in the high 90's for most domains
- By comparison taggers in other languages are not as accurate
 - Performance ranges from between 60 80%

Motivation

- Supervised POS taggers for English have accuracies in the high 90's for most domains
- By comparison taggers in other languages are not as accurate
 - Performance ranges from between 60 80%

The food at Google is good .

Das Essen ist gut bei Google .

Automatic alignments from translation data (available for more than 50 languages)

Cross-Lingual Projection Results

	Danish	Dutch	German	Greek	Italian	Portuguese	Spanish	Swedish	Average
Feature- HMM	69.I	65.I	81.3	71.8	68. I	78.4	80.2	70. I	73.0

Cross-Lingual Projection Results

	Danish	Dutch	German	Greek	Italian	Portuguese	Spanish	Swedish	Average
Feature- HMM	69. I	65.I	81.3	71.8	68. I	78.4	80.2	70. I	73.0
Direct Projection	73.6	77.0	83.2	79.3	79.7	82.6	80.I	74.7	78.8

Graph Regularization gutem Essen zugetan ist wichtig bei ist gut bei fuers Essen drauf

ist fein bei

ist lebhafter bei

zu realisieren,

1000 Essen pro

schlechtes Essen und

	Danish	Dutch	German	Greek	Italian	Portugese	Spanish	Swedish	Average
Feature- HMM	69. I	65.I	81.3	71.8	68. I	78.4	80.2	70. I	73.0
Direct Projection	73.6	77.0	83.2	79.3	79.7	82.6	80. I	74.7	78.8

	Danish	Dutch	German	Greek	Italian	Portugese	Spanish	Swedish	Average
Feature- HMM	69. I	65.I	81.3	71.8	68. I	78.4	80.2	70. I	73.0
Direct Projection	73.6	77.0	83.2	79.3	79.7	82.6	80. I	74.7	78.8
Graph- based Projection	83.2	79.5	82.8	82.5	86.8	87.9	84.2	80.5	83.4

	Danish	Dutch	German	Greek	Italian	Portugese	Spanish	Swedish	Average
Feature- HMM	69. I	65.I	81.3	71.8	68. I	78.4	80.2	70. I	73.0
Direct Projection	73.6	77.0	83.2	79.3	79.7	82.6	80. I	74.7	78.8
Graph- based Projection	83.2	79.5	82.8	82.5	86.8	87.9	84.2	80.5	83.4

Oracle (Supervised	96.9	94.9	98.2	97.8	95.8	97.2	96.8	94.8	96.6	
-----------------------	------	------	------	------	------	------	------	------	------	--

Outline

- Motivation
- Graph Construction
- Inference Methods
- Scalability
- Applications

- F Text Categorization
- Sentiment Analysis
- Class Instance Acquisition
- POS Tagging
- MultiLingual POS Tagging

Semantic Parsing [Das & Smith, ACL 2011]

Conclusion & Future Work

 Extract shallow semantic structure: Frames and Roles

I want to go to Jeju Island on Sunday

 Extract shallow semantic structure: Frames and Roles

I want to go to Jeju Island on Sunday

Target (Predicate)

 Extract shallow semantic structure: Frames and Roles

 Extract shallow semantic structure: Frames and Roles

 Extract shallow semantic structure: Frames and Roles

- Target identification
 - Most approaches assume this is given
- Frame identification
- Argument identification
Motivation

Frame Identification

Unknown Predicates

Sparse label data

- Labeled data has only about 9,263 labeled predicates (targets)
 - English on the other hand has a lot more potential predicates (~65,000 in newswire)

Sparse label data

- Labeled data has only about 9,263 labeled predicates (targets)
 - English on the other hand has a lot more potential predicates (~65,000 in newswire)

- Construct a graph with potential predicates as vertices
- Expand the lexicon by using graph-based SSL

Graph Propagation (I)

Graph Propagation (II)

Graph Propagation (III)

Graph Propagation (IV)

Results on Unknown Predicates

Results on Unknown Predicates

Results on Unknown Predicates

Outline

- Motivation
- Graph Construction
- Inference Methods
- Scalability
- Applications

Conclusion & Future Work

When to use Graph-based SSL and which method?

- When input data itself is a graph
 - or, when the data is expected to lie on a manifold
- Measure Propagation (MP)
 - for probabilistic interpretation
- Quadratic Criteria (QC), MAD, MADDL
 - when labels are not mutually exclusive
- Manifold Regularization
 - for generalization to unseen data (induction)

Graph-based SSL: Summary

- Provide flexible representation
 - for both IID and relational data
- Graph construction can be key
- Scalable: Node Reordering and MapReduce
- Can handle labeled as well as unlabeled data
- Can handle multi class, multi label settings
- Effective in practice

Open Challenges

- Use in structured prediction problems
 - Constituency and dependency parsing
- Combining Inductive and Graph-based methods
 - Joint optimization and parallel training [Altun et al., NIPS 2006]
- Scalable graph construction, especially with multi-modal data
- Extensions with other loss functions, sparsity, etc.
- Using side information

Acknowledgments

- National Science Foundation (NSF) IIS-0447972
- DARPA HRO1107-1-0029, FA8750-09-C-0179
- Google Research Award
- Dipanjan Das (Google), Ryan McDonald (Google), Fernando Pereira (Google), Slav Petrov (Google), Noah Smith (CMU)

References (I)

[1] A. Alexandrescu and K. Kirchhoff. Data-driven graph construction for semi- supervised graph-based learning in NLP. In NAACL HLT, 2007.

[2] Y. Altun, D. McAllester, and M. Belkin. Maximum margin semi-supervised learn- ing for structured variables. NIPS, 2006.
[3] R. Bekkerman, R. El-Yaniv, N. Tishby, and Y. Winter. Distributional word clusters vs. words for text categorization. J. Mach. Learn. Res., 3:1183–1208, 2003.

[4] M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. Journal of Machine Learning Research, 7:2399–2434, 2006.

[5] Y. Bengio, O. Delalleau, and N. Le Roux. Label propagation and quadratic criterion. Semi-supervised learning, 2006.

[6] T. Berg-Kirkpatrick, A. Bouchard-Co^{*}t e, J. DeNero, and D. Klein. Painless unsupervised learning with features. In HLT-NAACL, 2010.

[7] J. Bilmes and A. Subramanya. Scaling up Machine Learning: Parallel and Distributed Approaches, chapter Parallel Graph-Based Semi-Supervised Learning. 2011.

[8] S. Blair-goldensohn, T. Neylon, K. Hannan, G. A. Reis, R. Mcdonald, and J. Reynar. Building a sentiment summarizer for local service reviews. In In NLP in the Information Explosion Era, 2008.

[9] M. Cafarella, A. Halevy, D. Wang, E. Wu, and Y. Zhang. Webtables: exploring the power of tables on the web. VLDB, 2008. [10] O. Chapelle, B. Scho⁻lkopf, A. Zien, et al. Semi-supervised learning. MIT press Cambridge, MA:, 2006.

[11] Y. Choi and C. Cardie. Adapting a polarity lexicon using integer linear program- ming for domain specific sentiment classification. In EMNLP, 2009.

[12] S. Daitch, J. Kelner, and D. Spielman. Fitting a graph to vector data. In ICML, 2009.

- [13] D. Das and S. Petrov. Unsupervised part-of-speech tagging with bilingual graph- based projections. In ACL, 2011.
- [14] D. Das, N. Schneider, D. Chen, and N. A. Smith. Probabilistic frame-semantic parsing. In NAACL-HLT, 2010.

[15] D. Das and N. Smith. Graph-based lexicon expansion with sparsity-inducing penalties. NAACL-HLT, 2012.

[16] D. Das and N. A. Smith. Semi-supervised frame-semantic parsing for unknown predicates. In ACL, 2011.

[17] J. Davis, B. Kulis, P. Jain, S. Sra, and I. Dhillon. Information-theoretic metric learning. In ICML, 2007.

[18] O. Delalleau, Y. Bengio, and N. L. Roux. Efficient non-parametric function induction in semi-supervised learning. In AISTATS, 2005.

[19] P. Dhillon, P. Talukdar, and K. Crammer. Inference-driven metric learning for graph construction. Technical report, MS-CIS-10-18, University of Pennsylvania, 2010.

[20] S. Dumais, J. Platt, D. Heckerman, and M. Sahami. Inductive learning algorithms and representations for text categorization. In CIKM, 1998.

References (II)

[21] J. Friedman, J. Bentley, and R. Finkel. An algorithm for finding best matches in logarithmic expected time. ACM Transaction on Mathematical Software, 3, 1977.

[22] J. Garcke and M. Griebel. Data mining with sparse grids using simplicial basis functions. In KDD, 2001.

[23] A. Goldberg and X. Zhu. Seeing stars when there aren't many stars: graph-based semi-supervised learning for sentiment categorization. In Proceedings of the First Workshop on Graph Based Methods for Natural Language Processing, 2006.

[24] A. Goldberg, X. Zhu, and S. Wright. Dissimilarity in graph-based semi-supervised classification. AISTATS, 2007.

[25] M. Hu and B. Liu. Mining and summarizing customer reviews. In KDD, 2004.

[26] T. Jebara, J. Wang, and S. Chang. Graph construction and b-matching for semi-

supervised learning. In ICML, 2009.

[27] T. Joachims. Transductive inference for text classification using support vector machines. In ICML, 1999.

[28] T. Joachims. Transductive learning via spectral graph partitioning. In ICML, 2003.

[29] M. Karlen, J. Weston, A. Erkan, and R. Collobert. Large scale manifold transduction. In ICML, 2008.

[30] S.-M. Kim and E. Hovy. Determining the sentiment of opinions. In Proceedings of the 20th International conference on Computational Linguistics, 2004.

[31] F. Kschischang, B. Frey, and H. Loeliger. Factor graphs and the sum-product algorithm. Information Theory, IEEE Transactions on, 47(2):498–519, 2001

[32] K. Lerman, S. Blair-Goldensohn, and R. McDonald. Sentiment summarization: evaluating and learning user preferences. In EACL, 2009.

[33] D.Lewisetal.Reuters-21578.http://www.daviddlewis.com/resources/testcollections/reuters21578, 1987.

[34] J. Malkin, A. Subramanya, and J. Bilmes. On the semi-supervised learning of multi-layered perceptrons. In InterSpeech, 2009.

[35] B. Pang, L. Lee, and S. Vaithyanathan. Thumbs up?: sentiment classification using machine learning techniques. In EMNLP, 2002.

[36] D. Rao and D. Ravichandran. Semi-supervised polarity lexicon induction. In EACL, 2009.

[37] A. Subramanya and J. Bilmes. Soft-supervised learning for text classification. In EMNLP, 2008.

[38] A. Subramanya and J. Bilmes. Entropic graph regularization in non-parametric semi-supervised classification. NIPS, 2009.

[39] A. Subramanya and J. Bilmes. Semi-supervised learning with measure propagation. The Journal of Machine Learning Research, 2011.

[40] A. Subramanya, S. Petrov, and F. Pereira. Efficient graph-based semi-supervised learning of structured tagging models. In EMNLP, 2010.

References (III)

[41] P. Talukdar. Topics in graph construction for semi-supervised learning. Technical report, MS-CIS-09-13, University of Pennsylvania, 2009.

[42] P. Talukdar and K. Crammer. New regularized algorithms for transductive learning. ECML, 2009.

[43] P. Talukdar and F. Pereira. Experiments in graph-based semi-supervised learning methods for class-instance acquisition. In ACL, 2010.

[44] P. Talukdar, J. Reisinger, M. Pa sca, D. Ravichandran, R. Bhagat, and F. Pereira. Weakly-supervised acquisition of labeled class instances using graph random walks. In EMNLP, 2008.

[45] B. Van Durme and M. Pasca. Finding cars, goddesses and enzymes: Parametrizable acquisition of labeled instances for open-domain information extraction. In AAAI, 2008.

[46] L. Velikovich, S. Blair-Goldensohn, K. Hannan, and R. McDonald. The viability of web-derived polarity lexicons. In HLT-NAACL, 2010.

[47] F. Wang and C. Zhang. Label propagation through linear neighborhoods. In ICML, 2006.

[48] J. Wang, T. Jebara, and S. Chang. Graph transduction via alternating minimization. In ICML, 2008.

[49] R. Wang and W. Cohen. Language-independent set expansion of named entities using the web. In ICDM, 2007.

[50] K. Weinberger and L. Saul. Distance metric learning for large margin nearest neighbor classification. The Journal of Machine Learning Research, 10:207–244, 2009.

[51] T. Wilson, J. Wiebe, and P. Hoffmann. Recognizing contextual polarity in phrase-level sentiment analysis. In HLT-EMNLP, 2005.

[52] D. Zhou, O. Bousquet, T. Lal, J. Weston, and B. Scho lkopf. Learning with local and global consistency. NIPS, 2004.

[53] D. Zhou, J. Huang, and B. Scho'lkopf. Learning from labeled and un-labeled data on a directed graph. In ICML, 2005.

[54] D. Zhou, B. Scho lkopf, and T. Hofmann. Semi-supervised learning on directed graphs. In NIPS, 2005.

[55] X. Zhu and Z. Ghahramani. Learning from labeled and unlabeled data with label propagation. Technical report, CMU-CALD-02-107, Carnegie Mellon University, 2002.

[56] X. Zhu and Z. Ghahramani. Learning from labeled and unlabeled data with label propagation. Technical report, Carnegie Mellon University, 2002.

[57] X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised learning using gaussian fields and harmonic functions. In ICML, 2003.

[58] X. Zhu and J. Lafferty. Harmonic mixtures: combining mixture models and graph- based methods for inductive and scalable semi-supervised learning. In ICML, 2005.

Thanks!

Web: http://graph-ssl.wikidot.com/