
 NP

D N

a

NP

D N

NP

D N

a
D N

a

NP

D N
NP

D N

VP

V

 hit

a phosphor

V

hit

NP

D N

VP

V

a

NP

D N

VP

V

NP

D N

VP

V

a

NP

D

VP

V

N

a

NP

D N

VP

V

 hit

NP

D N

VP

V

 hit
NP

D N

VP

V

 hit

NP

VP

V
NP

VP

V

 hit

phosphor

phosphor phosphor

phosphor

phosphor phosphor

x

x

x

x

o

o

o
o

)x(φ

)x(φ
)x(φ

)x(φ
)(oφ

)(oφ

)(oφ
)(oφ

φ

ROOT

SBARQ

WHADVP

WRB

When

S

VP

VBN

hit

PP

IN

by

NP

NNS

electrons

,

,

NP

DT

a

NN

phosphor

VP

VBZ

gives

PRP

RP

off

NP

NP

JJ

electromagnetic

NN

energy

PP

IN

in

NP

DT

this

NN

form

ROOT

SBARQ

WHADVP

WRB

When

S

VP

VBN

hit

PP

IN

by

NP

NNS

electrons

,

,

NP

DT

a

NN

phosphor

VP

VBZ

gives

PRP

RP

off

NP

NP

JJ

electromagnetic

NN

energy

PP

IN

in

NP

DT

this

NN

form

PAS

A0

electrons

predicate

hit

AM

When

PAS

A0

a phosphor

predicate

give off

A1

energy

AM

in this form

PAS

A0

electrons

predicate

hit

A1

it

AM

if

PAS

A0

a phosphor

predicate

give off

A1

photons

1

Outline: Part I – Kernel Machines

!   Motivation (5 min)

!   Kernel Machines (20 min)
!   Perceptron

!   Support Vector Machines

!   Kernel Definition (Kernel Trick)

!   Mercer's Conditions

!   Kernel Operators

!   Efficiency issue: when can we use kernels?

Outline: Part I – Basic Kernels

!   Basic Kernels and their Feature Spaces (25 min)
!   Linear Kernels

!   Polynomial Kernels

!   Lexical Semantic Kernels

!   String and Word Sequence Kernels

!   Syntactic Tree Kernel, Partial Tree kernel (PTK),
Semantic Syntactic Tree Kernel, Smoothed PTK

Outline: Part II – Applications with Simple
Kernels

!   NLP applications with simple kernels (25 min)
!   Question Classification in TREC

!   Cue Classification in Jeopardy!

!   Semantic Role Labeling (SRL): FrameNet and
PropBank

!   Relation Extraction: ACE

! Coreference Resolution

Outline: Part II – Joint Kernel Models

!   Reranking for (12 min)
!   Preference kernel framework

!   Concept Segmentation and Classification of speech

!   Named-Entity Recognition

!   Predicate Argument Structures

!   Relational Kernels (13 min)
!   Recognizing Textual Entailment

!   Answer Reranking

Outline: Part II – Advanced Topics

!   Fast learning and classification approaches (10 min)
!   Cutting Plane Algorithm for SVMs

!   Sampling methods (uSVMs)

!   Compacting space with DAGs

!   Reverse Kernel Engineering (10 min)
!   Model linearization

!   Semantic Role Labeling

!   Question Classification

!   Conclusions and Future Research (5 min)

Motivation (1)

!   Feature design most difficult aspect in designing a

learning system

!   complex and difficult phase, e.g., structural feature

representation:

!   deep knowledge and intuitions are required

!   design problems when the phenomenon is described

by many features

Motivation (2)

!   Kernel methods alleviate such problems

!   Structures represented in terms of substructures

!   High dimensional feature spaces

!   Implicit and abstract feature spaces

!   Generate high number of features

!   Support Vector Machines “select” the relevant features

!   Automatic feature engineering side-effect

Motivation (3)

!   High accuracy especially for new applications and new

domains

!   Manual engineering still poor, e.g. arabic SRL

!   Inherent higher accuracy when many structural patterns

are needed, e.g. Relation Extraction

!   Fast prototyping and adaptation for new domains and

applications

!   The major contribution of kernels is to make easier system

modeling:

Part I: Kernel Machines

Classification Problem (on text)

!   Given:
!   a set of target categories:

!   the set T of documents,

 define

 f : T → 2C

!   VSM (Salton89’)

!   Features are dimensions of a Vector Space.

!   Documents and Categories are vectors of feature weights.

!   d is assigned to if

€


d ⋅

C i > th

€

C = C1,..,Cn{ }

iC

More in detail

!   In Text Categorization documents are word

vectors

!   The dot product counts the number of

features in common

!   This provides a sort of similarity

€

Φ(dx) =
 x = (0,..,1,..,0,..,0,..,1,..,0,..,0,..,1,..,0,..,0,..,1,..,0,..,1)

 buy acquisition stocks sell market

zx

⋅

€

Φ(dz) =
 z = (0,..,1,..,0,..,1,..,0,..,0,..,0,..,1,..,0,..,0,..,1,..,0,..,0)

 buy company stocks sell

Linear Classifier

€

f ( x) =

x ⋅

w + b = 0,  x ,  w ∈ ℜn ,b∈ ℜ

!   The equation of a hyperplane is

!   is the vector representing the classifying example

!   is the gradient of the hyperplane

!   The classification function is

x


w

() sign(())h x f x=

! Mapping vectors in a space where they are linearly
separable,

x

x

x

x

o

o

o
o

The main idea of Kernel Functions

)(xx


φ→

)x(φ

)x(φ
)x(φ

)x(φ
)(oφ

)(oφ

)(oφ
)(oφ

φ

A kernel-based Machine:
Perceptron training

€

 w 0 ←

0 ;b0 ← 0;k ← 0;R← max1≤ i≤ l ||  x i ||

do
 for i = 1 to 
 if yi(

 w k ⋅
 x i + bk) ≤ 0 then

  w k +1 =
 w k +ηyi

 x i
 bk +1 = bk +ηyiR

2

 k = k +1
 endif
 endfor
while an error is found
return k,( w k,bk)

Graphic interpretation of the Perceptron
476 A. Moschitti

w

|||| w
b

A

ix w

B

ix

ii xyη
w

ii xyw η+

w

C

ix
iik xyw η+

||||

2

iik

ik

xyw
Ryb

η
η

+
+

Fig. 10. Perceptron algorithm process

Since the sign of the contribution xi is given by yi, αi is positive and is proportional
(through the η factor) to the number of times that xi is incorrectly classified. Difficult
points that cause many mistakes will be associated with large αi.

It is interesting to note that, if we fix the training set S, we can use the αi as alter-
native coordinates of a dual space to represent the target hypothesis associated with w.
The resulting decision function is the following:

h(x) = sgn(w · x + b) = sgn

((m∑

i=1

αiyixi

)
· x + b

)
=

= sgn

(
m∑

i=1

αiyi(xi · x) + b

)
(11)

Given the dual representation, we can adopt a learning algorithm that works in the
dual space described in Table 3.

Note that as the Novikoff’s theorem states that the learning rate η only changes the
scaling of the hyperplanes, it does not affect the algorithm thus we can set η = 1.
On the contrary, if the perceptron algorithm starts with a different initialization, it will
find a different separating hyperplane. The reader may wonder if such hyperplanes are
all equivalent in terms of the classification accuracy of the test set; the answer is no:
different hyperplanes may lead to different error probabilities. In particular, the next

! In each step of perceptron only training data is
added with a certain weight

! Hence the classification function results:

! Note that data only appears in the scalar product

Dual Representation for Classification

€

 w = α j
j=1..
∑ y j

 x j

€

sgn( w ⋅  x + b) = sgn α j
j=1..
∑ y j

 x j ⋅
 x + b

%

&
' '

(

)
* *

Dual Representation for Learning

! as well as the updating function

! The learning rate only affects the re-scaling of
the hyperplane, it does not affect the algorithm, so
we can fix 1.η =

η

€

if yi(α j
j=1..
∑ y j


x j ⋅

x i + b) ≤ 0 then α i =α i +η

! We can rewrite the classification function as

! As well as the updating function

Dual Perceptron algorithm and Kernel
functions

€

h(x) = sgn( w φ ⋅ φ(
 x) + bφ) = sgn(α j

j=1..
∑ y jφ(

 x j) ⋅ φ(
 x) + bφ) =

= sgn(α j
i=1..
∑ y jk(

 x j ,
 x) + bφ)

€

if yi α j
j=1..
∑ y jk( x j ,

 x i) + bφ
%

&
' '

(

)
* * ≤ 0 allora α i =α i +η

Support Vector Machines

 Var1

Var2 kbxw −=+⋅


kbxw =+⋅


0=+⋅ bxw

kk

w

The margin is equal to
2 k
w

Support Vector Machines

 Var1

Var2
w ⋅ x + b = −1

w ⋅ x + b =1

0=+⋅ bxw

11

w

The margin is equal to
2
w

We need to solve

max 2
|| w ||

w ⋅ x + b ≥ +1, if x is positive
w ⋅ x + b ≤ −1, if x is negative

Optimization Problem

!   Optimal Hyperplane:
!   Minimize

!   Subject to

!   The dual problem is simpler

τ (w) = 1
2
w 2

yi (
w ⋅ xi + b) ≥1, i =1,..., l

Dual Transformation

!   To solve the dual problem we need to evaluate:

!   Given the Lagrangian associated with our problem

!   Let us impose the derivatives to 0, with respect to

w

2.3. The Support Vector Machines 43

The above conditions can be applied to evaluate the maximal margin clas-
sifier, i.e. the Problem 2.13, but the general approach is to transform Problem
2.13 in an equivalent problem, simpler to solve. The output of such transfor-
mation is called dual problem and it is described by the following definition.

Def. 2.24 Let f(~w), hi(~w) and gi(~w) be the objective function, the equality
constraints and the inequality constraints (i.e. �) of an optimization problem,
and let L(~w, ~↵, ~�) be its Lagrangian, defined as follows:

L(~w, ~↵, ~�) = f(~w) +
mX

i=1

↵igi(~w) +
lX

i=1

�ihi(~w)

The Lagrangian dual problem of the above primal problem is

maximize ✓(~↵, ~�)

subject to ~↵ � ~0

where ✓(~↵, ~�) = infw2W L(~w, ~↵, ~�)

The strong duality theorem assures that an optimal solution of the dual is
also the optimal solution for the primal problem and vice versa, thus, we can
focus on the transformation of Problem 2.13 according to the Definition 2.24.

First, we observe that the only constraints in Problem 2.13 are the inequal-
ities gi(~w) = [yi(~w · ~xi + b) � 1 8~xi 2 S].

Second, the objective function is ~w · ~w. Consequently, the primal La-
grangian4 is

L(~w, b, ~↵) =
1
2

~w · ~w �
mX

i=1

↵i[yi(~w · ~xi + b)� 1], (2.17)

where ↵i are the Lagrange multipliers and b is the extra variable associated
with the threshold.

Third, to evaluate ✓(~↵, ~�) = infw2W L(~w, ~↵, ~�), we can find the mini-
mum of the Lagrangian by setting the partial derivatives to 0.

@L(~w, b, ~↵)
@ ~w

= ~w �
mX

i=1

yi↵i~xi = ~0) ~w =
mX

i=1

yi↵i~xi (2.18)

4As ~w · ~w or 1
2 ~w · ~w is the same optimization function from a solution point of view, we use

the 1
2 factor to simplify the next computations.

2.3. The Support Vector Machines 43

The above conditions can be applied to evaluate the maximal margin clas-
sifier, i.e. the Problem 2.13, but the general approach is to transform Problem
2.13 in an equivalent problem, simpler to solve. The output of such transfor-
mation is called dual problem and it is described by the following definition.

Def. 2.24 Let f(~w), hi(~w) and gi(~w) be the objective function, the equality
constraints and the inequality constraints (i.e. �) of an optimization problem,
and let L(~w, ~↵, ~�) be its Lagrangian, defined as follows:

L(~w, ~↵, ~�) = f(~w) +
mX

i=1

↵igi(~w) +
lX

i=1

�ihi(~w)

The Lagrangian dual problem of the above primal problem is

maximize ✓(~↵, ~�)

subject to ~↵ � ~0

where ✓(~↵, ~�) = infw2W L(~w, ~↵, ~�)

The strong duality theorem assures that an optimal solution of the dual is
also the optimal solution for the primal problem and vice versa, thus, we can
focus on the transformation of Problem 2.13 according to the Definition 2.24.

First, we observe that the only constraints in Problem 2.13 are the inequal-
ities gi(~w) = [yi(~w · ~xi + b) � 1 8~xi 2 S].

Second, the objective function is ~w · ~w. Consequently, the primal La-
grangian4 is

L(~w, b, ~↵) =
1
2

~w · ~w �
mX

i=1

↵i[yi(~w · ~xi + b)� 1], (2.17)

where ↵i are the Lagrange multipliers and b is the extra variable associated
with the threshold.

Third, to evaluate ✓(~↵, ~�) = infw2W L(~w, ~↵, ~�), we can find the mini-
mum of the Lagrangian by setting the partial derivatives to 0.

@L(~w, b, ~↵)
@ ~w

= ~w �
mX

i=1

yi↵i~xi = ~0) ~w =
mX

i=1

yi↵i~xi (2.18)

4As ~w · ~w or 1
2 ~w · ~w is the same optimization function from a solution point of view, we use

the 1
2 factor to simplify the next computations.

2.3. The Support Vector Machines 43

The above conditions can be applied to evaluate the maximal margin clas-
sifier, i.e. the Problem 2.13, but the general approach is to transform Problem
2.13 in an equivalent problem, simpler to solve. The output of such transfor-
mation is called dual problem and it is described by the following definition.

Def. 2.24 Let f(~w), hi(~w) and gi(~w) be the objective function, the equality
constraints and the inequality constraints (i.e. �) of an optimization problem,
and let L(~w, ~↵, ~�) be its Lagrangian, defined as follows:

L(~w, ~↵, ~�) = f(~w) +
mX

i=1

↵igi(~w) +
lX

i=1

�ihi(~w)

The Lagrangian dual problem of the above primal problem is

maximize ✓(~↵, ~�)

subject to ~↵ � ~0

where ✓(~↵, ~�) = infw2W L(~w, ~↵, ~�)

The strong duality theorem assures that an optimal solution of the dual is
also the optimal solution for the primal problem and vice versa, thus, we can
focus on the transformation of Problem 2.13 according to the Definition 2.24.

First, we observe that the only constraints in Problem 2.13 are the inequal-
ities gi(~w) = [yi(~w · ~xi + b) � 1 8~xi 2 S].

Second, the objective function is ~w · ~w. Consequently, the primal La-
grangian4 is

L(~w, b, ~↵) =
1
2

~w · ~w �
mX

i=1

↵i[yi(~w · ~xi + b)� 1], (2.17)

where ↵i are the Lagrange multipliers and b is the extra variable associated
with the threshold.

Third, to evaluate ✓(~↵, ~�) = infw2W L(~w, ~↵, ~�), we can find the mini-
mum of the Lagrangian by setting the partial derivatives to 0.

@L(~w, b, ~↵)
@ ~w

= ~w �
mX

i=1

yi↵i~xi = ~0) ~w =
mX

i=1

yi↵i~xi (2.18)

4As ~w · ~w or 1
2 ~w · ~w is the same optimization function from a solution point of view, we use

the 1
2 factor to simplify the next computations.

Dual Transformation (cont’d)

!   and wrt b

!   Then we substituted them in the objective function

44 Chapter 2. Statistical Machine Learning

@L(~w, b, ~↵)
@b

=
mX

i=1

yi↵i = 0 (2.19)

Finally, by substituting Eq. 2.18 and 2.19 into the primal Lagrangian we
obtain

L(~w, b, ~↵) =
1
2

~w · ~w �
mX

i=1

↵i[yi(~w · ~xi + b)� 1] =

=
1
2

mX

i,j=1

yiyj↵i↵j ~xi · ~xj �
mX

i,j=1

yiyj↵i↵j ~xi · ~xj +
mX

i=1

↵i

=
mX

i=1

↵i �
1
2

mX

i,j=1

yiyj↵i↵j ~xi · ~xj

(2.20)
which according to the Definition 2.24 is the optimization function of the dual
problem subject to ↵i � 0. In summary, the final dual optimization problem is
the following:

maximize
mX

i=1

↵i �
1
2

mX

i,j=1

yiyj↵i↵j ~xi · ~xj

subject to ↵i � 0, i = 1, ..,m
mX

i=1

yi↵i = 0

where ~w =
Pm

i=1 yi↵i~xi and the
Pm

i=1 yi↵i = 0 are the relation derived from
Eq. 2.18 and 2.19. Other conditions establishing interesting properties can be
derived by the Khun-Tucker theorem. This provides the following relations for
an optimal solution:

@L(~w⇤, ~↵⇤, ~�⇤)
@ ~w

= ~0

@L(~w⇤, ~↵⇤, ~�⇤)
@~�

= ~0

↵⇤
i gi(~w⇤) = 0, i = 1, ..,m
gi(~w⇤)  0, i = 1, ..,m

↵⇤
i � 0, i = 1, ..,m

44 Chapter 2. Statistical Machine Learning

@L(~w, b, ~↵)
@b

=
mX

i=1

yi↵i = 0 (2.19)

Finally, by substituting Eq. 2.18 and 2.19 into the primal Lagrangian we
obtain

L(~w, b, ~↵) =
1
2

~w · ~w �
mX

i=1

↵i[yi(~w · ~xi + b)� 1] =

=
1
2

mX

i,j=1

yiyj↵i↵j ~xi · ~xj �
mX

i,j=1

yiyj↵i↵j ~xi · ~xj +
mX

i=1

↵i

=
mX

i=1

↵i �
1
2

mX

i,j=1

yiyj↵i↵j ~xi · ~xj

(2.20)
which according to the Definition 2.24 is the optimization function of the dual
problem subject to ↵i � 0. In summary, the final dual optimization problem is
the following:

maximize
mX

i=1

↵i �
1
2

mX

i,j=1

yiyj↵i↵j ~xi · ~xj

subject to ↵i � 0, i = 1, ..,m
mX

i=1

yi↵i = 0

where ~w =
Pm

i=1 yi↵i~xi and the
Pm

i=1 yi↵i = 0 are the relation derived from
Eq. 2.18 and 2.19. Other conditions establishing interesting properties can be
derived by the Khun-Tucker theorem. This provides the following relations for
an optimal solution:

@L(~w⇤, ~↵⇤, ~�⇤)
@ ~w

= ~0

@L(~w⇤, ~↵⇤, ~�⇤)
@~�

= ~0

↵⇤
i gi(~w⇤) = 0, i = 1, ..,m
gi(~w⇤)  0, i = 1, ..,m

↵⇤
i � 0, i = 1, ..,m

The Final Dual Optimization Problem

44 Chapter 2. Statistical Machine Learning

@L(~w, b, ~↵)
@b

=
mX

i=1

yi↵i = 0 (2.19)

Finally, by substituting Eq. 2.18 and 2.19 into the primal Lagrangian we
obtain

L(~w, b, ~↵) =
1
2

~w · ~w �
mX

i=1

↵i[yi(~w · ~xi + b)� 1] =

=
1
2

mX

i,j=1

yiyj↵i↵j ~xi · ~xj �
mX

i,j=1

yiyj↵i↵j ~xi · ~xj +
mX

i=1

↵i

=
mX

i=1

↵i �
1
2

mX

i,j=1

yiyj↵i↵j ~xi · ~xj

(2.20)
which according to the Definition 2.24 is the optimization function of the dual
problem subject to ↵i � 0. In summary, the final dual optimization problem is
the following:

maximize
mX

i=1

↵i �
1
2

mX

i,j=1

yiyj↵i↵j ~xi · ~xj

subject to ↵i � 0, i = 1, ..,m
mX

i=1

yi↵i = 0

where ~w =
Pm

i=1 yi↵i~xi and the
Pm

i=1 yi↵i = 0 are the relation derived from
Eq. 2.18 and 2.19. Other conditions establishing interesting properties can be
derived by the Khun-Tucker theorem. This provides the following relations for
an optimal solution:

@L(~w⇤, ~↵⇤, ~�⇤)
@ ~w

= ~0

@L(~w⇤, ~↵⇤, ~�⇤)
@~�

= ~0

↵⇤
i gi(~w⇤) = 0, i = 1, ..,m
gi(~w⇤)  0, i = 1, ..,m

↵⇤
i � 0, i = 1, ..,m

Soft Margin optimization problem

48 Chapter 2. Statistical Machine Learning

respect to ~w, ~⇠ and b:

@L(~w, b, ~⇠, ~↵)
@ ~w

= ~w �
mX

i=1

yi↵i~xi = ~0) ~w =
mX

i=1

yi↵i~xi

@L(~w, b, ~⇠, ~↵)
@~⇠

= C~⇠ � ~↵ = ~0

@L(~w, b, ~⇠, ~↵)
@b

=
mX

i=1

yi↵i = 0

(2.23)

By substituting the above relations into the primal, we obtain the following
dual objective function:

w(~↵) =
mX

i=1

↵i �
1
2

mX

i,j=1

yiyj↵i↵j ~xi · ~xj +
1

2C
~↵ · ~↵� 1

C
~↵ · ~↵ =

=
mX

i=1

↵i �
1
2

mX

i,j=1

yiyj↵i↵j ~xi · ~xj �
1

2C
~↵ · ~↵ =

=
mX

i=1

↵i �
1
2

mX

i,j=1

yiyj↵i↵j

�
~xi · ~xj +

1
C

�ij

�
,

(2.24)
where �ij = 1 if i = j and 0 otherwise (Kronecker’s delta). The objective

function is subject to the usual constraints:
(

↵i � 0, 8i = 1, ..,m
Pm

i=1 yi↵i = 0

The above dual can be used to find a solution of Problem 2.21, which ex-
tends the applicability of linear functions to classification problems not com-
pletely linearly separable. The separability property relates not only on the
available class of hypotheses, e.g. linear vs. polynomial functions, but it
strictly depends on the adopted features. Their roles is to provide a map be-
tween the example data and vectors in Rn. Given such mapping, the scalar
product provides a measure of the similarity between pairs of examples or, ac-
cording to a colder interpretation, it provides a partitioning function based on
such features.

The next Section shows that, it is possible to substitute the scalar product
of two feature vectors with a function between the data examples directly. This
allows us to avoid the explicit feature design and consequently enables us to

48 Chapter 2. Statistical Machine Learning

respect to ~w, ~⇠ and b:

@L(~w, b, ~⇠, ~↵)
@ ~w

= ~w �
mX

i=1

yi↵i~xi = ~0) ~w =
mX

i=1

yi↵i~xi

@L(~w, b, ~⇠, ~↵)
@~⇠

= C~⇠ � ~↵ = ~0

@L(~w, b, ~⇠, ~↵)
@b

=
mX

i=1

yi↵i = 0

(2.23)

By substituting the above relations into the primal, we obtain the following
dual objective function:

w(~↵) =
mX

i=1

↵i �
1
2

mX

i,j=1

yiyj↵i↵j ~xi · ~xj +
1

2C
~↵ · ~↵� 1

C
~↵ · ~↵ =

=
mX

i=1

↵i �
1
2

mX

i,j=1

yiyj↵i↵j ~xi · ~xj �
1

2C
~↵ · ~↵ =

=
mX

i=1

↵i �
1
2

mX

i,j=1

yiyj↵i↵j

�
~xi · ~xj +

1
C

�ij

�
,

(2.24)
where �ij = 1 if i = j and 0 otherwise (Kronecker’s delta). The objective

function is subject to the usual constraints:
(

↵i � 0, 8i = 1, ..,m
Pm

i=1 yi↵i = 0

The above dual can be used to find a solution of Problem 2.21, which ex-
tends the applicability of linear functions to classification problems not com-
pletely linearly separable. The separability property relates not only on the
available class of hypotheses, e.g. linear vs. polynomial functions, but it
strictly depends on the adopted features. Their roles is to provide a map be-
tween the example data and vectors in Rn. Given such mapping, the scalar
product provides a measure of the similarity between pairs of examples or, ac-
cording to a colder interpretation, it provides a partitioning function based on
such features.

The next Section shows that, it is possible to substitute the scalar product
of two feature vectors with a function between the data examples directly. This
allows us to avoid the explicit feature design and consequently enables us to

44 Chapter 2. Statistical Machine Learning

@L(~w, b, ~↵)
@b

=
mX

i=1

yi↵i = 0 (2.19)

Finally, by substituting Eq. 2.18 and 2.19 into the primal Lagrangian we
obtain

L(~w, b, ~↵) =
1
2

~w · ~w �
mX

i=1

↵i[yi(~w · ~xi + b)� 1] =

=
1
2

mX

i,j=1

yiyj↵i↵j ~xi · ~xj �
mX

i,j=1

yiyj↵i↵j ~xi · ~xj +
mX

i=1

↵i

=
mX

i=1

↵i �
1
2

mX

i,j=1

yiyj↵i↵j ~xi · ~xj

(2.20)
which according to the Definition 2.24 is the optimization function of the dual
problem subject to ↵i � 0. In summary, the final dual optimization problem is
the following:

maximize
mX

i=1

↵i �
1
2

mX

i,j=1

yiyj↵i↵j ~xi · ~xj

subject to ↵i � 0, i = 1, ..,m
mX

i=1

yi↵i = 0

where ~w =
Pm

i=1 yi↵i~xi and the
Pm

i=1 yi↵i = 0 are the relation derived from
Eq. 2.18 and 2.19. Other conditions establishing interesting properties can be
derived by the Khun-Tucker theorem. This provides the following relations for
an optimal solution:

@L(~w⇤, ~↵⇤, ~�⇤)
@ ~w

= ~0

@L(~w⇤, ~↵⇤, ~�⇤)
@~�

= ~0

↵⇤
i gi(~w⇤) = 0, i = 1, ..,m
gi(~w⇤)  0, i = 1, ..,m

↵⇤
i � 0, i = 1, ..,m

Kernels in Support Vector Machines

!   In Soft Margin SVMs we maximize:

!   By using kernel functions we rewrite the problem as:

488 A. Moschitti






maximize
m∑

i=1

αi −
1
2

m∑

i,j=1

yiyjαiαj

(
k(oi, oj) +

1
C

δij

)

αi ≥ 0, ∀i = 1, .., m
m∑

i=1

yiαi = 0

Moreover, Eq. 10 for the Perceptron appears also in the Soft Margin SVMs (see
conditions 24), hence we can rewrite the SVM classification function as in Eq. 11 and
use a kernel inside it, i.e.:

h(x) = sgn

(
m∑

i=1

αiyik(oi, oj) + b

)

The data object o is mapped in the vector space trough a feature extraction procedure
φ : o → (x1, ..., xn) = x, more in general, we can map a vector x from one feature
space into another one:

x = (x1, ..., xn) → φ(x) = (φ1(x), ..., φn(x))

This leads to the general definition of kernel functions:

Definition 10. A kernel is a function k, such that ∀ x,z ∈ X

k(x, z) = φ(x) · φ(z)

where φ is a mapping from X to an (inner product) feature space.

Note that, once we have defined a kernel function that is effective for a given learning
problem, we do not need to find which mapping φ corresponds to. It is enough to know
that such mapping exists. The following proposition states the conditions that guarantee
such existence.

Proposition 1. (Mercer’s conditions)
Let X be a finite input space and let K(x, z) be a symmetric function on X. Then

K(x, z) is a kernel function if and only if the matrix

k(x, z) = φ(x) · φ(z)

is positive semi-definite (has non-negative eigenvalues).

Proof. Let us consider a symmetric function on a finite space X = {x1, x2, ..., xn}

K =
(
K(xi, xj)

)n
i,j=1

Since K is symmetric there is an orthogonal matrix V such that K = V ΛV ′

where Λ is a diagonal matrix containing the eigenvalues λt of K, with corresponding

Automatic Learning Using Kernels Methods 485

ξi

B) Soft Margin SVM A) Hard Margin SVM

ix
ix

Fig. 15. Soft Margin vs. Hard Margin hyperplanes

where αi are Lagrangian multipliers.
The dual problem is obtained by imposing stationarity on the derivatives respect to

w, ξ and b:

∂L(w, b, ξ, α)
∂w

= w −
m∑

i=1

yiαixi = 0 ⇒ w =
m∑

i=1

yiαixi

∂L(w, b, ξ, α)
∂ξ

= Cξ − α = 0

∂L(w, b, ξ, α)
∂b

=
m∑

i=1

yiαi = 0

(24)

By substituting the above relations into the primal, we obtain the following dual
objective function:

w(α) =
m∑

i=1

αi −
1
2

m∑

i,j=1

yiyjαiαjxi · xj +
1

2C
α · α − 1

C
α · α =

=
m∑

i=1

αi −
1
2

m∑

i,j=1

yiyjαiαjxi · xj −
1

2C
α · α =

=
m∑

i=1

αi −
1
2

m∑

i,j=1

yiyjαiαj

(
xi · xj +

1
C

δij

)
,

(25)

where the Kronecker’s delta, δij = 1 if i = j and 0 otherwise. The objective function
above is subject to the usual constraints:

{
αi ≥ 0, ∀i = 1, .., m∑m

i=1 yiαi = 0

This dual formulation can be used to find a solution of Problem 22, which extends
the applicability of linear functions to classification problems not completely linearly
separable. The separability property relates not only to the available class of hypotheses,
e.g. linear vs. polynomial functions, but it strictly depends on the adopted features. Their

Soft Margin Support Vector Machines

!   The algorithm tries to keep ξi low and maximize the margin

!   NB: the number of error is not directly minimized (NP-complete

problem); the distances from the hyperplane are minimized

!   If C→∞, the solution tends to the one of the hard-margin

algorithm
!   If C increases the number of error decreases. When C tends to infinite

the number of errors must be 0, i.e. the hard-margin formulation

€

min
1
2
||  w ||2 +C ξ ii∑

€

yi(

w ⋅

x i + b) ≥1−ξ i ∀


x i

ξ i ≥ 0

Trade-off between Generalization and
Empirical Error

iξ

Var1

Var2
0=+⋅ bxw



ξi

Var1

Var2
0=+⋅ bxw



Soft Margin SVM Hard Margin SVM

Parameters

!   C: trade-off parameter

!   J: cost factor

min
1

2
||

w ||

2
+C ξ

i
i

∑ = min
1

2
||

w ||

2
+C

+ ξ
i

i
∑

+

+C
− ξ

i
i

∑
−

= min
1

2
||

w ||

2
+C J ξ

i
i

∑
+

+ ξ
i

i
∑

−

()

Kernel Function Definition

!   Kernels are the product of mapping functions

such as

€

 x ∈ ℜn,

φ ( x) = (φ1(

 x),φ2( x),...,φm ( x))∈ ℜm

52 Chapter 2. Statistical Machine Learning

Def. 2.26 A kernel is a function k, such that 8 ~x,~z 2 X

k(~x,~z) = �(~x) · �(~z)

where � is a mapping from X to an (inner product) feature space.

Note that, once we have defined a kernel function that is effective for a
given learning problem, we do not need to find which mapping � it corresponds
to. It is enough to know that such mapping exists. The following proposition
states the conditions that guaranteed such existence.

Proposition 2.27 (Mercer’s conditions)
Let X be a finite input space with K(~x,~z) a symmetric function on X. Then
K(~x, ~z) is a kernel function if and only if the matrix

k(~x,~z) = �(~x) · �(~z)

is positive semi-definite (has non-negative eigenvalues).

The proof of such proposition is the following (from [Cristianini and Shawe-
Taylor, 2000]). Let us consider a symmetric function on a finite space X =
{x1, x2, ..., xn}

K =
�
K(xi, xj)

�n

i,j=1

Since K is symmetric there is an orthogonal matrix V such that K =
V ⇤V 0 where ⇤ is a diagonal matrix containing the eigenvalues �t of K, with
corresponding eigenvectors ~vt = (vti)n

i=1, i.e. the columns of V . Now assume
that all the eigenvalues are non-negatives and consider the feature mapping:

� : ~xi !
�p

�tvti

�n

t=1
2 Rn, i = 1, .., n.

We now have that,

�(~xi) · �(~xj) =
nX

t=1

�tvtivtj = (V ⇤V 0)ij = Kij = K(xi, xj).

This proves that K(~x,~z) is a valid kernel function that corresponds to the
mapping �. Therefore, the only requirement to derive the mapping � is that
the eigenvalues of K are non-negatives since if we had a negative eigenvalue
�s associated with the eigenvector ~vs, the point

~z =
nX

i=1

vsi�(~xi) =
p

⇤V 0~vs.

The Kernel Gram Matrix

!   With KM-based learning, the sole information used
from the training data set is the Kernel Gram Matrix

!   If the kernel is valid, K is symmetric definite-positive

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

),(...),(),(
............

),(...),(),(
),(...),(),(

21

22212

12111

mmmm

m

m

training

kkk

kkk
kkk

K

xxxxxx

xxxxxx
xxxxxx

Valid Kernels

VI Appendix B. Basic Geometry and Algebraic Concepts

For example:

(x, x2) =
Z 1

0
xx2dx =

h1

0

x4

4
=

1
4

The four properties required in Def. B.6 follow immediately from the analo-
gous property of the definite integral:

(f + h, g) =
Z 1

0
(f(t) + h(t))g(t)dt =

Z 1

0
f(t)g(t) + h(t)g(t)dt =

=
Z 1

0
f(t)g(t)dt +

Z 1

0
h(t)g(t)dt = (f, g) + (h, g).

Example B.8 The classical scalar product in Rn is the component-wise prod-
uct

(u1, u2, .., un)(v1, v2, .., vn) = (u1v1, u2v2, .., unvn)

We recall that
cos(~u,~v) =

(~u,~v)
||~u||⇥ ||~v||

B.2 Matrixes

Def. B.9 Transposed Matrix
Given a matrix A 2 Rm ⇥ Rn of m rows and n columns, we indicate with
A0 2 Rn ⇥Rm its transposed, i.e. Aij = A0

ji for i = 1, ..,m and j = 1, .., n.

Def. B.10 Diagonal Matrix
Given a matrix A 2 Rm ⇥ Rn, A is a diagonal matrix iff Aij = 0 for i 6= j
i = 1, ..,m and j = 1, .., n.

Def. B.11 Eigen Values
Given a matrix A 2 Rm ⇥ Rn, an egeinvalue � and an egeinvector ~x 2
Rn � {~0} are such that

A~x = �~x

Def. B.12 Symmetric Matrix
A square matrix A 2 Rn⇥Rn is symmetric iff Aij = Aji for i 6= j i = 1, ..,m
and j = 1, .., n, i.e. iff A = A0.
B.2. Matrixes VII

Def. B.13 Positive (Semi-) definite Matrix
A square matrix A 2 Rn ⇥ Rn is said to be positive (semi-) definite if its
eigenvalues are all positive (non-negative).

Proposition B.14 Let A be a symmetric matrix. Then A is positive (semi-)
definite iff for any vector ~x 6= 0

~x0A~x > �~x (� 0).

From the previous proposition it follows that: If we find a decomposition
A in M 0M , then A is semi-definite positive matrix as

~x0A~x = ~x0M 0M~x = (M~x)0(M~x) = M~x · M~x = ||M~x||2 � 0.

Theorem B.15 Schur Decomposition, (Real Values)
Every square real matrix A is orthogonally similar to an upper block triangu-
lar matrix D: A = Q0DQ where each block of D is either a 1#1 matrix or
a 2#2 matrix having complex conjugate eigenvalues. D is diagonal iff A is
symmetric.

Valid Kernels cont’d

!   If the matrix is positive semi-definite then we can
find a mapping φ implementing the kernel function

32 Alessandro Moschitti

Note that, once we have defined a kernel function that is effective for a given learn-
ing problem, we do not need to find which mapping � corresponds to. It is enough
to know that such mapping exists. The following proposition states the conditions that
guarantee such existence.

Proposition 1. (Mercer’s conditions)
Let X be a finite input space and let K(x,z) be a symmetric function on X. Then

K(x,z) is a kernel function if and only if the matrix

k(x,z) = �(x) · �(z)

is positive semi-definite (has non-negative eigenvalues).

Proof. Let us consider a symmetric function on a finite space X = {x1, x2, ..., xn

}

K =
�
K(x

i

, x
j

)
�
n

i,j=1

Since K is symmetric there is an orthogonal matrix V such that K = V ⇤V

0

where ⇤ is a diagonal matrix containing the eigenvalues �
t

of K, with corresponding
eigenvectors v

t

= (v
ti

)n

i=1, i.e., the columns of V . Now assume that all the eigenvalues
are non-negatives and consider the feature mapping:

� : x

i

!
�p

�
t

v
ti

�
n

t=1
2 Rn, i = 1, .., n.

It follows that

�(x
i

) · �(x
j

) =
nX

t=1

�
t

v
ti

v
tj

= (V ⇤V

0)
ij

= K

ij

= K(x
i

, x
j

).

This proves that K(x,z) is a valid kernel function that corresponds to the mapping
�. Therefore, the only requirement to derive the mapping � is that the eigenvalues
of K are non-negatives since if we had a negative eigenvalue �

s

associated with the
eigenvector v

s

, the point

z =
nX

i=1

v

si

�(x
i

) =
p

⇤V

0
v

s

.

in the feature space would have norm squared

||z||2 = z · z = v

0
s

V

p
⇤

p
⇤V

0
v

s

= v

0
s

V ⇤V

0
v

s

= v

0
s

Kv

s

= �
s

< 0,

which contradicts the geometry of the space [20].

4.2 Polynomial Kernel

The above section has shown that kernel functions can be used to map a vector space in
other spaces in which the target classification problem becomes linearly separable (or
in general easier). Another advantage is the possibility to map the initial feature space

Mercer’s Theorem (finite space)

!   Let us consider

€

K = K( x i,
 x j)()i, j=1

n

!   K symmetric ⇒ ∃ V: for Takagi factorization of a

complex-symmetric matrix, where:

!   Λ is the diagonal matrix of the eigenvalues λt of K

!   are the eigenvectors, i.e. the columns of V

!   Let us assume lambda values non-negative

€

K = VΛ # V

€

 v t = vti()i=1
n

€

φ :  x i → λt vti()t =1

n
∈ ℜn , i =1,..,n

Mercer’s Theorem
(sufficient conditions)

€

Φ( x i) ⋅ Φ( x j) = λtvti
t=1

n

∑ vtj = VΛ ' V ()ij = K ij = K( x i,
 x j)

!   Therefore

 ,

!   which implies that K is a kernel function

Mercer’s Theorem
(necessary conditions)

€

 z 2
=
 z ⋅  z = Λ $ V  v s Λ $ V  v s =

 v s' V Λ Λ $ V  v s =

  v s' K  v s =  v s' λs
 v s = λs

 v s
2

< 0

!   Suppose we have negative eigenvalues λs and

eigenvectors the following point

!   has the following norm:

this contradicts the geometry of the space.

€

 v s

€

 z = vsiΦ( x i)
i=1

n

∑ = vsi λt vti()t
=

i=1

n

∑ Λ & V  v s

Is it a valid kernel?

!   It may not be a kernel so we can use M´·M

B.2. Matrixes VII

Def. B.13 Positive (Semi-) definite Matrix
A square matrix A 2 Rn ⇥ Rn is said to be positive (semi-) definite if its
eigenvalues are all positive (non-negative).

Proposition B.14 Let A be a symmetric matrix. Then A is positive (semi-)
definite iff for any vector ~x 6= 0

~x0A~x > �~x (� 0).

From the previous proposition it follows that: If we find a decomposition
A in M 0M , then A is semi-definite positive matrix as

~x0A~x = ~x0M 0M~x = (M~x)0(M~x) = M~x · M~x = ||M~x||2 � 0.

Theorem B.15 Schur Decomposition, (Real Values)
Every square real matrix A is orthogonally similar to an upper block triangu-
lar matrix D: A = Q0DQ where each block of D is either a 1#1 matrix or
a 2#2 matrix having complex conjugate eigenvalues. D is diagonal iff A is
symmetric.

Valid Kernel operations

!   k(x,z) = k1(x,z)+k2(x,z)

!   k(x,z) = k1(x,z)*k2(x,z)

!   k(x,z) = α k1(x,z)

!   k(x,z) = f(x)f(z)

!   k(x,z) = x'Bz

!   k(x,z) = k1(φ(x),φ(z))

Object Transformation [Moschitti et al, CLJ 2008]

!  

!   Canonical Mapping, φM()
!   object transformation,

!   e. g., a syntactic parse tree into a verb
subcategorization frame tree.

!   Feature Extraction, φE()
!   maps the canonical structure in all its fragments

!   different fragment spaces, e.g. String and Tree Kernels

),()()(

))(())(()()(),(
2121

212121

SSKSS
OOOOOOK

EEE

MEME

=⋅=
⋅=⋅=

φφ
φφφφφφ

Part I: Basic Kernels
(Feature Extraction Functions)

Basic Kernels for unstructured data

!   Linear Kernel

!   Polynomial Kernel

!   Lexical kernel

!   String Kernel

!   Tree Kernels: Subtree, Syntactic, Partial Tree

Kernels (PTK), and Smoothed PTK

Linear Kernel

!   In Text Categorization documents are word

vectors

!   The dot product counts the number of

features in common

!   This provides a sort of similarity

€

Φ(dx) =
 x = (0,..,1,..,0,..,0,..,1,..,0,..,0,..,1,..,0,..,0,..,1,..,0,..,1)

 buy acquisition stocks sell market

zx

⋅

€

Φ(dz) =
 z = (0,..,1,..,0,..,1,..,0,..,0,..,0,..,1,..,0,..,0,..,1,..,0,..,0)

 buy company stocks sell

Feature Conjunction (polynomial Kernel)

!   The initial vectors are mapped in a higher space

!   More expressive, as encodes

 Stock+Market vs. Downtown+Market features

!   We can smartly compute the scalar product as

)1,2,2,2,,(),(2121
2
2

2
121 xxxxxxxx →><Φ

),()1()1(
1222

)1,2,2,2,,()1,2,2,2,,(
)()(

22
2211

22112121
2
2

2
2

2
1

2
1

2121
2
2

2
12121

2
2

2
1

zxKzxzxzx
zxzxzzxxzxzx

zzzzzzxxxxxx
zx

Poly




=+⋅=++=
=+++++=

=⋅=
=Φ⋅Φ

)(21xx

Sub-hierarchies in WordNet

Similarity based on WordNet

Inverted Path Length:

simIPL(c1, c2) =
1

(1 + d(c1, c2))Æ

Wu & Palmer:

simWUP (c1, c2) =

2 dep(lso(c1, c2))
d(c1, lso(c1, c2)) + d(c2, lso(c1, c2)) + 2 dep(lso(c1, c2))

Resnik:
simRES(c1, c2) = ° log P (lso(c1, c2))

Lin:

simLIN (c1, c2) =
2 log P (lso(c1, c2))

log P (c1) + log P (c2)

Table 1. Measures of semantic similarity.

3.1 Semantic Networks and Similarity

The formal description of semantic kernels requires the introduction of some
definitions. We denote terms as t1, t2, . . . 2 T and concepts as c1, c2, . . . 2 C;
we also sometimes use the somewhat informal disambiguation operator c(·) to
map terms to concept representations. To compute useful notions of semantic
similarity among the input terms, we employ semantic reference structures which
we call, for simplicity, Semantic Networks. These can be seen as directed graphs
semantically linking concepts by means of taxonomic relations (e.g. [cat] is-a

[mammal]). Research in Computational Linguistics has led to a variety of well-
known measures of semantic similarity in semantic networks.

The measures relevant in the context of this paper are summarized in table 1.
These measures make use of several notions. (i) The distance (d) of two concepts
c1 and c2, is the number of superconcept edges between c1 and c2. (ii) The
depth (dep) of a concept refers to the distance of the concept to the unique
root node3. (iii) The lowest super ordinate (lso) of two concepts refers to the
concept with maximal depth that subsumes them both. (iv) The probability
P (c) of encountering a concept c which can be estimated from corpus statistics.
When probabilities are used, the measures follow the trail of information theory
in quantifying the information concept (IC) of an observation as the negative
log likelihood. We point the interested reader to [17] for a detailed and recent
survey of the field.

3 If the structure is not a perfect tree structure, we use the minimal depth.

Document Similarity

industry

telephone

 market

company

product

Doc 1 Doc 2

Lexical Semantic Kernels

!   The document similarity is the SK function:

!   where s is any similarity function between words,
e.g. WordNet [Basili et al.,2005] similarity or LSA
[Cristianini et al., 2002]

!   Good results when training data is small €

SK(d1,d2) = s(w1,w2)
w1 ∈d1 ,w2 ∈d2

∑

String Kernel

!   Given two strings, the number of matches

between their substrings is evaluated

!   E.g. Bank and Rank

!   B, a, n, k, Ba, Ban, Bank, Bk, an, ank, nk,..

!   R, a , n , k, Ra, Ran, Rank, Rk, an, ank, nk,..

!   String kernel over sentences and texts

!   Huge space but there are efficient algorithms

Using character sequences

zx 

⋅

€

φ("bank") =
 x = (0,..,1,..,0,..,1,..,0,......1,..,0,..,1,..,0,..,1,..,0)

!   counts the number of common substrings

 bank ank bnk bk b

€

φ("rank") =
 z = (1,..,0,..,0,..,1,..,0,......0,..,1,..,0,..,1,..,0,..,1)

 rank ank rnk rk r

€

 x ⋅  z = φ("bank") ⋅ φ("rank") = k("bank","rank")

Formal Definition

, where

, where

2.4. Kernel Methods 55

two:

(~x · ~z + c)2 =
� nX

i=1

xizi + c
�2 =

� nX

i=1

xizi + c
�� nX

j=1

xizi + c
�

=

=
nX

i=1

nX

j=1

xixjzizj + 2c
nX

i=1

xizi + c2 =

=
X

i,j2{1,..,n}

(xixj)(zizj) + 2c
nX

i=1

�p
2cxi

��p
2czi

�
+ c2

Note that the second summation introduces n individual features (i.e. xi)
whose weights are controlled by the parameter c which also determines the
strength of the degree 0. Thus, we add (n+1) new features to the

�
n+1

2

�
features

of the previous kernel of degree 2. If we consider a generic degree d, i.e. the
kernel (~x · ~z + c)d, we will obtain

�
n+d�1

d

�
+ n + d � 1 =

�
n+d

d

�
distinct

features (which have at least distinct weights). These are all monomials up to
and including the degree d.

2.4.3 String Kernel

Kernel functions can be applied also to discrete space. As a first example, we
show their potentiality on the space of finite strings.

Let ⌃ be a finite alphabet. A string is a finite sequence of characters from
⌃, including the empty sequence. For string s and t we denote by |s| the length
of the string s = s1, .., s|s|, and by st the string obtained by concatenating the
string s and t. The string s[i : j] is the substring si, .., sj of s. We say that u is
a subsequence of s, if there exist indices ~I = (i1, ..., i|u|), with 1  i1 < ... <

i|u|  |s|, such that uj = si
j

, for j = 1, ..., |u|, or u = s[~I] for short. The
length l(~I) of the subsequence in s is i|u| � ii + 1. We denote by ⌃⇤ the set of
all string

⌃⇤ =
1[

n=0

⌃n

We now define the feature space, F = {u1, u2..} = ⌃⇤, i.e. the space of
all possible substrings. We map a string s in R1 space as follows:

�u(s) =
X

~I:u=s[~I]

�l(~I) (2.25)

2.4. Kernel Methods 55

two:

(~x · ~z + c)2 =
� nX

i=1

xizi + c
�2 =

� nX

i=1

xizi + c
�� nX

j=1

xizi + c
�

=

=
nX

i=1

nX

j=1

xixjzizj + 2c
nX

i=1

xizi + c2 =

=
X

i,j2{1,..,n}

(xixj)(zizj) + 2c
nX

i=1

�p
2cxi

��p
2czi

�
+ c2

Note that the second summation introduces n individual features (i.e. xi)
whose weights are controlled by the parameter c which also determines the
strength of the degree 0. Thus, we add (n+1) new features to the

�
n+1

2

�
features

of the previous kernel of degree 2. If we consider a generic degree d, i.e. the
kernel (~x · ~z + c)d, we will obtain

�
n+d�1

d

�
+ n + d � 1 =

�
n+d

d

�
distinct

features (which have at least distinct weights). These are all monomials up to
and including the degree d.

2.4.3 String Kernel

Kernel functions can be applied also to discrete space. As a first example, we
show their potentiality on the space of finite strings.

Let ⌃ be a finite alphabet. A string is a finite sequence of characters from
⌃, including the empty sequence. For string s and t we denote by |s| the length
of the string s = s1, .., s|s|, and by st the string obtained by concatenating the
string s and t. The string s[i : j] is the substring si, .., sj of s. We say that u is
a subsequence of s, if there exist indices ~I = (i1, ..., i|u|), with 1  i1 < ... <

i|u|  |s|, such that uj = si
j

, for j = 1, ..., |u|, or u = s[~I] for short. The
length l(~I) of the subsequence in s is i|u| � ii + 1. We denote by ⌃⇤ the set of
all string

⌃⇤ =
1[

n=0

⌃n

We now define the feature space, F = {u1, u2..} = ⌃⇤, i.e. the space of
all possible substrings. We map a string s in R1 space as follows:

�u(s) =
X

~I:u=s[~I]

�l(~I) (2.25)

2.4. Kernel Methods 55

two:

(~x · ~z + c)2 =
� nX

i=1

xizi + c
�2 =

� nX

i=1

xizi + c
�� nX

j=1

xizi + c
�

=

=
nX

i=1

nX

j=1

xixjzizj + 2c
nX

i=1

xizi + c2 =

=
X

i,j2{1,..,n}

(xixj)(zizj) + 2c
nX

i=1

�p
2cxi

��p
2czi

�
+ c2

Note that the second summation introduces n individual features (i.e. xi)
whose weights are controlled by the parameter c which also determines the
strength of the degree 0. Thus, we add (n+1) new features to the

�
n+1

2

�
features

of the previous kernel of degree 2. If we consider a generic degree d, i.e. the
kernel (~x · ~z + c)d, we will obtain

�
n+d�1

d

�
+ n + d � 1 =

�
n+d

d

�
distinct

features (which have at least distinct weights). These are all monomials up to
and including the degree d.

2.4.3 String Kernel

Kernel functions can be applied also to discrete space. As a first example, we
show their potentiality on the space of finite strings.

Let ⌃ be a finite alphabet. A string is a finite sequence of characters from
⌃, including the empty sequence. For string s and t we denote by |s| the length
of the string s = s1, .., s|s|, and by st the string obtained by concatenating the
string s and t. The string s[i : j] is the substring si, .., sj of s. We say that u is
a subsequence of s, if there exist indices ~I = (i1, ..., i|u|), with 1  i1 < ... <

i|u|  |s|, such that uj = si
j

, for j = 1, ..., |u|, or u = s[~I] for short. The
length l(~I) of the subsequence in s is i|u| � ii + 1. We denote by ⌃⇤ the set of
all string

⌃⇤ =
1[

n=0

⌃n

We now define the feature space, F = {u1, u2..} = ⌃⇤, i.e. the space of
all possible substrings. We map a string s in R1 space as follows:

�u(s) =
X

~I:u=s[~I]

�l(~I) (2.25)

2.4. Kernel Methods 55

two:

(~x · ~z + c)2 =
� nX

i=1

xizi + c
�2 =

� nX

i=1

xizi + c
�� nX

j=1

xizi + c
�

=

=
nX

i=1

nX

j=1

xixjzizj + 2c
nX

i=1

xizi + c2 =

=
X

i,j2{1,..,n}

(xixj)(zizj) + 2c
nX

i=1

�p
2cxi

��p
2czi

�
+ c2

Note that the second summation introduces n individual features (i.e. xi)
whose weights are controlled by the parameter c which also determines the
strength of the degree 0. Thus, we add (n+1) new features to the

�
n+1

2

�
features

of the previous kernel of degree 2. If we consider a generic degree d, i.e. the
kernel (~x · ~z + c)d, we will obtain

�
n+d�1

d

�
+ n + d � 1 =

�
n+d

d

�
distinct

features (which have at least distinct weights). These are all monomials up to
and including the degree d.

2.4.3 String Kernel

Kernel functions can be applied also to discrete space. As a first example, we
show their potentiality on the space of finite strings.

Let ⌃ be a finite alphabet. A string is a finite sequence of characters from
⌃, including the empty sequence. For string s and t we denote by |s| the length
of the string s = s1, .., s|s|, and by st the string obtained by concatenating the
string s and t. The string s[i : j] is the substring si, .., sj of s. We say that u is
a subsequence of s, if there exist indices ~I = (i1, ..., i|u|), with 1  i1 < ... <

i|u|  |s|, such that uj = si
j

, for j = 1, ..., |u|, or u = s[~I] for short. The
length l(~I) of the subsequence in s is i|u| � ii + 1. We denote by ⌃⇤ the set of
all string

⌃⇤ =
1[

n=0

⌃n

We now define the feature space, F = {u1, u2..} = ⌃⇤, i.e. the space of
all possible substrings. We map a string s in R1 space as follows:

�u(s) =
X

~I:u=s[~I]

�l(~I) (2.25)

2.4. Kernel Methods 55

two:

(~x · ~z + c)2 =
� nX

i=1

xizi + c
�2 =

� nX

i=1

xizi + c
�� nX

j=1

xizi + c
�

=

=
nX

i=1

nX

j=1

xixjzizj + 2c
nX

i=1

xizi + c2 =

=
X

i,j2{1,..,n}

(xixj)(zizj) + 2c
nX

i=1

�p
2cxi

��p
2czi

�
+ c2

Note that the second summation introduces n individual features (i.e. xi)
whose weights are controlled by the parameter c which also determines the
strength of the degree 0. Thus, we add (n+1) new features to the

�
n+1

2

�
features

of the previous kernel of degree 2. If we consider a generic degree d, i.e. the
kernel (~x · ~z + c)d, we will obtain

�
n+d�1

d

�
+ n + d � 1 =

�
n+d

d

�
distinct

features (which have at least distinct weights). These are all monomials up to
and including the degree d.

2.4.3 String Kernel

Kernel functions can be applied also to discrete space. As a first example, we
show their potentiality on the space of finite strings.

Let ⌃ be a finite alphabet. A string is a finite sequence of characters from
⌃, including the empty sequence. For string s and t we denote by |s| the length
of the string s = s1, .., s|s|, and by st the string obtained by concatenating the
string s and t. The string s[i : j] is the substring si, .., sj of s. We say that u is
a subsequence of s, if there exist indices ~I = (i1, ..., i|u|), with 1  i1 < ... <

i|u|  |s|, such that uj = si
j

, for j = 1, ..., |u|, or u = s[~I] for short. The
length l(~I) of the subsequence in s is i|u| � ii + 1. We denote by ⌃⇤ the set of
all string

⌃⇤ =
1[

n=0

⌃n

We now define the feature space, F = {u1, u2..} = ⌃⇤, i.e. the space of
all possible substrings. We map a string s in R1 space as follows:

�u(s) =
X

~I:u=s[~I]

�l(~I) (2.25)

2.4. Kernel Methods 55

two:

(~x · ~z + c)2 =
� nX

i=1

xizi + c
�2 =

� nX

i=1

xizi + c
�� nX

j=1

xizi + c
�

=

=
nX

i=1

nX

j=1

xixjzizj + 2c
nX

i=1

xizi + c2 =

=
X

i,j2{1,..,n}

(xixj)(zizj) + 2c
nX

i=1

�p
2cxi

��p
2czi

�
+ c2

Note that the second summation introduces n individual features (i.e. xi)
whose weights are controlled by the parameter c which also determines the
strength of the degree 0. Thus, we add (n+1) new features to the

�
n+1

2

�
features

of the previous kernel of degree 2. If we consider a generic degree d, i.e. the
kernel (~x · ~z + c)d, we will obtain

�
n+d�1

d

�
+ n + d � 1 =

�
n+d

d

�
distinct

features (which have at least distinct weights). These are all monomials up to
and including the degree d.

2.4.3 String Kernel

Kernel functions can be applied also to discrete space. As a first example, we
show their potentiality on the space of finite strings.

Let ⌃ be a finite alphabet. A string is a finite sequence of characters from
⌃, including the empty sequence. For string s and t we denote by |s| the length
of the string s = s1, .., s|s|, and by st the string obtained by concatenating the
string s and t. The string s[i : j] is the substring si, .., sj of s. We say that u is
a subsequence of s, if there exist indices ~I = (i1, ..., i|u|), with 1  i1 < ... <

i|u|  |s|, such that uj = si
j

, for j = 1, ..., |u|, or u = s[~I] for short. The
length l(~I) of the subsequence in s is i|u| � ii + 1. We denote by ⌃⇤ the set of
all string

⌃⇤ =
1[

n=0

⌃n

We now define the feature space, F = {u1, u2..} = ⌃⇤, i.e. the space of
all possible substrings. We map a string s in R1 space as follows:

�u(s) =
X

~I:u=s[~I]

�l(~I) (2.25)

2.4. Kernel Methods 55

two:

(~x · ~z + c)2 =
� nX

i=1

xizi + c
�2 =

� nX

i=1

xizi + c
�� nX

j=1

xizi + c
�

=

=
nX

i=1

nX

j=1

xixjzizj + 2c
nX

i=1

xizi + c2 =

=
X

i,j2{1,..,n}

(xixj)(zizj) + 2c
nX

i=1

�p
2cxi

��p
2czi

�
+ c2

Note that the second summation introduces n individual features (i.e. xi)
whose weights are controlled by the parameter c which also determines the
strength of the degree 0. Thus, we add (n+1) new features to the

�
n+1

2

�
features

of the previous kernel of degree 2. If we consider a generic degree d, i.e. the
kernel (~x · ~z + c)d, we will obtain

�
n+d�1

d

�
+ n + d � 1 =

�
n+d

d

�
distinct

features (which have at least distinct weights). These are all monomials up to
and including the degree d.

2.4.3 String Kernel

Kernel functions can be applied also to discrete space. As a first example, we
show their potentiality on the space of finite strings.

Let ⌃ be a finite alphabet. A string is a finite sequence of characters from
⌃, including the empty sequence. For string s and t we denote by |s| the length
of the string s = s1, .., s|s|, and by st the string obtained by concatenating the
string s and t. The string s[i : j] is the substring si, .., sj of s. We say that u is
a subsequence of s, if there exist indices ~I = (i1, ..., i|u|), with 1  i1 < ... <

i|u|  |s|, such that uj = si
j

, for j = 1, ..., |u|, or u = s[~I] for short. The
length l(~I) of the subsequence in s is i|u| � ii + 1. We denote by ⌃⇤ the set of
all string

⌃⇤ =
1[

n=0

⌃n

We now define the feature space, F = {u1, u2..} = ⌃⇤, i.e. the space of
all possible substrings. We map a string s in R1 space as follows:

�u(s) =
X

~I:u=s[~I]

�l(~I) (2.25)

56 Chapter 2. Statistical Machine Learning

for some �  1. These features measure the number of occurrences of subse-
quences in the string s weighting them according to their lengths. Hence, the
inner product of the feature vectors for two strings s and t give a sum over all
common subsequences weighted according to their frequency of occurrences
and lengths, i.e.

K(s, t) =
X

u2⌃⇤

�u(s) · �u(t) =
X

u2⌃⇤

X

~I:u=s[~I]

�l(~I)
X

~J :u=t[~J]

�l(~J) =

=
X

u2⌃⇤

X

~I:u=s[~I]

X

~J :u=t[~J]

�l(~I)+l(~J) (2.26)

The above equation defines a class of similarity functions known as string
kernels or sequence kernels. These functions are interesting for text catego-
rization as it allows the learning algorithm to quantify the matching between
two different words, phrases, sentences or whole documents. For example,
given two strings, Bank and Rank:

• B, a, n, k, Ba, Ban, Bank, an, ank, nk, Bn, Bnk, Bk and ak are the
substrings of Bank.

• R, a, n, k, Ra, Ran, Rank, an, ank, nk, Rn, Rnk, Rk and ak are the
substrings of Rank.

Such substrings are the features in the ⌃⇤ that have non-null weights.
These are evaluated by means of Eq. 2.25, e.g. �B(Bank) = �(i1�i1+1) =
�(1�1+1) = �, �k(Bank) = �(i1�i1+1) = �(4�4+1) = �, �an(Bank) =
�(i2�i1+1) = �(3�2+1) = �2 and �Bk(Bank) = �(i2�i1+1) = �(4�1+1) = �4.

Since Eq. 2.26 requires that the substrings in Bank and Rank match, we
need to evaluate Eq. 2.25 only for the common substrings, i.e.:

- �a(Bank) = �a(Rank) = �(i1�i1+1) = �(2�2+1) = �,

- �n(Bank) = �n(Rank) = �(i1�i1+1) = �(3�3+1) = �,

- �k(Bank) = �k(Rank) = �(i1�i1+1) = �(4�4+1) = �,

- �an(Bank) = �an(Rank) = �(i1�i2+1) = �(3�2+1) = �2,

- �ank(Bank) = �ank(Rank) = �(i1�i3+1) = �(4�2+1) = �3,

56 Chapter 2. Statistical Machine Learning

for some �  1. These features measure the number of occurrences of subse-
quences in the string s weighting them according to their lengths. Hence, the
inner product of the feature vectors for two strings s and t give a sum over all
common subsequences weighted according to their frequency of occurrences
and lengths, i.e.

K(s, t) =
X

u2⌃⇤

�u(s) · �u(t) =
X

u2⌃⇤

X

~I:u=s[~I]

�l(~I)
X

~J :u=t[~J]

�l(~J) =

=
X

u2⌃⇤

X

~I:u=s[~I]

X

~J :u=t[~J]

�l(~I)+l(~J) (2.26)

The above equation defines a class of similarity functions known as string
kernels or sequence kernels. These functions are interesting for text catego-
rization as it allows the learning algorithm to quantify the matching between
two different words, phrases, sentences or whole documents. For example,
given two strings, Bank and Rank:

• B, a, n, k, Ba, Ban, Bank, an, ank, nk, Bn, Bnk, Bk and ak are the
substrings of Bank.

• R, a, n, k, Ra, Ran, Rank, an, ank, nk, Rn, Rnk, Rk and ak are the
substrings of Rank.

Such substrings are the features in the ⌃⇤ that have non-null weights.
These are evaluated by means of Eq. 2.25, e.g. �B(Bank) = �(i1�i1+1) =
�(1�1+1) = �, �k(Bank) = �(i1�i1+1) = �(4�4+1) = �, �an(Bank) =
�(i2�i1+1) = �(3�2+1) = �2 and �Bk(Bank) = �(i2�i1+1) = �(4�1+1) = �4.

Since Eq. 2.26 requires that the substrings in Bank and Rank match, we
need to evaluate Eq. 2.25 only for the common substrings, i.e.:

- �a(Bank) = �a(Rank) = �(i1�i1+1) = �(2�2+1) = �,

- �n(Bank) = �n(Rank) = �(i1�i1+1) = �(3�3+1) = �,

- �k(Bank) = �k(Rank) = �(i1�i1+1) = �(4�4+1) = �,

- �an(Bank) = �an(Rank) = �(i1�i2+1) = �(3�2+1) = �2,

- �ank(Bank) = �ank(Rank) = �(i1�i3+1) = �(4�2+1) = �3,

2.4. Kernel Methods 55

two:

(~x · ~z + c)2 =
� nX

i=1

xizi + c
�2 =

� nX

i=1

xizi + c
�� nX

j=1

xizi + c
�

=

=
nX

i=1

nX

j=1

xixjzizj + 2c
nX

i=1

xizi + c2 =

=
X

i,j2{1,..,n}

(xixj)(zizj) + 2c
nX

i=1

�p
2cxi

��p
2czi

�
+ c2

Note that the second summation introduces n individual features (i.e. xi)
whose weights are controlled by the parameter c which also determines the
strength of the degree 0. Thus, we add (n+1) new features to the

�
n+1

2

�
features

of the previous kernel of degree 2. If we consider a generic degree d, i.e. the
kernel (~x · ~z + c)d, we will obtain

�
n+d�1

d

�
+ n + d � 1 =

�
n+d

d

�
distinct

features (which have at least distinct weights). These are all monomials up to
and including the degree d.

2.4.3 String Kernel

Kernel functions can be applied also to discrete space. As a first example, we
show their potentiality on the space of finite strings.

Let ⌃ be a finite alphabet. A string is a finite sequence of characters from
⌃, including the empty sequence. For string s and t we denote by |s| the length
of the string s = s1, .., s|s|, and by st the string obtained by concatenating the
string s and t. The string s[i : j] is the substring si, .., sj of s. We say that u is
a subsequence of s, if there exist indices ~I = (i1, ..., i|u|), with 1  i1 < ... <

i|u|  |s|, such that uj = si
j

, for j = 1, ..., |u|, or u = s[~I] for short. The
length l(~I) of the subsequence in s is i|u| � ii + 1. We denote by ⌃⇤ the set of
all string

⌃⇤ =
1[

n=0

⌃n

We now define the feature space, F = {u1, u2..} = ⌃⇤, i.e. the space of
all possible substrings. We map a string s in R1 space as follows:

�u(s) =
X

~I:u=s[~I]

�l(~I) (2.25)

Kernel between Bank and Rank

56 Chapter 2. Statistical Machine Learning

for some �  1. These features measure the number of occurrences of subse-
quences in the string s weighting them according to their lengths. Hence, the
inner product of the feature vectors for two strings s and t give a sum over all
common subsequences weighted according to their frequency of occurrences
and lengths, i.e.

K(s, t) =
X

u2⌃⇤

�u(s) · �u(t) =
X

u2⌃⇤

X

~I:u=s[~I]

�l(~I)
X

~J :u=t[~J]

�l(~J) =

=
X

u2⌃⇤

X

~I:u=s[~I]

X

~J :u=t[~J]

�l(~I)+l(~J) (2.26)

The above equation defines a class of similarity functions known as string
kernels or sequence kernels. These functions are interesting for text catego-
rization as it allows the learning algorithm to quantify the matching between
two different words, phrases, sentences or whole documents. For example,
given two strings, Bank and Rank:

• B, a, n, k, Ba, Ban, Bank, an, ank, nk, Bn, Bnk, Bk and ak are the
substrings of Bank.

• R, a, n, k, Ra, Ran, Rank, an, ank, nk, Rn, Rnk, Rk and ak are the
substrings of Rank.

Such substrings are the features in the ⌃⇤ that have non-null weights.
These are evaluated by means of Eq. 2.25, e.g. �B(Bank) = �(i1�i1+1) =
�(1�1+1) = �, �k(Bank) = �(i1�i1+1) = �(4�4+1) = �, �an(Bank) =
�(i2�i1+1) = �(3�2+1) = �2 and �Bk(Bank) = �(i2�i1+1) = �(4�1+1) = �4.

Since Eq. 2.26 requires that the substrings in Bank and Rank match, we
need to evaluate Eq. 2.25 only for the common substrings, i.e.:

- �a(Bank) = �a(Rank) = �(i1�i1+1) = �(2�2+1) = �,

- �n(Bank) = �n(Rank) = �(i1�i1+1) = �(3�3+1) = �,

- �k(Bank) = �k(Rank) = �(i1�i1+1) = �(4�4+1) = �,

- �an(Bank) = �an(Rank) = �(i1�i2+1) = �(3�2+1) = �2,

- �ank(Bank) = �ank(Rank) = �(i1�i3+1) = �(4�2+1) = �3,

An example of string kernel computation

Efficient Evaluation: Intuition

!   Dynamic Programming technique

!   Evaluate the spectrum string kernels

!   Substrings of size p

!   Sum the contribution of the different spectra

Efficient Evaluation

Evaluating DP2

!   Evaluate the weight of the string of size p in case

a character will be matched

!   This is done by multiplying the double summation

by the number of substrings of size p-1

Tree kernels

!   Syntactic Tree Kernel, Partial Tree kernel (PTK),

Semantic Syntactic Tree Kernel, Smoothed PTK

!   Efficient computation

Example of a parse tree

!   “John delivers a talk in Rome”

S → N VP

VP → V NP PP

PP → IN N

N → Rome

N

Rome

S

N

NP

D N

VP

V John

in

 delivers

a talk

PP

IN

The Syntactic Tree Kernel (STK)
[Collins and Duffy, 2002]

NP

D N

VP

V

delivers

a talk

NP

D N

VP

V

delivers

a

NP

D N

VP

V

delivers

NP

D N

VP

V NP

VP

V

The overall fragment set

NP

D

VP

a

Children are not divided

Explicit kernel space

zx

⋅

€

φ(Tx) =
 x = (0,..,1,..,0,..,1,..,0,..,1,..,0,..,1,..,0,..,1,..,0,..,1,..,0)

!   counts the number of common substructures

€

φ(Tz) =
 z = (1,..,0,..,0,..,1,..,0,..,1,..,0,..,1,..,0,..,0,..,1,..,0,..,0)

Efficient evaluation of the scalar product

€

 x ⋅  z = φ(Tx) ⋅ φ(Tz) = K(Tx,Tz) =

 =
nx ∈Tx

∑ Δ(nx,nz)
nz ∈Tz

∑

Efficient evaluation of the scalar product

!   [Collins and Duffy, ACL 2002] evaluate Δ in O(n2):

€

Δ(nx,nz) = 0, if the productions are different else
Δ(nx,nz) =1, if pre - terminals else

Δ(nx,nz) = (1+ Δ(ch(nx, j),ch(nz, j)))
j=1

nc(nx)

∏

€

 x ⋅  z = φ(Tx) ⋅ φ(Tz) = K(Tx,Tz) =

 =
nx ∈Tx

∑ Δ(nx,nz)
nz ∈Tz

∑

Other Adjustments

!   Normalization

€

Δ(nx,nz) = λ, if pre - terminals else

Δ(nx,nz) = λ (1+ Δ(ch(nx, j),ch(nz, j)))
j=1

nc(nx)

∏

€

" K (Tx,Tz) =
K(Tx,Tz)

K(Tx,Tx) ×K(Tz,Tz)

!   Decay factor

Observations

!   We order the production rules used in Tx and Tz,

at loading time

!   At learning time we can evaluate NP in

 |Tx|+|Tz | running time [Moschitti, EACL 2006]

!   If Tx and Tz are generated by only one production
rule ⇒ O(|Tx|×|Tz |)…Very Unlikely!!!!

Labeled Ordered Tree Kernel

NP

D N

VP

V

 gives

a talk

NP

D N

VP

V

a talk

NP

D N

VP

a talk

NP

D N

VP

a

NP

D

VP

a

NP

D

VP

NP

N

VP

NP

N

NP NP

D N
D

NP

…

VP

!   STK satisfies the constraint “remove 0 or all

children at a time”.

!   If we relax such constraint we get more general

substructures [Kashima and Koyanagi, 2002]

Weighting Problems

!   Both matched pairs give the

same contribution

!   Gap based weighting is

needed

!   A novel efficient evaluation

has to be defined

NP

D N

VP

V

 gives

a talk

NP

D N

VP

V

a talk

NP

D N

VP

V

 gives

a talk

 gives

JJ

 good

NP

D N

VP

V

 gives

a talk

JJ

 bad

Partial Tree Kernel (PTK)
[Moschitti, ECML 2006]

NP

D N

VP

V

brought

a cat

NP

D N

VP

V

a cat

NP

D N

VP

a cat

NP

D N

VP

a

NP

D

VP

a

NP

D

VP

NP

N

VP

NP

N

NP NP

D N
D

NP

…

VP

!   STK + String Kernel with weighted gaps on

nodes’ children

Partial Tree Kernel - Definition

!   By adding two decay factors we obtain:

Efficient Evaluation (1)

!   In [Taylor and Cristianini, 2004 book], sequence kernels with
weighted gaps are factorized with respect to different
subsequence sizes.

!   We treat children as sequences and apply the same theory

Dp

those defined in [7, 2, 3, 5, 13]. Additionally, we add two decay factors: µ for the
height of the tree and ∏ for the length of the child sequences. It follows that

¢(n1, n2) = µ

≥
∏

2 +
X

J1,J2,l(J1)=l(J2)

∏

d(J1)+d(J2)

l(J1)Y

i=1

¢(cn1 [J1i], cn2 [J2i])
¥

(3)

where d(J1) = J1l(J1) ° J11 and d(J2) = J2l(J2) ° J21. In this way, we pe-
nalize both larger trees and subtrees built on child subsequences that contain
gaps. Moreover, to have a similarity score between 0 and 1, we also apply the
normalization in the kernel space, i.e. K

0(T1, T2) = K(T1,T2)p
K(T1,T1)£K(T2,T2)

.

3.2 E±cient tree kernel computation

Clearly, the naive approach to evaluate Eq. 3 requires exponential time. We can
e±ciently compute it by considering that the summation in Eq. 3 can be dis-
tributed with respect to diÆerent types of sequences, e.g. those composed by p
children; it follows that ¢(n1, n2) = µ

°
∏2 +

P
lm

p=1 ¢
p

(c
n1 , cn2)

¢
, (4)

where ¢
p

evaluates the number of common subtrees rooted in subsequences of
exactly p children (of n1 and n2) and lm = min{l(c

n1), l(cn2)}. Note also that
if we consider only the contribution of the longest child sequence from node
pairs that have the same children, we implement the SST kernel. For the STs
computation we need also to remove the ∏2 term from Eq. 4.

Given the two child sequences s1a = c
n1 and s2b = c

n2 (a and b are the last
children),

¢
p

(s1a, s2b) = ¢(a, b)£
|s1|X

i=1

|s2|X

r=1

∏|s1|°i+|s2|°r £¢
p°1(s1[1 : i], s2[1 : r]),

where s1[1 : i] and s2[1 : r] are the child subsequences from 1 to i and from
1 to r of s1 and s2. If we name the double summation term as D

p

, we can
rewrite the relation as:

¢
p

(s1a, s2b) =

(
¢(a, b)D

p

(|s1|, |s2|) if a = b;

0 otherwise.

Note that D
p

satisfies the recursive relation: D
p

(k, l) =
¢

p°1(s1[1 : k], s2[1 : l]) + ∏D
p

(k, l° 1) + ∏D
p

(k° 1, l) + ∏2D
p

(k° 1, l° 1) (5)

By means of the above relation, we can compute the child subsequences of two
sequences s1 and s2 in O(p|s1||s2|). This means that the worst case complexity
of the PT kernel is O(pΩ2|N

T1 ||NT2 |), where Ω is the maximum branching factor
of the two trees. Note that the average Ω in natural language parse trees is very
small and the overall complexity can be reduced by avoiding the computation
of node pairs with diÆerent labels. The next section shows our fast algorithm to
find non-null node pairs.
3.3 Fast non-null node pair computation

To compute the tree kernels, we sum the ¢ function for each pair hn1, n2i2
N

T1 £ N
T2 (Eq. 1). When the labels associated with n1 and n2 are diÆerent,

we can avoid evaluating ¢(n1, n2) since it is 0. Thus, we look for a node pair

Efficient Evaluation (2)

!   The complexity of finding the subsequences is

!   Therefore the overall complexity is

 where ρ is the maximum branching factor (p = ρ)

Running Time of Tree Kernel Functions

FSTK
STK

FPTK

!   STK vs. Fast STK (FSTK) and Fast PTK (FPTK)

Syntactic/Semantic Tree Kernels (SSTK)
[Bloehdorn & Moschitti, ECIR 2007 & CIKM 2007]

NP

D N

VP

V

 gives

a talk

N

 good

NP

D N

VP

V

 gives

a talk

N

 solid

!   Similarity between the fragment leaves
!   Tree kernels + Lexical Similarity Kernel

Equations of SSTK

Definition 4 (Tree Fragment Similarity Kernel). For two tree fragments

f1, f2 2 F , we define the Tree Fragment Similarity Kernel as

6
:

∑F (f1, f2) = comp(f1, f2)
nt(f1)Y

t=1

∑S(f1(t), f2(t))

where comp(f1, f2) (compatible) is 1 if f1 diÆers from f2 only in the terminal

nodes and is 0 otherwise, nt(fi) is the number of terminal nodes and fi(t) is the

t-th terminal symbol of fi (numbered from left to right).

Conceptually, this means that the similarity of two tree fragments is above
zero only if the tree fragments have an identical structure. The fragment sim-
ilarity is evaluated as the product of all semantic similarities of corresponding
terminal nodes (i.e. sitting at identical positions). It is maximal if all pairs have
a similarity score of 1. We now define the overall tree kernel as the sum over the
evaluations of ∑F over all pairs of tree fragments in the argument trees. Techni-
cally, this means changing the summation in the second formula of definition 3
as in the following definition.

Definition 5 (Semantic Syntactic Tree Kernel). Given two trees T1 and

T2 we define the Semantic Syntactic Tree Kernel as:

∑T (T1, T2) =
X

n12NT1

X

n22NT2

¢(n1, n2)

where ¢(n1, n2) =
P|F|

i=1

P|F|
j=1 Ii(n1)Ij(n2)∑F (fi, fj).

Obviously, the naive evaluation of this kernel would require even more com-
putation and memory than for the naive computation of the standard kernel as
also all compatible pairs of tree fragments would need to be considered in the
summation. Luckily, this enhanced kernel can be evaluated in the same way as
the standard tree kernel by adding the following step

0. if n1 and n2 are pre-terminals and label(n1) = label(n2) then ¢(n1, n2) =
∏∑S(ch1

n1
, ch

1
n2

),

as the first condition of the ¢ function definition (Section 4), where label(ni)
is the label of node ni and ∑S is a term similarity kernel, e.g. based on the
superconcept kernel defined in section 3.2. Note that: (a) since n1 and n2 are
pre-terminals of a parse tree they can have only one child (i.e. ch

1
n1

and ch

1
n2

)
and such children are words and (b) Step 2 is no longer necessary.

Beside the novelty of taking into account tree fragments that are not identical
it should be noted that the lexical semantic similarity is constrained in syntactic
structures, which limit errors/noise due to incorrect (or, as in our case, not
provided) word sense disambiguation.
6 Note that, as the tree fragments need to be compatible, they have the same number

of terminal symbols at compatible positions.

Definition 4 (Tree Fragment Similarity Kernel). For two tree fragments

f1, f2 2 F , we define the Tree Fragment Similarity Kernel as

6
:

∑F (f1, f2) = comp(f1, f2)
nt(f1)Y

t=1

∑S(f1(t), f2(t))

where comp(f1, f2) (compatible) is 1 if f1 diÆers from f2 only in the terminal

nodes and is 0 otherwise, nt(fi) is the number of terminal nodes and fi(t) is the

t-th terminal symbol of fi (numbered from left to right).

Conceptually, this means that the similarity of two tree fragments is above
zero only if the tree fragments have an identical structure. The fragment sim-
ilarity is evaluated as the product of all semantic similarities of corresponding
terminal nodes (i.e. sitting at identical positions). It is maximal if all pairs have
a similarity score of 1. We now define the overall tree kernel as the sum over the
evaluations of ∑F over all pairs of tree fragments in the argument trees. Techni-
cally, this means changing the summation in the second formula of definition 3
as in the following definition.

Definition 5 (Semantic Syntactic Tree Kernel). Given two trees T1 and

T2 we define the Semantic Syntactic Tree Kernel as:

∑T (T1, T2) =
X

n12NT1

X

n22NT2

¢(n1, n2)

where ¢(n1, n2) =
P|F|

i=1

P|F|
j=1 Ii(n1)Ij(n2)∑F (fi, fj).

Obviously, the naive evaluation of this kernel would require even more com-
putation and memory than for the naive computation of the standard kernel as
also all compatible pairs of tree fragments would need to be considered in the
summation. Luckily, this enhanced kernel can be evaluated in the same way as
the standard tree kernel by adding the following step

0. if n1 and n2 are pre-terminals and label(n1) = label(n2) then ¢(n1, n2) =
∏∑S(ch1

n1
, ch

1
n2

),

as the first condition of the ¢ function definition (Section 4), where label(ni)
is the label of node ni and ∑S is a term similarity kernel, e.g. based on the
superconcept kernel defined in section 3.2. Note that: (a) since n1 and n2 are
pre-terminals of a parse tree they can have only one child (i.e. ch

1
n1

and ch

1
n2

)
and such children are words and (b) Step 2 is no longer necessary.

Beside the novelty of taking into account tree fragments that are not identical
it should be noted that the lexical semantic similarity is constrained in syntactic
structures, which limit errors/noise due to incorrect (or, as in our case, not
provided) word sense disambiguation.
6 Note that, as the tree fragments need to be compatible, they have the same number

of terminal symbols at compatible positions.

Example of an SSTK evaluation

NP

D N

VP

V

 gives

a talk

N

 good

NP

D N

VP

V

 gives

a talk

N

 solid

KS(gives,gives)*KS(a,a)*

KS(good,solid)*KS(talk,talk)

= 1 * 1 * 0.5 * 1 = 0.5

Definition 4 (Tree Fragment Similarity Kernel). For two tree fragments

f1, f2 2 F , we define the Tree Fragment Similarity Kernel as

6
:

∑F (f1, f2) = comp(f1, f2)
nt(f1)Y

t=1

∑S(f1(t), f2(t))

where comp(f1, f2) (compatible) is 1 if f1 diÆers from f2 only in the terminal

nodes and is 0 otherwise, nt(fi) is the number of terminal nodes and fi(t) is the

t-th terminal symbol of fi (numbered from left to right).

Conceptually, this means that the similarity of two tree fragments is above
zero only if the tree fragments have an identical structure. The fragment sim-
ilarity is evaluated as the product of all semantic similarities of corresponding
terminal nodes (i.e. sitting at identical positions). It is maximal if all pairs have
a similarity score of 1. We now define the overall tree kernel as the sum over the
evaluations of ∑F over all pairs of tree fragments in the argument trees. Techni-
cally, this means changing the summation in the second formula of definition 3
as in the following definition.

Definition 5 (Semantic Syntactic Tree Kernel). Given two trees T1 and

T2 we define the Semantic Syntactic Tree Kernel as:

∑T (T1, T2) =
X

n12NT1

X

n22NT2

¢(n1, n2)

where ¢(n1, n2) =
P|F|

i=1

P|F|
j=1 Ii(n1)Ij(n2)∑F (fi, fj).

Obviously, the naive evaluation of this kernel would require even more com-
putation and memory than for the naive computation of the standard kernel as
also all compatible pairs of tree fragments would need to be considered in the
summation. Luckily, this enhanced kernel can be evaluated in the same way as
the standard tree kernel by adding the following step

0. if n1 and n2 are pre-terminals and label(n1) = label(n2) then ¢(n1, n2) =
∏∑S(ch1

n1
, ch

1
n2

),

as the first condition of the ¢ function definition (Section 4), where label(ni)
is the label of node ni and ∑S is a term similarity kernel, e.g. based on the
superconcept kernel defined in section 3.2. Note that: (a) since n1 and n2 are
pre-terminals of a parse tree they can have only one child (i.e. ch

1
n1

and ch

1
n2

)
and such children are words and (b) Step 2 is no longer necessary.

Beside the novelty of taking into account tree fragments that are not identical
it should be noted that the lexical semantic similarity is constrained in syntactic
structures, which limit errors/noise due to incorrect (or, as in our case, not
provided) word sense disambiguation.
6 Note that, as the tree fragments need to be compatible, they have the same number

of terminal symbols at compatible positions.

Delta Evaluation is very simple

Definition 4 (Tree Fragment Similarity Kernel). For two tree fragments

f1, f2 2 F , we define the Tree Fragment Similarity Kernel as

6
:

∑F (f1, f2) = comp(f1, f2)
nt(f1)Y

t=1

∑S(f1(t), f2(t))

where comp(f1, f2) (compatible) is 1 if f1 diÆers from f2 only in the terminal

nodes and is 0 otherwise, nt(fi) is the number of terminal nodes and fi(t) is the

t-th terminal symbol of fi (numbered from left to right).

Conceptually, this means that the similarity of two tree fragments is above
zero only if the tree fragments have an identical structure. The fragment sim-
ilarity is evaluated as the product of all semantic similarities of corresponding
terminal nodes (i.e. sitting at identical positions). It is maximal if all pairs have
a similarity score of 1. We now define the overall tree kernel as the sum over the
evaluations of ∑F over all pairs of tree fragments in the argument trees. Techni-
cally, this means changing the summation in the second formula of definition 3
as in the following definition.

Definition 5 (Semantic Syntactic Tree Kernel). Given two trees T1 and

T2 we define the Semantic Syntactic Tree Kernel as:

∑T (T1, T2) =
X

n12NT1

X

n22NT2

¢(n1, n2)

where ¢(n1, n2) =
P|F|

i=1

P|F|
j=1 Ii(n1)Ij(n2)∑F (fi, fj).

Obviously, the naive evaluation of this kernel would require even more com-
putation and memory than for the naive computation of the standard kernel as
also all compatible pairs of tree fragments would need to be considered in the
summation. Luckily, this enhanced kernel can be evaluated in the same way as
the standard tree kernel by adding the following step

0. if n1 and n2 are pre-terminals and label(n1) = label(n2) then ¢(n1, n2) =
∏∑S(ch1

n1
, ch

1
n2

),

as the first condition of the ¢ function definition (Section 4), where label(ni)
is the label of node ni and ∑S is a term similarity kernel, e.g. based on the
superconcept kernel defined in section 3.2. Note that: (a) since n1 and n2 are
pre-terminals of a parse tree they can have only one child (i.e. ch

1
n1

and ch

1
n2

)
and such children are words and (b) Step 2 is no longer necessary.

Beside the novelty of taking into account tree fragments that are not identical
it should be noted that the lexical semantic similarity is constrained in syntactic
structures, which limit errors/noise due to incorrect (or, as in our case, not
provided) word sense disambiguation.
6 Note that, as the tree fragments need to be compatible, they have the same number

of terminal symbols at compatible positions.

where ¢(n1, n2) =
P|F|

i=1 Ii(n1)Ii(n2), and where Ii(n) is an indicator function

which determines whether fragment fi is rooted in node n.

¢ is equal to the number of common fragments rooted at nodes n1 and n2.
We can compute it more e±ciently as follows:

1. if the productions at n1 and n2 are diÆerent then ¢(n1, n2) = 0;
2. if the productions at n1 and n2 are the same, and n1 and n2 only have

leaf children (i.e. the argument nodes are pre-terminals symbols) then
¢(n1, n2) = 1;

3. if the productions at n1 and n2 are the same, and n1 and n2 are not pre-
terminals then

¢(n1, n2) =
nc(n1)Y

j=1

(1 + ¢(chj
n1

, ch

j
n2

)).

where nc(n1) is the number of children of n1 and ch

j
n is the j-th child of node

n. Note that, since the productions are the same, nc(n1) = nc(n2). Of course,
the kernel can again be normalized using the cosine normalization modifier.
Additionally, a decay factor ∏ can be added by modifying steps (2) and (3) as
follows:

2. ¢(n1, n2) = ∏,
3. ¢(n1, n2) = ∏

Qnc(n1)
j=1 (1 + ¢(chj

n1
, ch

j
n2

)).

As an example, Figure 1 shows a parse tree of the sentence (fragment)
‘‘bought a cat’’ with some of the substructures that the tree kernel uses
to represent it5.

5 Designing Semantic Syntactic Tree Kernels

The Tree Kernel introduced in the previous section relies on the intuition of
counting all common substructures of two trees. However, if two trees have simi-
lar structures but employ diÆerent though related terminology at the leaves, they
will not be matched. From a semantic point of view, this is an evident drawback
as ‘‘brought a cat’’ should be more related to ‘‘brought a tomcat’’ than
to ‘‘brought a note’’.

In analogy with the semantic smoothing kernels for the bag-of-words kernel
as described in section 3.2, we are now interested in also counting partial matches

between tree fragments. A partial match occurs when two fragments diÆer only
by their terminal symbols, e.g. [N [cat]] and [N [tomcat]]. In this case the
match should give a contribution smaller than 1, depending on the semantic
similarity of the respective terminal nodes. For this purpose, we first define the
similarity of two such tree fragments.
5 The number of such fragments can be obtained by evaluating the kernel function

between the tree with itself.

where ¢(n1, n2) =
P|F|

i=1 Ii(n1)Ii(n2), and where Ii(n) is an indicator function

which determines whether fragment fi is rooted in node n.

¢ is equal to the number of common fragments rooted at nodes n1 and n2.
We can compute it more e±ciently as follows:

1. if the productions at n1 and n2 are diÆerent then ¢(n1, n2) = 0;
2. if the productions at n1 and n2 are the same, and n1 and n2 only have

leaf children (i.e. the argument nodes are pre-terminals symbols) then
¢(n1, n2) = 1;

3. if the productions at n1 and n2 are the same, and n1 and n2 are not pre-
terminals then

¢(n1, n2) =
nc(n1)Y

j=1

(1 + ¢(chj
n1

, ch

j
n2

)).

where nc(n1) is the number of children of n1 and ch

j
n is the j-th child of node

n. Note that, since the productions are the same, nc(n1) = nc(n2). Of course,
the kernel can again be normalized using the cosine normalization modifier.
Additionally, a decay factor ∏ can be added by modifying steps (2) and (3) as
follows:

2. ¢(n1, n2) = ∏,
3. ¢(n1, n2) = ∏

Qnc(n1)
j=1 (1 + ¢(chj

n1
, ch

j
n2

)).

As an example, Figure 1 shows a parse tree of the sentence (fragment)
‘‘bought a cat’’ with some of the substructures that the tree kernel uses
to represent it5.

5 Designing Semantic Syntactic Tree Kernels

The Tree Kernel introduced in the previous section relies on the intuition of
counting all common substructures of two trees. However, if two trees have simi-
lar structures but employ diÆerent though related terminology at the leaves, they
will not be matched. From a semantic point of view, this is an evident drawback
as ‘‘brought a cat’’ should be more related to ‘‘brought a tomcat’’ than
to ‘‘brought a note’’.

In analogy with the semantic smoothing kernels for the bag-of-words kernel
as described in section 3.2, we are now interested in also counting partial matches

between tree fragments. A partial match occurs when two fragments diÆer only
by their terminal symbols, e.g. [N [cat]] and [N [tomcat]]. In this case the
match should give a contribution smaller than 1, depending on the semantic
similarity of the respective terminal nodes. For this purpose, we first define the
similarity of two such tree fragments.
5 The number of such fragments can be obtained by evaluating the kernel function

between the tree with itself.

Smoothed Partial Tree Kernels
[Moschitti, EACL 2009; Croce et al., 2011]

!   Same idea of Syntactic Semantic Tree Kernel but

the similarity is extended to any node of the tree

!   The tree fragments are those generated by PTK

!   Basically it extends PTK with similarities

Examples of Dependency Trees

!   What is the width of a football field?

!   What is the length of the biggest tennis court

Equation of SPTK

If	
 n1	
 and	
 n2	
 are	
 leaves	
 then

else

PTK Lexical Similarity

Different versions of Computational
Dependency Trees for PTK/SPTK

be::v

?::.width::n

of::i

field::n

football::na::d

the::d

what::w

Figure 2: Lexical Only Centered Tree (LOCT).

be::v

VBZROOT?::.

.P

width::n

NNPRDof::i

INNMODfield::n

the::d

DTNMOD

what::w

WPSBJ

field::n

NNPMODfootball::n

NNNMOD

a::d

DTNMOD

Figure 3: Lexical Centered Tree (LCT).

TOP

.

?::.

NN

field::n

NN

football::n

DT

a::d

IN

of::i

NN

width::n

DT

the::d

VBZ

be::v

WP

what::w

Figure 4: Lexical and PoS-Tag Sequences Tree (LPST).

presents the experimental evaluation for QC and Section 4 derives
the conclusions.

2. COMPUTATIONAL STRUCTURES FOR
QUESTION CLASSIFICATION

Thanks to structural kernel similarity, a question classification
(QC) task can be easily modeled by representing questions, i.e.,
the classification objects, with their parse trees. Several syntactic
representations exist, we report the most interesting and effective
structures that we proposed in [7]. Given the following sentence:

(s1) What is the width of a football field?

the representation tree according to a phrase structure paradigm,
i.e. constituency tree (CT), is in Figure 1. We apply lemmatiza-
tion to the lexicals to improve generalization and, at the same time,
we add a generalized PoS-tag, i.e. noun (n::), verb (v::), adjective
(::a), determiner (::d) and so on, to them. This is useful to mea-
sure similarity between lexicals belonging to the same grammatical
category. Our conversion of dependency structures in dependency
trees is done in two steps:

• we generate the tree that includes only lexicals, where the
edges encode their dependencies. We call it the Lexical Only
Centered Tree (LOCT), e.g. see Figure 2.

• To each lexical node, we add two leftmost children, which
encode the grammatical function and POS-Tag, i.e. node fea-
tures. We call this structure the Lexical Centered Tree (LCT),
e.g. see Figure 3.

Additionally, for comparative purposes, we define a flat struc-
ture, the Lexical and PoS-tag Sequences Tree (LPST), e.g. see Fig-
ure 4, which ignores the syntactic structure of the sentence being a

STK PTK SPTK(LSA)
CT 91.20% 90.80% 91.00%
LOCT - 89.20% 93.20%
LCT - 90.80% 94.80%
LPST - 89.40% 89.60%
BOW 88.80%

Table 1: Accuracy of structural kernels applied to different
structures on QC

simple sequence of PoS-tag nodes, where lexicals are simply added
as children.

3. EXPERIMENTS
The aim of the experiments is to analyze the role of lexical simi-

larity embedded in syntactic structures. For this purpose, we present
results on QC and the related error analysis.

3.1 Setup
Our referring corpus is the UIUC dataset [13]. It is composed

by a training set of 5,452 questions and a test set of 500 questions1.
The latter are organized in six coarse-grained classes, i.e., ABBRE-
VIATION, ENTITY, DESCRIPTION, HUMAN, LOCATION and
NUMBER.

For learning our models, we extended the SVM-LightTK soft-
ware2 [14, 15] (which includes structural kernels, i.e., STK and
PTK in SVMLight [8]) with the smooth match between tree nodes,
i.e. the SPTK defined in [7].

For generating constituency trees, we used Charniak’s parser [5]
whereas we applied LTH syntactic parser (described in [12]) to gen-
erate dependency trees.

The lexical similarity was designed with LSA applied to uk-
Wak [1], which is a large scale document collection made by 2
billion tokens (see [7] for more details). We implemented multi-
classification using one-vs-all scheme and selecting the category
associated with the maximum SVM margin.

3.2 Classification Results
The F1 of SVMs using (i) STK applied to CT and (ii) PTK and

SPTK applied to the several structures for QC is reported in Ta-
ble 1. The first column shows the different structures described
in Section 2. The first row lists the tree kernel models. The last
row reports the accuracy of bag-of-words (BOW), which is a linear
kernel applied to lexical vectors.

It is worth nothing that:

• BOW produces high accuracy, i.e. 88.8% but it is improved
by STK, current state-of-the-art3 in QC [18, 17];

• PTK applied to the same tree of STK (i.e. CT) produces a
slightly lower value (non-statistically significant difference);
and

• PTK applied to LCT, which contains structures but also gram-
matical functions and PoS-tags, achieves higher accuracy than
when applied to LOCT (no grammatical/syntactic features)
or to LPST (no structure).

1http://cogcomp.cs.illinois.edu/Data/QA/QC/
2http://disi.unitn.it/moschitti/Tree-Kernel.htm
3Note that higher accuracy values for smoothed STK are shown in
[4] but the one optimizing a validation set is not shown.

be::v

?::.width::n

of::i

field::n

football::na::d

the::d

what::w

Figure 2: Lexical Only Centered Tree (LOCT).

be::v

VBZROOT?::.

.P

width::n

NNPRDof::i

INNMODfield::n

the::d

DTNMOD

what::w

WPSBJ

field::n

NNPMODfootball::n

NNNMOD

a::d

DTNMOD

Figure 3: Lexical Centered Tree (LCT).

TOP

.

?::.

NN

field::n

NN

football::n

DT

a::d

IN

of::i

NN

width::n

DT

the::d

VBZ

be::v

WP

what::w

Figure 4: Lexical and PoS-Tag Sequences Tree (LPST).

presents the experimental evaluation for QC and Section 4 derives
the conclusions.

2. COMPUTATIONAL STRUCTURES FOR
QUESTION CLASSIFICATION

Thanks to structural kernel similarity, a question classification
(QC) task can be easily modeled by representing questions, i.e.,
the classification objects, with their parse trees. Several syntactic
representations exist, we report the most interesting and effective
structures that we proposed in [7]. Given the following sentence:

(s1) What is the width of a football field?

the representation tree according to a phrase structure paradigm,
i.e. constituency tree (CT), is in Figure 1. We apply lemmatiza-
tion to the lexicals to improve generalization and, at the same time,
we add a generalized PoS-tag, i.e. noun (n::), verb (v::), adjective
(::a), determiner (::d) and so on, to them. This is useful to mea-
sure similarity between lexicals belonging to the same grammatical
category. Our conversion of dependency structures in dependency
trees is done in two steps:

• we generate the tree that includes only lexicals, where the
edges encode their dependencies. We call it the Lexical Only
Centered Tree (LOCT), e.g. see Figure 2.

• To each lexical node, we add two leftmost children, which
encode the grammatical function and POS-Tag, i.e. node fea-
tures. We call this structure the Lexical Centered Tree (LCT),
e.g. see Figure 3.

Additionally, for comparative purposes, we define a flat struc-
ture, the Lexical and PoS-tag Sequences Tree (LPST), e.g. see Fig-
ure 4, which ignores the syntactic structure of the sentence being a

STK PTK SPTK(LSA)
CT 91.20% 90.80% 91.00%
LOCT - 89.20% 93.20%
LCT - 90.80% 94.80%
LPST - 89.40% 89.60%
BOW 88.80%

Table 1: Accuracy of structural kernels applied to different
structures on QC

simple sequence of PoS-tag nodes, where lexicals are simply added
as children.

3. EXPERIMENTS
The aim of the experiments is to analyze the role of lexical simi-

larity embedded in syntactic structures. For this purpose, we present
results on QC and the related error analysis.

3.1 Setup
Our referring corpus is the UIUC dataset [13]. It is composed

by a training set of 5,452 questions and a test set of 500 questions1.
The latter are organized in six coarse-grained classes, i.e., ABBRE-
VIATION, ENTITY, DESCRIPTION, HUMAN, LOCATION and
NUMBER.

For learning our models, we extended the SVM-LightTK soft-
ware2 [14, 15] (which includes structural kernels, i.e., STK and
PTK in SVMLight [8]) with the smooth match between tree nodes,
i.e. the SPTK defined in [7].

For generating constituency trees, we used Charniak’s parser [5]
whereas we applied LTH syntactic parser (described in [12]) to gen-
erate dependency trees.

The lexical similarity was designed with LSA applied to uk-
Wak [1], which is a large scale document collection made by 2
billion tokens (see [7] for more details). We implemented multi-
classification using one-vs-all scheme and selecting the category
associated with the maximum SVM margin.

3.2 Classification Results
The F1 of SVMs using (i) STK applied to CT and (ii) PTK and

SPTK applied to the several structures for QC is reported in Ta-
ble 1. The first column shows the different structures described
in Section 2. The first row lists the tree kernel models. The last
row reports the accuracy of bag-of-words (BOW), which is a linear
kernel applied to lexical vectors.

It is worth nothing that:

• BOW produces high accuracy, i.e. 88.8% but it is improved
by STK, current state-of-the-art3 in QC [18, 17];

• PTK applied to the same tree of STK (i.e. CT) produces a
slightly lower value (non-statistically significant difference);
and

• PTK applied to LCT, which contains structures but also gram-
matical functions and PoS-tags, achieves higher accuracy than
when applied to LOCT (no grammatical/syntactic features)
or to LPST (no structure).

1http://cogcomp.cs.illinois.edu/Data/QA/QC/
2http://disi.unitn.it/moschitti/Tree-Kernel.htm
3Note that higher accuracy values for smoothed STK are shown in
[4] but the one optimizing a validation set is not shown.

be::v

?::.width::n

of::i

field::n

football::na::d

the::d

what::w

Figure 2: Lexical Only Centered Tree (LOCT).

be::v

VBZROOT?::.

.P

width::n

NNPRDof::i

INNMODfield::n

the::d

DTNMOD

what::w

WPSBJ

field::n

NNPMODfootball::n

NNNMOD

a::d

DTNMOD

Figure 3: Lexical Centered Tree (LCT).

TOP

.

?::.

NN

field::n

NN

football::n

DT

a::d

IN

of::i

NN

width::n

DT

the::d

VBZ

be::v

WP

what::w

Figure 4: Lexical and PoS-Tag Sequences Tree (LPST).

presents the experimental evaluation for QC and Section 4 derives
the conclusions.

2. COMPUTATIONAL STRUCTURES FOR
QUESTION CLASSIFICATION

Thanks to structural kernel similarity, a question classification
(QC) task can be easily modeled by representing questions, i.e.,
the classification objects, with their parse trees. Several syntactic
representations exist, we report the most interesting and effective
structures that we proposed in [7]. Given the following sentence:

(s1) What is the width of a football field?

the representation tree according to a phrase structure paradigm,
i.e. constituency tree (CT), is in Figure 1. We apply lemmatiza-
tion to the lexicals to improve generalization and, at the same time,
we add a generalized PoS-tag, i.e. noun (n::), verb (v::), adjective
(::a), determiner (::d) and so on, to them. This is useful to mea-
sure similarity between lexicals belonging to the same grammatical
category. Our conversion of dependency structures in dependency
trees is done in two steps:

• we generate the tree that includes only lexicals, where the
edges encode their dependencies. We call it the Lexical Only
Centered Tree (LOCT), e.g. see Figure 2.

• To each lexical node, we add two leftmost children, which
encode the grammatical function and POS-Tag, i.e. node fea-
tures. We call this structure the Lexical Centered Tree (LCT),
e.g. see Figure 3.

Additionally, for comparative purposes, we define a flat struc-
ture, the Lexical and PoS-tag Sequences Tree (LPST), e.g. see Fig-
ure 4, which ignores the syntactic structure of the sentence being a

STK PTK SPTK(LSA)
CT 91.20% 90.80% 91.00%
LOCT - 89.20% 93.20%
LCT - 90.80% 94.80%
LPST - 89.40% 89.60%
BOW 88.80%

Table 1: Accuracy of structural kernels applied to different
structures on QC

simple sequence of PoS-tag nodes, where lexicals are simply added
as children.

3. EXPERIMENTS
The aim of the experiments is to analyze the role of lexical simi-

larity embedded in syntactic structures. For this purpose, we present
results on QC and the related error analysis.

3.1 Setup
Our referring corpus is the UIUC dataset [13]. It is composed

by a training set of 5,452 questions and a test set of 500 questions1.
The latter are organized in six coarse-grained classes, i.e., ABBRE-
VIATION, ENTITY, DESCRIPTION, HUMAN, LOCATION and
NUMBER.

For learning our models, we extended the SVM-LightTK soft-
ware2 [14, 15] (which includes structural kernels, i.e., STK and
PTK in SVMLight [8]) with the smooth match between tree nodes,
i.e. the SPTK defined in [7].

For generating constituency trees, we used Charniak’s parser [5]
whereas we applied LTH syntactic parser (described in [12]) to gen-
erate dependency trees.

The lexical similarity was designed with LSA applied to uk-
Wak [1], which is a large scale document collection made by 2
billion tokens (see [7] for more details). We implemented multi-
classification using one-vs-all scheme and selecting the category
associated with the maximum SVM margin.

3.2 Classification Results
The F1 of SVMs using (i) STK applied to CT and (ii) PTK and

SPTK applied to the several structures for QC is reported in Ta-
ble 1. The first column shows the different structures described
in Section 2. The first row lists the tree kernel models. The last
row reports the accuracy of bag-of-words (BOW), which is a linear
kernel applied to lexical vectors.

It is worth nothing that:

• BOW produces high accuracy, i.e. 88.8% but it is improved
by STK, current state-of-the-art3 in QC [18, 17];

• PTK applied to the same tree of STK (i.e. CT) produces a
slightly lower value (non-statistically significant difference);
and

• PTK applied to LCT, which contains structures but also gram-
matical functions and PoS-tags, achieves higher accuracy than
when applied to LOCT (no grammatical/syntactic features)
or to LPST (no structure).

1http://cogcomp.cs.illinois.edu/Data/QA/QC/
2http://disi.unitn.it/moschitti/Tree-Kernel.htm
3Note that higher accuracy values for smoothed STK are shown in
[4] but the one optimizing a validation set is not shown.

LOCT

LCT

LPST

Tree Kernel Efficiency

y = 0.068x1.213

y = 0.081x1.705

y = 0,0513x2.005

0

20

40

60

80

100

120

0 10 20 30 40 50 60

m
ic

ro
se

co
nd

s

Number of Nodes

LCT-PTK

LCT-SPTK

LPST-PTK

LPST-SPTK

SVM-light-TK Software

!   Encodes STK, PTK and combination kernels

 in SVM-light [Joachims, 1999]

!   Available at http://disi.unitn.it/moschitti

!   Tree forests, vector sets

Data Format

!   “What does S.O.S. stand for?”

!   1 |BT| (SBARQ (WHNP (WP What))(SQ (AUX does)(NP (NNP
S.O.S.))(VP (VB stand)(PP (IN for))))(. ?))

|BT| (BOW (What *)(does *)(S.O.S. *)(stand *)(for *)(? *))

|BT| (BOP (WP *)(AUX *)(NNP *)(VB *)(IN *)(. *))

|BT| (PAS (ARG0 (R-A1 (What *)))(ARG1 (A1 (S.O.S. NNP)))(ARG2
(rel stand)))

|ET| 1:1 21:2.742439465642236E-4 23:1 30:1 36:1 39:1 41:1 46:1 49:1
66:1 152:1 274:1 333:1

|BV| 2:1 21:1.4421347148614654E-4 23:1 31:1 36:1 39:1 41:1 46:1 49:1
52:1 66:1 152:1 246:1 333:1 392:1 |EV|

Kernel Combinations an example

!   Kernel Combinations:

3

3

3

3

33

 ,

 ,

pTree

pTree
PTree

p

p

Tree

Tree
PTree

pTreePTreepTreePTree

KK
KK

K
K
K

K
KK

KKKKKK

×

×
=+×=

×=+×=

×+

×+

γ

γ

kernel Tree

featuresflat of kernel polynomial 3

Tree

p

K

K

Basic Commands

!   Training and classification
!   ./svm_learn -t 5 -C T train.dat model

!   ./svm_classify test.dat model

!   Learning with a vector sequence
!   ./svm_learn -t 5 -C V train.dat model

!   Learning with the sum of vector and kernel

sequences
!   ./svm_learn -t 5 -C + train.dat model

Applications with
Simple Kernels

A QA Pipeline: Watson Overview

Question
Classification

Question Classification

!   Definition: What does HTML stand for?

!   Description: What's the final line in the Edgar Allan Poe
poem "The Raven"?

!   Entity: What foods can cause allergic reaction in people?

!   Human: Who won the Nobel Peace Prize in 1992?

!   Location: Where is the Statue of Liberty?

!   Manner: How did Bob Marley die?

!   Numeric: When was Martin Luther King Jr. born?

!   Organization: What company makes Bentley cars?

Question Classifier based on Tree Kernels

!   Question dataset (http://l2r.cs.uiuc.edu/~cogcomp/Data/QA/QC/)

[Lin and Roth, 2005])
!   Distributed on 6 categories: Abbreviations, Descriptions, Entity,

Human, Location, and Numeric.

!   Fixed split 5500 training and 500 test questions

!   Using the whole question parse trees
!   Constituent parsing

!   Example

 “What is an offer of direct stock purchase plan ?”

Syntactic Parse Trees (PT)

Some fragments

Explicit kernel space

zx

⋅

€

φ(Tx) =
 x = (0,..,1,..,0,..,1,..,0,..,1,..,0,..,1,..,0,..,1,..,0,..,1,..,0)

!   counts the number of common substructures

€

φ(Tz) =
 z = (1,..,0,..,0,..,1,..,0,..,1,..,0,..,1,..,0,..,0,..,1,..,0,..,0)

Question Classification with SSTK
[Blohedorn&Moschitti, CIKM2007]

Same Task with PTK, SPTK and
Dependency Trees

be::v

?::.width::n

of::i

field::n

football::na::d

the::d

what::w

Figure 2: Lexical Only Centered Tree (LOCT).

be::v

VBZROOT?::.

.P

width::n

NNPRDof::i

INNMODfield::n

the::d

DTNMOD

what::w

WPSBJ

field::n

NNPMODfootball::n

NNNMOD

a::d

DTNMOD

Figure 3: Lexical Centered Tree (LCT).

TOP

.

?::.

NN

field::n

NN

football::n

DT

a::d

IN

of::i

NN

width::n

DT

the::d

VBZ

be::v

WP

what::w

Figure 4: Lexical and PoS-Tag Sequences Tree (LPST).

presents the experimental evaluation for QC and Section 4 derives
the conclusions.

2. COMPUTATIONAL STRUCTURES FOR
QUESTION CLASSIFICATION

Thanks to structural kernel similarity, a question classification
(QC) task can be easily modeled by representing questions, i.e.,
the classification objects, with their parse trees. Several syntactic
representations exist, we report the most interesting and effective
structures that we proposed in [7]. Given the following sentence:

(s1) What is the width of a football field?

the representation tree according to a phrase structure paradigm,
i.e. constituency tree (CT), is in Figure 1. We apply lemmatiza-
tion to the lexicals to improve generalization and, at the same time,
we add a generalized PoS-tag, i.e. noun (n::), verb (v::), adjective
(::a), determiner (::d) and so on, to them. This is useful to mea-
sure similarity between lexicals belonging to the same grammatical
category. Our conversion of dependency structures in dependency
trees is done in two steps:

• we generate the tree that includes only lexicals, where the
edges encode their dependencies. We call it the Lexical Only
Centered Tree (LOCT), e.g. see Figure 2.

• To each lexical node, we add two leftmost children, which
encode the grammatical function and POS-Tag, i.e. node fea-
tures. We call this structure the Lexical Centered Tree (LCT),
e.g. see Figure 3.

Additionally, for comparative purposes, we define a flat struc-
ture, the Lexical and PoS-tag Sequences Tree (LPST), e.g. see Fig-
ure 4, which ignores the syntactic structure of the sentence being a

STK PTK SPTK(LSA)
CT 91.20% 90.80% 91.00%
LOCT - 89.20% 93.20%
LCT - 90.80% 94.80%
LPST - 89.40% 89.60%
BOW 88.80%

Table 1: Accuracy of structural kernels applied to different
structures on QC

simple sequence of PoS-tag nodes, where lexicals are simply added
as children.

3. EXPERIMENTS
The aim of the experiments is to analyze the role of lexical simi-

larity embedded in syntactic structures. For this purpose, we present
results on QC and the related error analysis.

3.1 Setup
Our referring corpus is the UIUC dataset [13]. It is composed

by a training set of 5,452 questions and a test set of 500 questions1.
The latter are organized in six coarse-grained classes, i.e., ABBRE-
VIATION, ENTITY, DESCRIPTION, HUMAN, LOCATION and
NUMBER.

For learning our models, we extended the SVM-LightTK soft-
ware2 [14, 15] (which includes structural kernels, i.e., STK and
PTK in SVMLight [8]) with the smooth match between tree nodes,
i.e. the SPTK defined in [7].

For generating constituency trees, we used Charniak’s parser [5]
whereas we applied LTH syntactic parser (described in [12]) to gen-
erate dependency trees.

The lexical similarity was designed with LSA applied to uk-
Wak [1], which is a large scale document collection made by 2
billion tokens (see [7] for more details). We implemented multi-
classification using one-vs-all scheme and selecting the category
associated with the maximum SVM margin.

3.2 Classification Results
The F1 of SVMs using (i) STK applied to CT and (ii) PTK and

SPTK applied to the several structures for QC is reported in Ta-
ble 1. The first column shows the different structures described
in Section 2. The first row lists the tree kernel models. The last
row reports the accuracy of bag-of-words (BOW), which is a linear
kernel applied to lexical vectors.

It is worth nothing that:

• BOW produces high accuracy, i.e. 88.8% but it is improved
by STK, current state-of-the-art3 in QC [18, 17];

• PTK applied to the same tree of STK (i.e. CT) produces a
slightly lower value (non-statistically significant difference);
and

• PTK applied to LCT, which contains structures but also gram-
matical functions and PoS-tags, achieves higher accuracy than
when applied to LOCT (no grammatical/syntactic features)
or to LPST (no structure).

1http://cogcomp.cs.illinois.edu/Data/QA/QC/
2http://disi.unitn.it/moschitti/Tree-Kernel.htm
3Note that higher accuracy values for smoothed STK are shown in
[4] but the one optimizing a validation set is not shown.

be::v

?::.width::n

of::i

field::n

football::na::d

the::d

what::w

Figure 2: Lexical Only Centered Tree (LOCT).

be::v

VBZROOT?::.

.P

width::n

NNPRDof::i

INNMODfield::n

the::d

DTNMOD

what::w

WPSBJ

field::n

NNPMODfootball::n

NNNMOD

a::d

DTNMOD

Figure 3: Lexical Centered Tree (LCT).

TOP

.

?::.

NN

field::n

NN

football::n

DT

a::d

IN

of::i

NN

width::n

DT

the::d

VBZ

be::v

WP

what::w

Figure 4: Lexical and PoS-Tag Sequences Tree (LPST).

presents the experimental evaluation for QC and Section 4 derives
the conclusions.

2. COMPUTATIONAL STRUCTURES FOR
QUESTION CLASSIFICATION

Thanks to structural kernel similarity, a question classification
(QC) task can be easily modeled by representing questions, i.e.,
the classification objects, with their parse trees. Several syntactic
representations exist, we report the most interesting and effective
structures that we proposed in [7]. Given the following sentence:

(s1) What is the width of a football field?

the representation tree according to a phrase structure paradigm,
i.e. constituency tree (CT), is in Figure 1. We apply lemmatiza-
tion to the lexicals to improve generalization and, at the same time,
we add a generalized PoS-tag, i.e. noun (n::), verb (v::), adjective
(::a), determiner (::d) and so on, to them. This is useful to mea-
sure similarity between lexicals belonging to the same grammatical
category. Our conversion of dependency structures in dependency
trees is done in two steps:

• we generate the tree that includes only lexicals, where the
edges encode their dependencies. We call it the Lexical Only
Centered Tree (LOCT), e.g. see Figure 2.

• To each lexical node, we add two leftmost children, which
encode the grammatical function and POS-Tag, i.e. node fea-
tures. We call this structure the Lexical Centered Tree (LCT),
e.g. see Figure 3.

Additionally, for comparative purposes, we define a flat struc-
ture, the Lexical and PoS-tag Sequences Tree (LPST), e.g. see Fig-
ure 4, which ignores the syntactic structure of the sentence being a

STK PTK SPTK(LSA)
CT 91.20% 90.80% 91.00%
LOCT - 89.20% 93.20%
LCT - 90.80% 94.80%
LPST - 89.40% 89.60%
BOW 88.80%

Table 1: Accuracy of structural kernels applied to different
structures on QC

simple sequence of PoS-tag nodes, where lexicals are simply added
as children.

3. EXPERIMENTS
The aim of the experiments is to analyze the role of lexical simi-

larity embedded in syntactic structures. For this purpose, we present
results on QC and the related error analysis.

3.1 Setup
Our referring corpus is the UIUC dataset [13]. It is composed

by a training set of 5,452 questions and a test set of 500 questions1.
The latter are organized in six coarse-grained classes, i.e., ABBRE-
VIATION, ENTITY, DESCRIPTION, HUMAN, LOCATION and
NUMBER.

For learning our models, we extended the SVM-LightTK soft-
ware2 [14, 15] (which includes structural kernels, i.e., STK and
PTK in SVMLight [8]) with the smooth match between tree nodes,
i.e. the SPTK defined in [7].

For generating constituency trees, we used Charniak’s parser [5]
whereas we applied LTH syntactic parser (described in [12]) to gen-
erate dependency trees.

The lexical similarity was designed with LSA applied to uk-
Wak [1], which is a large scale document collection made by 2
billion tokens (see [7] for more details). We implemented multi-
classification using one-vs-all scheme and selecting the category
associated with the maximum SVM margin.

3.2 Classification Results
The F1 of SVMs using (i) STK applied to CT and (ii) PTK and

SPTK applied to the several structures for QC is reported in Ta-
ble 1. The first column shows the different structures described
in Section 2. The first row lists the tree kernel models. The last
row reports the accuracy of bag-of-words (BOW), which is a linear
kernel applied to lexical vectors.

It is worth nothing that:

• BOW produces high accuracy, i.e. 88.8% but it is improved
by STK, current state-of-the-art3 in QC [18, 17];

• PTK applied to the same tree of STK (i.e. CT) produces a
slightly lower value (non-statistically significant difference);
and

• PTK applied to LCT, which contains structures but also gram-
matical functions and PoS-tags, achieves higher accuracy than
when applied to LOCT (no grammatical/syntactic features)
or to LPST (no structure).

1http://cogcomp.cs.illinois.edu/Data/QA/QC/
2http://disi.unitn.it/moschitti/Tree-Kernel.htm
3Note that higher accuracy values for smoothed STK are shown in
[4] but the one optimizing a validation set is not shown.

be::v

?::.width::n

of::i

field::n

football::na::d

the::d

what::w

Figure 2: Lexical Only Centered Tree (LOCT).

be::v

VBZROOT?::.

.P

width::n

NNPRDof::i

INNMODfield::n

the::d

DTNMOD

what::w

WPSBJ

field::n

NNPMODfootball::n

NNNMOD

a::d

DTNMOD

Figure 3: Lexical Centered Tree (LCT).

TOP

.

?::.

NN

field::n

NN

football::n

DT

a::d

IN

of::i

NN

width::n

DT

the::d

VBZ

be::v

WP

what::w

Figure 4: Lexical and PoS-Tag Sequences Tree (LPST).

presents the experimental evaluation for QC and Section 4 derives
the conclusions.

2. COMPUTATIONAL STRUCTURES FOR
QUESTION CLASSIFICATION

Thanks to structural kernel similarity, a question classification
(QC) task can be easily modeled by representing questions, i.e.,
the classification objects, with their parse trees. Several syntactic
representations exist, we report the most interesting and effective
structures that we proposed in [7]. Given the following sentence:

(s1) What is the width of a football field?

the representation tree according to a phrase structure paradigm,
i.e. constituency tree (CT), is in Figure 1. We apply lemmatiza-
tion to the lexicals to improve generalization and, at the same time,
we add a generalized PoS-tag, i.e. noun (n::), verb (v::), adjective
(::a), determiner (::d) and so on, to them. This is useful to mea-
sure similarity between lexicals belonging to the same grammatical
category. Our conversion of dependency structures in dependency
trees is done in two steps:

• we generate the tree that includes only lexicals, where the
edges encode their dependencies. We call it the Lexical Only
Centered Tree (LOCT), e.g. see Figure 2.

• To each lexical node, we add two leftmost children, which
encode the grammatical function and POS-Tag, i.e. node fea-
tures. We call this structure the Lexical Centered Tree (LCT),
e.g. see Figure 3.

Additionally, for comparative purposes, we define a flat struc-
ture, the Lexical and PoS-tag Sequences Tree (LPST), e.g. see Fig-
ure 4, which ignores the syntactic structure of the sentence being a

STK PTK SPTK(LSA)
CT 91.20% 90.80% 91.00%
LOCT - 89.20% 93.20%
LCT - 90.80% 94.80%
LPST - 89.40% 89.60%
BOW 88.80%

Table 1: Accuracy of structural kernels applied to different
structures on QC

simple sequence of PoS-tag nodes, where lexicals are simply added
as children.

3. EXPERIMENTS
The aim of the experiments is to analyze the role of lexical simi-

larity embedded in syntactic structures. For this purpose, we present
results on QC and the related error analysis.

3.1 Setup
Our referring corpus is the UIUC dataset [13]. It is composed

by a training set of 5,452 questions and a test set of 500 questions1.
The latter are organized in six coarse-grained classes, i.e., ABBRE-
VIATION, ENTITY, DESCRIPTION, HUMAN, LOCATION and
NUMBER.

For learning our models, we extended the SVM-LightTK soft-
ware2 [14, 15] (which includes structural kernels, i.e., STK and
PTK in SVMLight [8]) with the smooth match between tree nodes,
i.e. the SPTK defined in [7].

For generating constituency trees, we used Charniak’s parser [5]
whereas we applied LTH syntactic parser (described in [12]) to gen-
erate dependency trees.

The lexical similarity was designed with LSA applied to uk-
Wak [1], which is a large scale document collection made by 2
billion tokens (see [7] for more details). We implemented multi-
classification using one-vs-all scheme and selecting the category
associated with the maximum SVM margin.

3.2 Classification Results
The F1 of SVMs using (i) STK applied to CT and (ii) PTK and

SPTK applied to the several structures for QC is reported in Ta-
ble 1. The first column shows the different structures described
in Section 2. The first row lists the tree kernel models. The last
row reports the accuracy of bag-of-words (BOW), which is a linear
kernel applied to lexical vectors.

It is worth nothing that:

• BOW produces high accuracy, i.e. 88.8% but it is improved
by STK, current state-of-the-art3 in QC [18, 17];

• PTK applied to the same tree of STK (i.e. CT) produces a
slightly lower value (non-statistically significant difference);
and

• PTK applied to LCT, which contains structures but also gram-
matical functions and PoS-tags, achieves higher accuracy than
when applied to LOCT (no grammatical/syntactic features)
or to LPST (no structure).

1http://cogcomp.cs.illinois.edu/Data/QA/QC/
2http://disi.unitn.it/moschitti/Tree-Kernel.htm
3Note that higher accuracy values for smoothed STK are shown in
[4] but the one optimizing a validation set is not shown.

LOCT

LCT

LPST

State-of-the-art Results
[Croce et al., EMNLP 2011]

be::v

?::.width::n

of::i

field::n

football::na::d

the::d

what::w

Figure 2: Lexical Only Centered Tree (LOCT).

be::v

VBZROOT?::.

.P

width::n

NNPRDof::i

INNMODfield::n

the::d

DTNMOD

what::w

WPSBJ

field::n

NNPMODfootball::n

NNNMOD

a::d

DTNMOD

Figure 3: Lexical Centered Tree (LCT).

TOP

.

?::.

NN

field::n

NN

football::n

DT

a::d

IN

of::i

NN

width::n

DT

the::d

VBZ

be::v

WP

what::w

Figure 4: Lexical and PoS-Tag Sequences Tree (LPST).

presents the experimental evaluation for QC and Section 4 derives
the conclusions.

2. COMPUTATIONAL STRUCTURES FOR
QUESTION CLASSIFICATION

Thanks to structural kernel similarity, a question classification
(QC) task can be easily modeled by representing questions, i.e.,
the classification objects, with their parse trees. Several syntactic
representations exist, we report the most interesting and effective
structures that we proposed in [7]. Given the following sentence:

(s1) What is the width of a football field?

the representation tree according to a phrase structure paradigm,
i.e. constituency tree (CT), is in Figure 1. We apply lemmatiza-
tion to the lexicals to improve generalization and, at the same time,
we add a generalized PoS-tag, i.e. noun (n::), verb (v::), adjective
(::a), determiner (::d) and so on, to them. This is useful to mea-
sure similarity between lexicals belonging to the same grammatical
category. Our conversion of dependency structures in dependency
trees is done in two steps:

• we generate the tree that includes only lexicals, where the
edges encode their dependencies. We call it the Lexical Only
Centered Tree (LOCT), e.g. see Figure 2.

• To each lexical node, we add two leftmost children, which
encode the grammatical function and POS-Tag, i.e. node fea-
tures. We call this structure the Lexical Centered Tree (LCT),
e.g. see Figure 3.

Additionally, for comparative purposes, we define a flat struc-
ture, the Lexical and PoS-tag Sequences Tree (LPST), e.g. see Fig-
ure 4, which ignores the syntactic structure of the sentence being a

STK PTK SPTK(LSA)
CT 91.20% 90.80% 91.00%
LOCT - 89.20% 93.20%
LCT - 90.80% 94.80%
LPST - 89.40% 89.60%
BOW 88.80%

Table 1: Accuracy of structural kernels applied to different
structures on QC

simple sequence of PoS-tag nodes, where lexicals are simply added
as children.

3. EXPERIMENTS
The aim of the experiments is to analyze the role of lexical simi-

larity embedded in syntactic structures. For this purpose, we present
results on QC and the related error analysis.

3.1 Setup
Our referring corpus is the UIUC dataset [13]. It is composed

by a training set of 5,452 questions and a test set of 500 questions1.
The latter are organized in six coarse-grained classes, i.e., ABBRE-
VIATION, ENTITY, DESCRIPTION, HUMAN, LOCATION and
NUMBER.

For learning our models, we extended the SVM-LightTK soft-
ware2 [14, 15] (which includes structural kernels, i.e., STK and
PTK in SVMLight [8]) with the smooth match between tree nodes,
i.e. the SPTK defined in [7].

For generating constituency trees, we used Charniak’s parser [5]
whereas we applied LTH syntactic parser (described in [12]) to gen-
erate dependency trees.

The lexical similarity was designed with LSA applied to uk-
Wak [1], which is a large scale document collection made by 2
billion tokens (see [7] for more details). We implemented multi-
classification using one-vs-all scheme and selecting the category
associated with the maximum SVM margin.

3.2 Classification Results
The F1 of SVMs using (i) STK applied to CT and (ii) PTK and

SPTK applied to the several structures for QC is reported in Ta-
ble 1. The first column shows the different structures described
in Section 2. The first row lists the tree kernel models. The last
row reports the accuracy of bag-of-words (BOW), which is a linear
kernel applied to lexical vectors.

It is worth nothing that:

• BOW produces high accuracy, i.e. 88.8% but it is improved
by STK, current state-of-the-art3 in QC [18, 17];

• PTK applied to the same tree of STK (i.e. CT) produces a
slightly lower value (non-statistically significant difference);
and

• PTK applied to LCT, which contains structures but also gram-
matical functions and PoS-tags, achieves higher accuracy than
when applied to LOCT (no grammatical/syntactic features)
or to LPST (no structure).

1http://cogcomp.cs.illinois.edu/Data/QA/QC/
2http://disi.unitn.it/moschitti/Tree-Kernel.htm
3Note that higher accuracy values for smoothed STK are shown in
[4] but the one optimizing a validation set is not shown.

Classification in Definition vs not
Definition in Jeopardy

!   Definition: Usually, to do this is to lose a game

without playing it

 (solution: forfeit)

!   Non Definition: When hit by electrons, a

phosphor gives off electromagnetic energy in this

form

!   Complex linguistic problem: let us learn it from

training examples using a syntactic similarity

Automatic Learning of a Question
Classifier

!   Similarity between definition vs non definition

questions

!   Instead of using features-based similarity we use

kernels

!   Combining several linguistic structures with

several kernels for representing a question q:

!   K1(⟨q1,q2⟩)+K2(⟨q1,q2⟩)+…+Kn(⟨q1,q2⟩)

!   Tree kernels measure similarity between trees

NP

D N

VP

V

hit

a phosphor

Syntactic Tree Kernel (STK)
(Collins and Duffy 2002)

Syntactic Tree Kernel (STK)
(Collins and Duffy 2002)

The resulting explicit kernel space

zx

⋅!   counts the number of common substructures

	
 	
 	
 	
 hit	

phosphor phosphor

phosphor phosphor

€

φ(T
x
) =

x = (0,..,1,..,0,..,1,..,0,..,1,..,0,..,1,..,0,..,1,..,0,..,1,..,0)

€

φ(T
z
) =

z = (1,..,0,..,0,..,1,..,0,..,1,..,0,..,1,..,0,..,0,..,1,..,0,..,0)

	
 	
 	
 	
 hit	

phosphor phosphor

phosphor

Experimental setup

!   Corpus: a random sample from 33 Jeopardy!

Games

!   306 definition and 4,964 non-definition clues

!   Tools:
! SVMLight-TK

! Charniak’s constituency parser

!   Syntactic/Semantic parser by Johansson and Nugues
(2008)

!   Measures derived with leave-on-out

Constituency Tree (CT)

ROOT

SBARQ

WHADVP

WRB

When

S

VP

VBN

hit

PP

IN

by

NP

NNS

electrons

,

,

NP

DT

a

NN

phosphor

VP

VBZ

gives

PRP

RP

off

NP

NP

JJ

electromagnetic

NN

energy

PP

IN

in

NP

DT

this

NN

form

ROOT

SBARQ

WHADVP

WRB

When

S

VP

VBN

hit

PP

IN

by

NP

NNS

electrons

,

,

NP

DT

a

NN

phosphor

VP

VBZ

gives

PRP

RP

off

NP

NP

JJ

electromagnetic

NN

energy

PP

IN

in

NP

DT

this

NN

form

PAS

A0

electrons

predicate

hit

AM

When

PAS

A0

a phosphor

predicate

give off

A1

energy

AM

in this form

PAS

A0

electrons

predicate

hit

A1

it

AM

if

PAS

A0

a phosphor

predicate

give off

A1

photons

1

Dependency Tree (DT)

PASS

P

A1

phosphor

A0

electron

PR

hit

P

PR

energy

A2

electromag.

A1

phosphor

P

A1

energy

PR

give

AM-TMP

hit

A0

phosphor

ROOT

VBZ

OBJ

NN

NMOD

IN

PMOD

NN

formNMOD

DT

this

in

energyNMOD

JJ

electromag.

PRT

RP

off

givesSBJ

NN

phosphorNMOD

DT

a

P

,

TMP

VBN

LGS

IN

PMOD

NNS

electrons

by

hitTMP

WRB

when

1

Predicate Argument Structure Set
(PASS)

negative mistake STK, ok PTK

NP

ADJP

JJ

conceited

CC

or

JJ

arrogant

NP

NN

meaning

NN

adjective

NN

5-letter

NN

fowl

positive mistake STK, ok PTK

NP

VP

PP

NP

NN

field

VBG

playing

DT

a

IN

on

VBN

used

NP

NN

grass

JJ

green

JJ

artificial

NP

VP

PP

NP

NN

canal

DT

a

IN

on

VBN

used

NP

NN

boat

JJ

flat-bottomed

DT

a

PASS

P

A1

phosphor

A0

electron

PR

hit

P

PR

energy

AM-MNR

electromag.

A1

phosphor

P

A1

energy

PR

give

AM-TMP

hit

A0

phosphor

1

Sequence Kernels

CSK: [general][science]
(category sequence kernel)

WSK:

PSK:

CSK:

Individual models

Model Combinations

Impact of QC in Watson

!   Specific evaluation on definition questions
!   1,000 unseen games (60,000 questions)

!   Two test sets of 1,606 and 1,875 questions derived
with:

!  Statistical model (StatDef)
!  RBC (RuleDef)

!   Direct comparison only with NoDef

!   All questions evaluation
!   Selected 66 unseen Jeopardy! games

!   3,546 questions

Watson’s Accuracy, Precision and
Earnings

!   Comparison between use or not QC

!   Different set of questions

Error Analysis

Test Example
•  PTK ok
•  STK not ok

Training
Example

PTK
similarity

STK
similarity

Answer/Passage Reranking

Answer/Passage
Reranking

TASK: Question/Answer Classification
[Moschitti, CIKM 2008]

!   The classifier detects if a pair (question and answer) is

correct or not

!   A representation for the pair is needed

!   The classifier can be used to re-rank the output of a basic

QA system

Bags of words (BOW) and POS-tags (POS)

!   To save time, apply tree kernels to these trees:

…

BOX

is What an offer of

* * * * *

…

BOX

VBZ WHNP DT NN IN

* * * * *

Word and POS Sequences

!   What is an offer of…? (word sequence, WSK)

 è What_is_offer

 è What_is

! WHNP VBZ DT NN IN…(POS sequence, POSSK)

 è WHNP_VBZ_NN

 è WHNP_NN_IN

Predicate Argument Structures for
describing answers (PASPTK)

!   [ARG1 Antigens] were [AM−TMP originally] [rel defined] [ARG2 as non-
self molecules].

!   [ARG0 Researchers] [rel describe] [ARG1 antigens][ARG2 as foreign

molecules] [ARGM−LOC in the body]

Dataset 2: TREC data

!   138 TREC 2001 test questions labeled as “description”

!   2,256 sentences, extracted from the best ranked

paragraphs (using a basic QA system based on Lucene

search engine on TREC dataset)

!   216 of which labeled as correct by one annotator

Kernels and Combinations

!   Exploiting the property: k(x,z) = k1(x,z)+k2(x,z)

!   Given: BOW, POS, WSK, POSSK, PT, PASPTK

⇒ BOW+POS, BOW+PT, PT+POS, …

Results on TREC Data
(5 folds cross validation)

20

22

24

26

28

30

32

34

36

38

40

F
1-

m
ea

su
re

Kernel Type

Results on TREC Data
(5 folds cross validation)

20

22

24

26

28

30

32

34

36

38

40

F
1-

m
ea

su
re

Kernel Type

Results on TREC Data
(5 folds cross validation)

20

22

24

26

28

30

32

34

36

38

40

F
1-

m
ea

su
re

Kernel Type

Results on TREC Data
(5 folds cross validation)

20

22

24

26

28

30

32

34

36

38

40

F
1-

m
ea

su
re

Kernel Type

Results on TREC Data
(5 folds cross validation)

20

22

24

26

28

30

32

34

36

38

40

F
1-

m
ea

su
re

Kernel Type

Results on TREC Data
(5 folds cross validation)

20

22

24

26

28

30

32

34

36

38

40

F
1-

m
ea

su
re

Kernel Type

Results on TREC Data
(5 folds cross validation)

20

22

24

26

28

30

32

34

36

38

40

F
1-

m
ea

su
re

Kernel Type

BOW ≈ 24
POSSK+STK+PAS_PTK≈ 39
⇒62 % of improvement

Semantic Role Labeling

!   In an event:
!   target words describe relation among different entities

!   the participants are often seen as predicate's arguments.

! Example:
Paul gives a talk in Rome

Example on Predicate Argument
Classification

!   In an event:
!   target words describe relation among different entities

!   the participants are often seen as predicate's arguments.

! Example:
[Arg0 Paul] [predicate gives] [Arg1 a talk] [ArgM in Rome]

Predicate-Argument Feature
Representation

Given a sentence, a predicate p:

1.  Derive the sentence parse tree

2.  For each node pair <Np,Nx>
a.  Extract a feature representation set

F

b.  If Nx exactly covers the Arg-i, F is
one of its positive examples

c.  F is a negative example otherwise

Vector Representation for the linear kernel

Predicate

S

N

NP

D N

VP

V Paul

in

delivers

a talk

PP

IN N

Rome

Arg. 1

Phrase Type

Predicate
Word

Head Word

Parse Tree
Path

Voice Active

Position Right

PAT Kernel [Moschitti, ACL 2004]

S

N

NP

D N

VP

V Paul

in

delivers

a talk

PP

IN NP

jj

Fv,arg.0

 formal

 N

 style

Arg. 0

a) S

N

NP

D N

VP

V Paul

in

delivers

a talk

PP

IN NP

jj

 formal

 N

 style

Fv,arg.1
b) S

N

NP

D N

VP

V Paul

in

delivers

a talk

PP

IN NP

jj

 formal

 N

 style

Arg. 1

Fv,arg.M

c)

Arg.M

!   These are Semantic Structures

!   Given the sentence:

 [Arg0 Paul] [predicate delivers] [Arg1 a talk] [ArgM in formal Style]

In other words we consider…

NP

D N

VP

V

delivers

a talk

S

N

Paul

in

PP

IN NP

jj

 formal

 N

 style
Arg. 1

Sub-Categorization Kernel (SCF)
[Moschitti, ACL 2004]

S

N

NP

D N

VP

V Paul

in

delivers

a talk

PP

IN NP

jj

 formal

 N

 style

Arg. 1

Arg. M

Arg. 0

Predicate

Experiments on Gold Standard Trees

!   PropBank and PennTree bank
!   about 53,700 sentences

!   Sections from 2 to 21 train., 23 test., 1 and 22 dev.

!   Arguments from Arg0 to Arg5, ArgA and ArgM for

 a total of 122,774 and 7,359

!   FrameNet and Collins’ automatic trees
!   24,558 sentences from the 40 frames of Senseval 3

!   18 roles (same names are mapped together)

!   Only verbs

!   70% for training and 30% for testing

Argument Classification with Poly Kernel

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

1 2 3 4 5d

A
cc

ur
ac

y
 d

FrameNet
PropBank

PropBank Results

Args P3 PAT PAT+P PAT×P SCF+P SCF×P
Arg0 90.8 88.3 92.6 90.5 94.6 94.7
Arg1 91.1 87.4 91.9 91.2 92.9 94.1
Arg2 80.0 68.5 77.5 74.7 77.4 82.0
Arg3 57.9 56.5 55.6 49.7 56.2 56.4
Arg4 70.5 68.7 71.2 62.7 69.6 71.1
ArgM 95.4 94.1 96.2 96.2 96.1 96.3
Global
Accuracy

90.5 88.7 91.3 90.4 92.4 93.2

Argument Classification on PAT using
different Tree Fragment Extractor

0.75

0.78

0.80

0.83

0.85

0.88

0 10 20 30 40 50 60 70 80 90 100

A
cc

ur
ac

y

% Training Data

ST SST

Linear PT

Boundary Detection

NP

D N

VP

V

delivers

a talk

S

N

Paul

in

PP

IN NP

jj

 formal

 N

 style
Arg. 1

Improvement by Marking Boundary nodes

Node Marking Effect

Experiments

! PropBank and PennTree bank
!   about 53,700 sentences

! Charniak trees from CoNLL 2005

!   Boundary detection:
!   Section 2 training

!   Section 24 testing

! PAF and MPAF

Number of examples/nodes of Section 2

Predicate Argument Feature (PAF) vs. Marked
PAF (MPAF) [Moschitti et al, CLJ 2008]

Results on FrameNet SRL
[Coppola and Moschitti, LREC 2010]
!   135,293 annotated and parsed sentences.

!   782 different frames (including split per pos-tag)

!   90% of training data for BD and BC 121,798 sentences

!   10% of testing data (1,345 sentences)

Experiments on Luna Corpus
[Coppola at al, SLT 2008]

Evaluation Stage Precision Recall F1

Boundary Detection 0.905 0.873 0.889

Boundary Detection

+ Role Classification

0.774 0.747 0.760

!   BD and RC over 50 Human-Human dialogs
!   1,677 target words spanning 162 different frames

!   manually-corrected syntactic trees

!   Training 90% data and testing on remaining 10%

!   Automatic SRL viable for Spoken Dialog Data

The Relation Extraction Problem

EMPLOYMENT
CEO ↔ Google

LOCATED

research center ↔ Beijing

Given a text with some available entities,
how to recognize relations ?

Last Wednesday, Eric
Schmidt, the CEO of
Google, defended the
s e a r c h e n g i n e ' s
c o o p e r a t i o n w i t h
Chinese censorship as
h e a n n o u n c e d t h e
creation of a research
center in Beijing.

Relation Extraction: The task

!   Task definition: to label the semantic relation between

pairs of entities in a sentence
!   The governor from Connecticut

!   Is there a relation between M1 and M2?
If, so what kind of relation?

M1
type: PER

M2
type: LOC

M := Entity Mention

Relation Extraction defined in ACE

!   Major relation types (from ACE 2004)

!   Entity types: PER, ORG, LOC, GPE, FAC, VEH, WEA

System Description (Nguyen et al, 2009)

Tree Kernel-
based SVMs

Multi-class
Classification

RELATIONS

Stanford
Parser

Parse Trees with
Entities Raw texts

ACE documents

Entities and
Relations

Relation Representation
(Moschitti 2004;Zhang et al. 2006)

corporation in established Iowa the by Pylant Andrew

NNP VBN IN NNP

NP

T1-ORG

NP

DT

T2-LOC

PP

VP

NP

IN NNP NNP

NP

PP

PER

!   The Path-enclosed tree captures the “PHYSICAL.LOCATED” relation
between “corporation” and “Iowa”

Comparison

Method Data P (%) R (%) F1 (%)

Zhang et al.
(2006)

Composite Kernel
(linear) with Context-
Free Parse Tree

ACE 2004 73.5 67.0 70.1

Ours
Composite Kernel
(linear) with Context-
Free Parse Tree

ACE 2004 69.6 68.2 69.2

Both use the Path-Enclosed Tree for Relation Representation

Several Combination Kernels
[Vien et al, EMNLP 2009]

Results on ACE 2004

Coreference Resolution

!   Subtree that covers both anaphor and antecedent candidate

⇒ syntactic relations between anaphor & candidate (subject, object,
c-commanding, predicate structure)

!   Include the nodes in path between anaphor and candidate, as
well as their first_level children

– “the man in the room saw him”	

–  inst(“the man”, “him”)	

Context Sequence Feature

!   A word sequence representing the mention
expression and its context
!   Create a sequence for a mention

–  “Even so, Bill Gates says that he just doesn’t
understand our infatuation with thin client versions of
Word ”	

–  (so)(,) (Bill)(Gates)(says)(that)	

Composite Kernel

!   Different kernels for different features
!   Poly Kernel for baseline flat features

!   Tree Kernel for syntax trees

!   Sequence Kernel for word sequences

!   A composite kernel for all kinds of features

!   Composite Kernel = TK*PolyK+PolyK+SK

Results for pronoun resolution
[Vesley et al, Coling 2008]

MUC-6 ACE-02-BNews

R P F R P F

All attribute

value features
64.3 63.1 63.7 58.9 68.1 63.1

+ Syntactic Tree

+ Word

Sequence

65.2 80.1 71.9 65.6 69.7 67.6

Results on the overall Coreference
Resolution using SVMs

MUC-6 ACE02-BNews

R P F R P F
BaseFeature SVMs 61.5 67.2 64.2 54.8 66.1 59.9
BaseFeature +

Syntax Tree
63.4 67.5 65.4 56.6 66.0 60.9

BaseFeature

+SyntaxTree + Word

Sequences

64.4 67.8 66.0 57.1 65.4 61.0

All Sources of

Knowledge
60.1 76.2 67.2 60.0 65.4 63.0

Kernels for Reranking

Reranking framework

Local Model

More formally

!   Build a set of hypotheses: Q and A pairs

!   These are used to build pairs of pairs,

!   positive instances if Hi is correct and Hj is not correct

!   A binary classifier decides if Hi is more probable
than Hj

!   Each candidate annotation Hi is described by a
structural representation

!   This way kernels can exploit all dependencies
between features and labels

Hi , Hj

Preference Kernel

where K is a kernels on the text, e.g., in case
of question and answer:

K x
1
, y

1() = PTK q
x1
, q

y1()+PTK a
x1
, a

y1()

φ(x
1
)−φ(x

2
),φ(y

1
)−φ(y

2
) =

Syntactic Parsing Reranking

!   Pairs of parse trees (Collins and Duffy, 2002)

! N-best parse generated by the Collins’ parser

!   Re-ranking using STK in a perceptron algorithm

Concept Segmentation and Classification
of speech

!   Given a transcription, i.e., a sequence of words, chunk

and label subsequences with concepts

!   Air Travel Information System (ATIS)
!   Dialog systems answering user questions

!   Conceptually annotated dataset

!   Frames

An example of concept annotation in ATIS

!   User request: list TWA flights from Boston to

Philadelphia

!   The concepts are used to build rules for the dialog manager

(e.g. actions for using the DB)
!   from location
!   to location

!   airline code

Our Approach
[Dinarelli et al., TASL 2012]

!   Use of Finite State Transducer (or CRF) to generate word

sequences and concepts

!   Probability of each annotation

⇒ m best hypothesis can be generated

!   Idea: use a discriminative model to choose the best one
!   Re-ranking and selecting the top one

Reranking for SLU

FST

Input
Utterance

ASR

Reranking concept labeling

!   I have a problem with my monitor

Hi: I NULL have NULL a PROBLEM-B problem PROBLEM-I
with NULL my HW-B monitor HW-I

Hj: I NULL have NULL a NULL problem HW-B with NULL
my NULL monitor

Luna Corpus

!   Wizard of OZ, helpdesk scenario

Media Corpus

Flat tree representation

have	

 a	

 problem	

 with	

 my	

NULL	

I	

NULL	

Cross-language approach: Italian version

Multilevel Tree

Enriched Multilevel Tree

Results on LUNA

Results on Media

Reranking for Named-Entity Recognition
[Vien et al, 2010]

! CRF F1 from 84.86 to 88.16

!   Best Italian system F1 82, improved to 84.33

Today	

 a car	

 a ravine	

pushed	

Reranking Predicate Argument Structures
[Moschitti et al, CoNLL 2006]

!   SVMs F1 from 75.89

to 77.25

!   Today, a car was pushed into a ravine.

Relational Kernels

Recognizing Textual Entailment

T1

H1

“At the end of the year, all solid companies pay dividends.”

“At the end of the year, all solid insurance companies pay dividends.”

T1 ⇒ H1

… the textual entailment recognition task:
 determine whether or not a text T implies a hypothesis H

“Traditional” machine learning approaches:

similarity-based methods à distance in feature spaces

learning textual entailment recognition rules
from annotated examples

Determine Intra-pair links

Determine cross pair links

Our Model (Zanzotto and Moschitti, ACL2006)

Defining a similarity between pairs based on:

 Kent((T’,H’),(T’’,H’’))=KI((T’,H’),(T’’,H’’))+KS((T’,H’),(T’’,H’’))

! Intra-pair similarity

KI((T’,H’),(T’’,H’’))=s(T’,H’)×s(T’’,H’’)

! Cross-pair similarity

KS((T’,H’),(T’’,H’’))≈ KT(T’,T’’)+ KT(H’,H’’)

The final kernel

where:
!   c is an assignment of placeholders

!   t transforms the trees according to the assigned
placeholders

Experimental Results

BOW+LS + TK + Kent
System

Avg.

RTE1 0.5888 0.6213 0.6300 0.54

RTE2 0.6038 0.6238 0.6388 0.59

!   RTE1 (1st Recognising Textual Entailment Challenge) [Dagan et al.,
2005]
!   567 training and 800 test examples

!   RTE2, [Bar Haim et al., 2006]
!   800 training and 800 test examples

RTE-2 results

!   Most systems use ML

!   Best systems use a lot of knowledge

!   Average accuracy still low: 0.59

Relational Kernels for
Answer Reranking

Results on TREC Data
(5 folds cross validation)

20

22

24

26

28

30

32

34

36

38

40

F
1-

m
ea

su
re

Kernel Type

BOW ≈ 24
POSSK+STK+PAS_PTK≈ 39
⇒62 % of improvement

An example of Jeopardy! Question

Baseline Model

Question

Answer

Methodology:

1-Applying PTK without any extra annotation and
evaluate the model as baseline.

!"#$%&'(

)'$*#+(

Best Model

Methodology:

1-Applying lemmatization and stemming in
leaves level.

2-Add an anchor to pre-terminal and higher
levels if the sub-trees are shared in Q and A.

3-Ignore stop words in matching procedure.

Question

Answer

!"#$%&'(

Representation Issues

!   Very large sentences

!   The Jeopardy! cues can be constituted by more

than one sentence

!   The answer is typically composed by several

sentences

!   Too large structures cause inaccuracies in the

similarity and the learning algorithm looses some

of its power

Running example (randomly picked Q/A
pair from Answerbag)

Question: Is movie theater popcorn vegan?

Answer:

(01) Any movie theater popcorn that includes butter
-- and therefore dairy products -- is not vegan.

(02) However, the popcorn kernels alone can be
considered vegan if popped using canola, coconut
or other plant oils which some theaters offer as an
alternative to standard popcorn.

Shallow models for Reranking:
[Sveryn&Moschitti, SIGIR2012]

SQ

VBZ

is

NN

movie

NN

theater

JJ

popcorn

NN

vegan

bag	
 of	
 pos	
 tags	

bag	
 of	
 words	

and	
 their	

combina3on	

S

DT

any

NN

movie

NN

theater

NN

popcorn

WDT

that

VBZ

includes

NN

butter

CC

and

RB

therefore

JJ

dairy

NNS

products

VBZ

is

RB

not

NN

vegan

Ques%on	

Answer	

(is)	
 (movie)	
 (theater)	
 (popcorn)	
 (vegan)	

(any)	
 (movie)	
 (theater)	
 (popcorn)	
 (that)	
 (includes)	
 (bu:er)	
 (and)	
 (therefore)	
 (dairy)	
 (products)	
 (is)	
 (not)	
 (vegan)	

(DT)	
 (NN)	
 (NN)	
 (NN)	
 (WDT)	
 (VBZ)	
 (NN)	
 (CC)	
 (RB)	
 (JJ)	
 (NNS)	
 (VBZ)	
 (RB)	
 (NN)	

(VBZ)	
 (NN)	
 (NN)	
 (JJ)	
 (NN)	

Linking question with the answer 01

S

DT

any

NN

movie

NN

theater

NN

popcorn

WDT

that

VBZ

includes

NN

butter

CC

and

RB

therefore

JJ

dairy

NNS

products

VBZ

is

RB

not

NN

vegan

SQ

VBZ

is

NN

movie

NN

theater

JJ

popcorn

NN

vegan

Lexical	
 matching	
 is	
 on	
 word	

lemmas	
 (using	
 WordNet	

lemma3zer)	

S

RB

however

DT

the

JJ

popcorn

NNS

kernels

RB

alone

MD

can

VB

be

VBN

considered

NN

vegan

IN

if

VBN

popped

VBG

using

NN

canola

NN

coconut

CC

or

JJ

other

NN

plant

NNS

oils

WDT

which

DT

some

NNS

theaters

VBP

offer

IN

as

DT

an

NN

alternative

TO

to

JJ

standard

NN

popcorn

S

RB

however

DT

the

JJ

popcorn

NNS

kernels

RB

alone

MD

can

VB

be

VBN

considered

NN

vegan

IN

if

VBN

popped

VBG

using

NN

canola

NN

coconut

CC

or

JJ

other

NN

plant

NNS

oils

WDT

which

DT

some

NNS

theaters

VBP

offer

IN

as

DT

an

NN

alternative

TO

to

JJ

standard

NN

popcorn

Linking question with the answer 02

S

DT

any

NN

movie

NN

theater

NN

popcorn

WDT

that

VBZ

includes

NN

butter

CC

and

RB

therefore

JJ

dairy

NNS

products

VBZ

is

RB

not

NN

vegan

SQ

VBZ

is

NN

movie

NN

theater

JJ

popcorn

NN

vegan

Ques3on	
 sentence	

Lexical	
 matching	
 is	
 on	
 word	

lemmas	
 (using	
 WordNet	

lemma3zer)	

S

DT

any

REL-NN

movie

REL-NN

theater

REL-NN

popcorn

WDT

that

VBZ

includes

NN

butter

CC

and

RB

therefore

JJ

dairy

NNS

products

REL-VBZ

is

RB

not

REL-NN

vegan

SQ

REL-VBZ

is

REL-NN

movie

REL-NN

theater

REL-JJ

popcorn

REL-NN

vegan

Linking question with the answer:
relational tag

Marking	
 pos	
 tags	
 of	
 the	
 aligned	

words	
 by	
 a	
 rela3onal	
 tag:	
 “REL”	

Answerbag data

! www.answerbag.com: professional question

answer interactions

!   Divided in 30 categories, Art, education, culture,

…

!   180,000 question-answer pairs

Learning Curve-Answerbag

1.5

2.8

4.4

12.3

46.9
71.8

0.2

0.4

0.7

1.9
6.4

11.3

M
R

R

72

73

74

75

76

77

78

training size (in thousands)

25 50 100 250 500 750

PTK

STK

baseline

Figure 11: Learning curve for MRR using PTK and
STK. Labels along the curves correspond to the training
time in hours.

R
E

C
1
@

1

59

60

61

62

63

64

65

66

training size (in thousands)

25 50 100 250 500 750

PTK

STK

baseline

Figure 12: Learning curve for REC1@1 using PTK and
STK.

on relatively small datasets. Hence we studied the learn-
ing curves for these models on 50k and 100k training sets
and found that CH+REL with pruning at ray=1 provided
the steepest learning curve, while maintaining the optimal
tradeo� between the training runtime and accuracy. We also
prefer a simpler CH+REL model, which only requires to per-
form POS-tagging and chunking, over more refined models
with NER and WNSS tags, which require additional pre-
processing. Thus, we build learning curves for the CH+REL
models using STK and PTK reporting MRR (Fig. 11) and
REC1@1 (Fig. 12). The plots demonstrate nice scaling be-
havior when training CH+REL re-ranker model on larger
data. For example, the PTK-based rerankers improve BM25
by about 6 absolute points in MRR, i.e., 71.6 vs. 77.8, and
about 7 points in R1@1, i.e., 59.1 vs. 66.5, for a relative
error reduction of about 18-20% in R1@1.

5.5 Jeopardy! experiments
Since the size of Jeopardy! dataset does not allow for

building a meaningful learning curve we report the plot of
R1@x, which measures the percentage of questions with at
least one correct answer in the first x positions. We exper-
imented with PTK applied to CH+REL structures also en-
coding NER and WNSS. Figure 13 shows that for any rank
position, the simplest model outperforms semantic mod-
els. Most importantly, the Primary Search of Watson is
improved up to 5 points for an error reduction of 20%.

6. CONCLUSIONS
The key aspect in learning to rank answer passages for

QA systems is the use of relationships between the ques-

R
E

C
1

50

55

60

65

70

75

80

threshold

1 2 3 4 5 6 7 8 9 10

baseline

CH+REL

CH+REL+NER

CH+REL+NER+WNSS

Figure 13: Recall of 1 at di�erent rank position for the
Jeopardy! dataset.

tion and the supporting passages of its answer candidates.
Supervised methods can generalize the properties found in
di�erent question/answer pairs and use them to evaluate
the validity of new candidates. In this perspective, the most
di⇤cult aspect is the design of relational features that can
enable the learning algorithm to learn the properties above.
In this paper, we propose robust and simple models to learn
such properties from large datasets. On one hand, we use
shallow syntactic and semantic (at lexical level) represen-
tations, which can be e⇤ciently and automatically derived
with high accuracy. On the other hand, we exploit the power
of structural kernels for automatic engineering of a huge
number of structural features. Applied to large training sets
(hundreds of thousands) our models allow for e⇤cient learn-
ing of complex question/answer relationships.
Our experiments with Support Vector Machines (SVMs)

and various shallow models on two datasets: Answerbag and
Jeopardy! show that: (i) bag-of-features of question and
answer passages, ranging from words to POS-tags or trans-
lation probabilities are not e�ective; (ii) relational features,
i.e., encoding pair properties, become e�ective only when
used in structures, e.g, using SK; and (iii) the best compro-
mise between e⇤ciency and accuracy is given by the pure
shallow syntactic tree structures as NER or WNSS may in-
troduce noise. Additionally, large scale experiments show
significant improvement - about 18-20% of reduction in Re-
call error, on two strong baselines for passage re-ranking,
i.e., BM25 and IBM Watson primary search.

7. REFERENCES
[1] M. Bilotti, P. Ogilvie, J. Callan, and E. Nyberg.

Structured retrieval for question answering. In
Proceedings of ACM SIGIR, 2007.

[2] M. W. Bilotti, J. L. Elsas, J. Carbonell, and
E. Nyberg. Rank learning for factoid question
answering with linguistic and semantic constraints. In
Proceedings of the 19th ACM International Conference
on Information and Knowledge Management (CIKM
2010), 2010.

[3] M. W. Bilotti and E. Nyberg. Improving text retrieval
precision and answer accuracy in question answering
systems. In Proceedings of the Second Information
Retrieval for Question Answering (IR4QA) Workshop
at COLING 2008, 2008.

[4] S. Blair-Goldensohn, K. R. McKeown, and A. H.
Schlaikjer. Answering definitional questions: A hybrid
approach. In M. Maybury, editor, Proceedings of
AAAI 2004. AAAI Press, 2004.

Jeopardy! data (T9)

!   Total number of questions: 517

!   50+ candidate answer passages per question

!   Questions with at least one correct answer: 375

!   Use only questions with at least one correct answer

!   Each relevant passage is paired with each
irrelevant

!   Split the data:
!   train 70% (259 questions): 63361 examples for re-ranker

!   test 30% (116 question): 5706 examples for re-ranker

Jeopardy! data

1.5

2.8

4.4

12.3

46.9
71.8

0.2

0.4

0.7

1.9
6.4

11.3

M
R

R

72

73

74

75

76

77

78

training size (in thousands)

25 50 100 250 500 750

PTK

STK

baseline

Figure 11: Learning curve for MRR using PTK and
STK. Labels along the curves correspond to the training
time in hours.

R
E

C
1

@
1

59

60

61

62

63

64

65

66

training size (in thousands)

25 50 100 250 500 750

PTK

STK

baseline

Figure 12: Learning curve for REC1@1 using PTK and
STK.

on relatively small datasets. Hence we studied the learn-
ing curves for these models on 50k and 100k training sets
and found that CH+REL with pruning at ray=1 provided
the steepest learning curve, while maintaining the optimal
tradeo� between the training runtime and accuracy. We also
prefer a simpler CH+REL model, which only requires to per-
form POS-tagging and chunking, over more refined models
with NER and WNSS tags, which require additional pre-
processing. Thus, we build learning curves for the CH+REL
models using STK and PTK reporting MRR (Fig. 11) and
REC1@1 (Fig. 12). The plots demonstrate nice scaling be-
havior when training CH+REL re-ranker model on larger
data. For example, the PTK-based rerankers improve BM25
by about 6 absolute points in MRR, i.e., 71.6 vs. 77.8, and
about 7 points in R1@1, i.e., 59.1 vs. 66.5, for a relative
error reduction of about 18-20% in R1@1.

5.5 Jeopardy! experiments
Since the size of Jeopardy! dataset does not allow for

building a meaningful learning curve we report the plot of
R1@x, which measures the percentage of questions with at
least one correct answer in the first x positions. We exper-
imented with PTK applied to CH+REL structures also en-
coding NER and WNSS. Figure 13 shows that for any rank
position, the simplest model outperforms semantic mod-
els. Most importantly, the Primary Search of Watson is
improved up to 5 points for an error reduction of 20%.

6. CONCLUSIONS
The key aspect in learning to rank answer passages for

QA systems is the use of relationships between the ques-

R
E

C
1

50

55

60

65

70

75

80

threshold

1 2 3 4 5 6 7 8 9 10

baseline

CH+REL

CH+REL+NER

CH+REL+NER+WNSS

Figure 13: Recall of 1 at di�erent rank position for the
Jeopardy! dataset.

tion and the supporting passages of its answer candidates.
Supervised methods can generalize the properties found in
di�erent question/answer pairs and use them to evaluate
the validity of new candidates. In this perspective, the most
di⇤cult aspect is the design of relational features that can
enable the learning algorithm to learn the properties above.
In this paper, we propose robust and simple models to learn
such properties from large datasets. On one hand, we use
shallow syntactic and semantic (at lexical level) represen-
tations, which can be e⇤ciently and automatically derived
with high accuracy. On the other hand, we exploit the power
of structural kernels for automatic engineering of a huge
number of structural features. Applied to large training sets
(hundreds of thousands) our models allow for e⇤cient learn-
ing of complex question/answer relationships.
Our experiments with Support Vector Machines (SVMs)

and various shallow models on two datasets: Answerbag and
Jeopardy! show that: (i) bag-of-features of question and
answer passages, ranging from words to POS-tags or trans-
lation probabilities are not e�ective; (ii) relational features,
i.e., encoding pair properties, become e�ective only when
used in structures, e.g, using SK; and (iii) the best compro-
mise between e⇤ciency and accuracy is given by the pure
shallow syntactic tree structures as NER or WNSS may in-
troduce noise. Additionally, large scale experiments show
significant improvement - about 18-20% of reduction in Re-
call error, on two strong baselines for passage re-ranking,
i.e., BM25 and IBM Watson primary search.

7. REFERENCES
[1] M. Bilotti, P. Ogilvie, J. Callan, and E. Nyberg.

Structured retrieval for question answering. In
Proceedings of ACM SIGIR, 2007.

[2] M. W. Bilotti, J. L. Elsas, J. Carbonell, and
E. Nyberg. Rank learning for factoid question
answering with linguistic and semantic constraints. In
Proceedings of the 19th ACM International Conference
on Information and Knowledge Management (CIKM
2010), 2010.

[3] M. W. Bilotti and E. Nyberg. Improving text retrieval
precision and answer accuracy in question answering
systems. In Proceedings of the Second Information
Retrieval for Question Answering (IR4QA) Workshop
at COLING 2008, 2008.

[4] S. Blair-Goldensohn, K. R. McKeown, and A. H.
Schlaikjer. Answering definitional questions: A hybrid
approach. In M. Maybury, editor, Proceedings of
AAAI 2004. AAAI Press, 2004.

Part II: Advanced Topics

Efficiency Issue

!   Working in dual space with SVMs implies

quadratic complexity

!   Our solutions:
!   cutting-plane algorithm with sampling uSVMs
[Yu & Joachims, 2009] [Severyn&Moschitti, ECML PKDD 2010]

!   Compacting SVM models with DAGs
 [Severyn&Moschitti, ECML PKDD 2011]

!   Compacting SVM models with DAGs in on line models
[Aiolli et al, CIDM 2007]

CPA in a nutshell

Original SVM Problem
!   Exponential constraints

!   Most are dominated by a small set of

“important” constraints

CPA SVM Approach
!   Repeatedly finds the next most

violated constraint…

!   …until set of constraints is a good

approximation.

CPA in a nutshell

Original SVM Problem
!   Exponential constraints

!   Most are dominated by a small set of

“important” constraints

CPA SVM Approach
!   Repeatedly finds the next most

violated constraint…

!   …until set of constraints is a good

approximation.

CPA in a nutshell

Original SVM Problem
!   Exponential constraints

!   Most are dominated by a small set of

“important” constraints

CPA SVM Approach
!   Repeatedly finds the next most

violated constraint…

!   …until set of constraints is a good

approximation.

CPA in a nutshell

Original SVM Problem
!   Exponential constraints

!   Most are dominated by a small set of

“important” constraints

CPA SVM Approach
!   Repeatedly finds the next most

violated constraint…

!   …until set of constraints is a good

approximation.

Computing most violated constraint (MVC)

~w · �(~xi) =
tX

j=1

↵j~g
(j) · �(~xi)

Computing most violated constraint (MVC)

~w · �(~xi) =
tX

j=1

↵j~g
(j) · �(~xi)

~

g

(j) =
1

n

nX

k=1

c

(j)
k yk�(~xk)

Computing most violated constraint (MVC)

~w · �(~xi) =
tX

j=1

↵j~g
(j) · �(~xi)

~

g

(j) =
1

n

nX

k=1

c

(j)
k yk�(~xk)

~w · �(~xi) =
tX

j=1

↵j

nX

k=1

⇣ 1

n

c

(j)
k yk

⌘
K(~xi, ~xk)

Approximate CPA (Yu & Joachims, 2009)

!   Main bottleneck to apply kernels comes from the

inner product:

!   Use sampling to approximate exact cutting plane

models

~w · �(~xi) =
tX

j=1

↵j

nX

k=1

⇣ 1

n

c

(j)
k yk

⌘
K(~xi, ~xk)

~w · �(~xi) =
tX

j=1

↵j

rX

k=1

⇣1
r

c

(j)
k yk

⌘
K(~xi, ~xk)

Three	
 syntac%c	
 trees	
 and	
 the	
 resul%ng	
 DAG	

VP,1VP,1

NP,2V,2 NP,1

D,3 JJ,1 N,3buy,2

a,3 red,1 car,3

VP

NPV

D JJ Nbuy

a red car

NP

D N

a car

VP

V

buy

NP

D N

a car

Three	
 syntac%c	
 trees	
 and	
 the	
 resul%ng	
 DAG	

VP,1VP,1

NP,2V,2 NP,1

D,3 JJ,1 N,3buy,2

a,3 red,1 car,3

VP

NPV

D JJ Nbuy

a red car

NP

D N

a car

VP

V

buy

NP

D N

a car

SDAG

!   Compacts each CPA model into a single DAG

~w · �(~xi) =
tX

j=1

↵jKdag(~

dag(j), ~xi)

~w · �(~xi) =
tX

j=1

↵j

rX

k=1

⇣1
r

c

(j)
k yk

⌘
K(~xi, ~xk)

SDAG+

!   Compacts all CPA models in the working set into

a single DAG

~w · �(~xi) = Kdag(
d
~

dag(t), ~xi)

~w · �(~xi) =
tX

j=1

↵j

rX

k=1

⇣1
r

c

(j)
k yk

⌘
K(~xi, ~xk)

Reverse Kernel Engineering

!   Input: an SVM model, i.e.,

!   Output: a ranked list of tree fragments

!   Intuitively the more a fragment is important the

higher is its weight

!   Mine tree structures with higher weight first
!   Start from the smallest structures

!   Add nodes to them

!   Stop when reached the max size of the list

!   More in detail…

€

 w

Mining the weight of a fragment

Reverse Engineering Framework

Reverse Engineering Framework

Reverse Engineering Framework

Reverse Engineering Framework

Reverse Engineering Framework

Reverse Engineering Framework

Reverse Engineering Framework

Reverse Engineering Framework

Semantic Role Labeling

Setting

Results
About 10 time faster -Training (and testing)
Parallelizable!

Question
Classification

Question Classification

!   Definition: What does HTML stand for?

!   Description: What's the final line in the Edgar Allan Poe
poem "The Raven"?

!   Entity: What foods can cause allergic reaction in people?

!   Human: Who won the Nobel Peace Prize in 1992?

!   Location: Where is the Statue of Liberty?

!   Manner: How did Bob Marley die?

!   Numeric: When was Martin Luther King Jr. born?

!   Organization: What company makes Bentley cars?

Results

! Tr+, Te+: number of positive/negative training instances

! SSTl : linearized tree kernel 	

Interpretation (Abbreviation Class)

(NN(abbreviation))

(NP(DT)(NN(abbreviation)))
(NP(DT(the))(NN(abbreviation)))

(IN(for))

(VB(stand))

(VBZ(does))

(PP(IN))
(VP(VB(stand))(PP))

(NP(NP(DT)(NN(abbreviation)))(PP))

(SQ(VBZ)(NP)(VP(VB(stand))(PP)))

(SBARQ(WHNP)(SQ(VBZ)(NP)(VP(VB(stand))(PP)))(.))

(SQ(VBZ(does))(NP)(VP(VB(stand))(PP)))
(VP(VBZ)(NP(NP(DT)(NN(abbreviation)))(PP)))

Interpretation (Numeric Class)

(WRB(How))

(WHADVP(WRB(When)))
(WRB(When))

(JJ(many))

(NN(year))

(WHADJP(WRB)(JJ))

(NP(NN(year)))
(WHADJP(WRB(How))(JJ))

(NN(date))

(SBARQ(WHADVP(WRB(When)))(SQ)(.(?)))

(SBARQ(WHADVP(WRB(When)))(SQ)(.))

(NN(day))

Interpretation (Description Class)

(WRB(Why))

(WHADVP(WRB(Why)))
(WHADVP(WRB(How)))

(WHADVP(WRB))

(VB(mean))

(VBZ(causes))

(VB(do))
(SBARQ(WHADVP(WRB(How)))(SQ))

(WRB(How))

(SBARQ(WHADVP(WRB(How)))(SQ)(.))

(SBARQ(WHADVP(WRB(How)))(SQ)(.(?)))

Conclusions

!   We used powerful ML algorithms
!   e.g., Support Vector Machines

!   Robust to noise

!   Abstract representations of examples
!   Similarity functions (Kernel Methods)

!   Structural syntactic/semantic similarity

!   Modeling NLP tasks with: advanced syntactic and shallow

semantic structures and relational marker

!   Experiments demonstrate the benefit of such approach

Conclusions (cont’d)

!   Kernel methods and SVMs are useful tools to design
language applications

!   Basic general kernel functions can be used to engineer
new kernels

!   Little effort in selecting and marking/tailoring/decorating/
designing trees or designing sequences

!   Easy modeling produces state-of-the-art accuracy in many
tasks, SRL, RE, CR, QA, NER, SLU, RTE

!   Fast prototyping and model adaptation

Future (on going work)

!   Deeper modeling of paragraphs: shallow semantics and

discourse structures

!   The objective is to design more compact and accurate

models applicable to whole paragraphs.

!   Use of reverse kernel engineering to study linguistic

phenomena:
!   [Pighin&Moschitti, CoNLL2009, EMNLP2009, CoNLL2010]

!   To mine the most relevant fragments according to SVMs gradient

!   To use the linear space

!   Experimenting with combined uSVMs and linearized

models: learning on large-scale data

Thank you

Acknowledgments

This research has been partially supported by the
European project EternalS #247758:

Trustworthy Eternal Systems via !
Evolving Software, Data and !
Knowledge

Many Thanks to the IBM Watson team and all the

other co-authors and contributors of the iKernels

group

Acknowledgments

!   I wish to thank Thorsten Joachims, Fabio

Massimo Zanzotto, Daniele Pighin, Aliaksei

Severyn for using some of their slides

References

!   M. Dinarelli, A. Moschitti, and G. Riccardi. Discriminative Reranking for Spoken
Language Understanding. IEEE Transaction on Audio, Speech and Language

Processing, 2011.

!   Alessandro Moschitti and Silvia Quarteroni, Linguistic Kernels for Answer Re-ranking in

Question Answering Systems, Information and Processing Management: an
International journal, ELSEVIER, 2011

! Danilo Croce, Alessandro Moschitti, and Roberto Basili. Structured lexical similarity via

convolution kernels on dependency trees. In Proceedings of EMNLP, Edinburgh,

Scotland, UK., July 2011. Association for Computational Linguistics.

! Aliaksei Severyn and Alessandro Moschitti. Fast support vector machines for structural

kernels. In ECML-PKDD, 2011, Greece, 2011. Best Machine Learning Student Paper

Award

References

! Truc Vien T. Nguyen and Alessandro Moschitti. Joint distant and direct supervision for
relation extraction. In Proceedings of the The 5th International Joint Conference on

Natural Language Processing, Chiang Mai, Thailand, November 2011, Association for

Computational Linguistics.

!   Alessandro Moschitti, Jennifer Chu-carroll, Siddharth Patwardhan, James Fan, and

Giuseppe Riccardi. Using syntactic and semantic structural kernels for classifying

definition questions in Jeopardy! In Proceedings of EMNLP, pages 712–724,

Edinburgh, Scotland, UK., July 2011. Association for Computational Linguistics.

! Truc Vien T. Nguyen and Alessandro Moschitti. End-to-end relation extraction using

distant supervision from external semantic repositories. In Proceedings of HLT-ACL,

Portland, Oregon, USA, June 2011. Association for Computational Linguistics.

!   Large-Scale Support Vector Learning with Structural Kernels, In Proceedings of the

21th European Conference on Machine Learning (ECML-PKDD2010), Barcelona,
Spain, 2010.

References

!   Alessandro Moschitti’ handouts http://disi.unitn.eu/~moschitt/teaching.html

!   Alessandro Moschitti and Silvia Quarteroni, Linguistic Kernels for Answer Re-ranking in

Question Answering Systems, Information and Processing Management, ELSEVIER,

2010.

! Yashar Mehdad, Alessandro Moschitti and Fabio Massimo Zanzotto. Syntactic/

Semantic Structures for Textual Entailment Recognition. Human Language Technology

- North American chapter of the Association for Computational Linguistics (HLT-

NAACL), 2010, Los Angeles, Calfornia.

!   Daniele Pighin and Alessandro Moschitti. On Reverse Feature Engineering of Syntactic

Tree Kernels. In Proceedings of the 2010 Conference on Natural Language Learning,

Upsala, Sweden, July 2010. Association for Computational Linguistics.

! Thi Truc Vien Nguyen, Alessandro Moschitti and Giuseppe Riccardi. Kernel-based

Reranking for Entity Extraction. In proceedings of the 23rd International Conference on

Computational Linguistics (COLING), August 2010, Beijing, China.

References

!   Alessandro Moschitti. Syntactic and semantic kernels for short text pair categorization.
In Proceedings of the 12th Conference of the European Chapter of the ACL (EACL

2009), pages 576–584, Athens, Greece, March 2009.

! Truc-Vien Nguyen, Alessandro Moschitti, and Giuseppe Riccardi. Convolution kernels

on constituent, dependency and sequential structures for relation extraction. In
Proceedings of the Conference on Empirical Methods in Natural Language Processing,

pages 1378–1387, Singapore, August 2009.

!   Marco Dinarelli, Alessandro Moschitti, and Giuseppe Riccardi. Re-ranking models

based-on small training data for spoken language understanding. In Proceedings of the
Conference on Empirical Methods in Natural Language Processing, pages 1076–1085,

Singapore, August 2009.

!   Alessandra Giordani and Alessandro Moschitti. Syntactic Structural Kernels for Natural

Language Interfaces to Databases. In ECML/PKDD, pages 391–406, Bled, Slovenia,
2009.

References

!   Alessandro Moschitti, Daniele Pighin and Roberto Basili. Tree Kernels for Semantic
Role Labeling, Special Issue on Semantic Role Labeling, Computational Linguistics

Journal. March 2008.

!   Fabio Massimo Zanzotto, Marco Pennacchiotti and Alessandro Moschitti, A Machine

Learning Approach to Textual Entailment Recognition, Special Issue on Textual
Entailment Recognition, Natural Language Engineering, Cambridge University Press.,

2008

!   Mona Diab, Alessandro Moschitti, Daniele Pighin, Semantic Role Labeling Systems for

Arabic Language using Kernel Methods. In proceedings of the 46th Conference of the
Association for Computational Linguistics (ACL'08). Main Paper Section. Columbus,

OH, USA, June 2008.

!   Alessandro Moschitti, Silvia Quarteroni, Kernels on Linguistic Structures for Answer

Extraction. In proceedings of the 46th Conference of the Association for Computational
Linguistics (ACL'08). Short Paper Section. Columbus, OH, USA, June 2008.

References

!   Yannick Versley, Simone Ponzetto, Massimo Poesio, Vladimir Eidelman, Alan Jern,
Jason Smith, Xiaofeng Yang and Alessandro Moschitti, BART: A Modular Toolkit for

Coreference Resolution, In Proceedings of the Conference on Language Resources

and Evaluation, Marrakech, Marocco, 2008.

!   Alessandro Moschitti, Kernel Methods, Syntax and Semantics for Relational Text

Categorization. In proceeding of ACM 17th Conference on Information and Knowledge

Management (CIKM). Napa Valley, California, 2008.

!   Bonaventura Coppola, Alessandro Moschitti, and Giuseppe Riccardi. Shallow semantic

parsing for spoken language understanding. In Proceedings of HLT-NAACL Short
Papers, pages 85–88, Boulder, Colorado, June 2009. Association for Computational

Linguistics.

!   Alessandro Moschitti and Fabio Massimo Zanzotto, Fast and Effective Kernels for

Relational Learning from Texts, Proceedings of The 24th Annual International
Conference on Machine Learning (ICML 2007).

References

!   Alessandro Moschitti, Silvia Quarteroni, Roberto Basili and Suresh Manandhar,
Exploiting Syntactic and Shallow Semantic Kernels for Question/Answer Classification,
Proceedings of the 45th Conference of the Association for Computational Linguistics
(ACL), Prague, June 2007.

!   Alessandro Moschitti and Fabio Massimo Zanzotto, Fast and Effective Kernels for
Relational Learning from Texts, Proceedings of The 24th Annual International
Conference on Machine Learning (ICML 2007), Corvallis, OR, USA.

!   Daniele Pighin, Alessandro Moschitti and Roberto Basili, RTV: Tree Kernels for
Thematic Role Classification, Proceedings of the 4th International Workshop on
Semantic Evaluation (SemEval-4), English Semantic Labeling, Prague, June 2007.

!   Stephan Bloehdorn and Alessandro Moschitti, Combined Syntactic and Semanitc
Kernels for Text Classification, to appear in the 29th European Conference on
Information Retrieval (ECIR), April 2007, Rome, Italy.

!   Fabio Aiolli, Giovanni Da San Martino, Alessandro Sperduti, and Alessandro Moschitti,
Efficient Kernel-based Learning for Trees, to appear in the IEEE Symposium on
Computational Intelligence and Data Mining (CIDM), Honolulu, Hawaii, 2007

References

!   Alessandro Moschitti, Silvia Quarteroni, Roberto Basili and Suresh Manandhar,
Exploiting Syntactic and Shallow Semantic Kernels for Question/Answer Classification,

Proceedings of the 45th Conference of the Association for Computational Linguistics

(ACL), Prague, June 2007.

!   Alessandro Moschitti, Giuseppe Riccardi, Christian Raymond, Spoken Language

Understanding with Kernels for Syntactic/Semantic Structures, Proceedings of IEEE

Automatic Speech Recognition and Understanding Workshop (ASRU2007), Kyoto,

Japan, December 2007

!   Stephan Bloehdorn and Alessandro Moschitti, Combined Syntactic and Semantic

Kernels for Text Classification, to appear in the 29th European Conference on

Information Retrieval (ECIR), April 2007, Rome, Italy.

!   Stephan Bloehdorn, Alessandro Moschitti: Structure and semantics for expressive text

kernels. In proceeding of ACM 16th Conference on Information and Knowledge
Management (CIKM-short paper) 2007: 861-864, Portugal.

References

!   Fabio Aiolli, Giovanni Da San Martino, Alessandro Sperduti, and Alessandro Moschitti,
Efficient Kernel-based Learning for Trees, to appear in the IEEE Symposium on

Computational Intelligence and Data Mining (CIDM), Honolulu, Hawaii, 2007.

!   Alessandro Moschitti, Efficient Convolution Kernels for Dependency and Constituent

Syntactic Trees. In Proceedings of the 17th European Conference on Machine
Learning, Berlin, Germany, 2006.

!   Fabio Aiolli, Giovanni Da San Martino, Alessandro Sperduti, and Alessandro Moschitti,

Fast On-line Kernel Learning for Trees, International Conference on Data Mining

(ICDM) 2006 (short paper).

!   Stephan Bloehdorn, Roberto Basili, Marco Cammisa, Alessandro Moschitti, Semantic

Kernels for Text Classification based on Topological Measures of Feature Similarity. In

Proceedings of the 6th IEEE International Conference on Data Mining (ICDM 06), Hong

Kong, 18-22 December 2006. (short paper).

References

!   Roberto Basili, Marco Cammisa and Alessandro Moschitti, A Semantic Kernel to
classify texts with very few training examples, in Informatica, an international journal of

Computing and Informatics, 2006.

!   Fabio Massimo Zanzotto and Alessandro Moschitti, Automatic learning of textual

entailments with cross-pair similarities. In Proceedings of COLING-ACL, Sydney,
Australia, 2006.

!   Ana-Maria Giuglea and Alessandro Moschitti, Semantic Role Labeling via FrameNet,

VerbNet and PropBank. In Proceedings of COLING-ACL, Sydney, Australia, 2006.

!   Alessandro Moschitti, Making tree kernels practical for natural language learning. In

Proceedings of the Eleventh International Conference on European Association for

Computational Linguistics, Trento, Italy, 2006.

!   Alessandro Moschitti, Daniele Pighin and Roberto Basili. Semantic Role Labeling via

Tree Kernel joint inference. In Proceedings of the 10th Conference on Computational

Natural Language Learning, New York, USA, 2006.

References

!   Roberto Basili, Marco Cammisa and Alessandro Moschitti, Effective use of Wordnet
semantics via kernel-based learning. In Proceedings of the 9th Conference on

Computational Natural Language Learning (CoNLL 2005), Ann Arbor (MI), USA, 2005

!   Alessandro Moschitti, A study on Convolution Kernel for Shallow Semantic Parsing. In

proceedings of the 42-th Conference on Association for Computational Linguistic
(ACL-2004), Barcelona, Spain, 2004.

!   Alessandro Moschitti and Cosmin Adrian Bejan, A Semantic Kernel for Predicate

Argument Classification. In proceedings of the Eighth Conference on Computational

Natural Language Learning (CoNLL-2004), Boston, MA, USA, 2004.

An introductory book on SVMs, Kernel
methods and Text Categorization

Non-exhaustive reference list from other
authors

! V. Vapnik. The Nature of Statistical Learning Theory. Springer, 1995.

! P. Bartlett and J. Shawe-Taylor, 1998. Advances in Kernel Methods -
Support Vector Learning, chapter Generalization Performance of
Support Vector Machines and other Pattern Classifiers. MIT Press.

!   David Haussler. 1999. Convolution kernels on discrete structures.
Technical report, Dept. of Computer Science, University of California at
Santa Cruz.

! Lodhi, Huma, Craig Saunders, John Shawe Taylor, Nello Cristianini,
and Chris Watkins. Text classification using string kernels. JMLR,2000

! Schölkopf, Bernhard and Alexander J. Smola. 2001. Learning with
Kernels: Support Vector Machines, Regularization, Optimization, and
Beyond. MIT Press, Cambridge, MA, USA.

Non-exhaustive reference list from other
authors

! N. Cristianini and J. Shawe-Taylor, An introduction to support vector
machines (and other kernel-based learning methods) Cambridge
University Press, 2002

! M. Collins and N. Duffy, New ranking algorithms for parsing and
tagging: Kernels over discrete structures, and the voted perceptron. In
ACL02, 2002.

! Hisashi Kashima and Teruo Koyanagi. 2002. Kernels for semi-
structured data. In Proceedings of ICML’02.

! S.V.N. Vishwanathan and A.J. Smola. Fast kernels on strings and
trees. In Proceedings of NIPS, 2002.

!   Nicola Cancedda, Eric Gaussier, Cyril Goutte, and Jean Michel
Renders. 2003. Word sequence kernels. Journal of Machine Learning
Research, 3:1059–1082. D. Zelenko, C. Aone, and A. Richardella.
Kernel methods for relation extraction. JMLR, 3:1083–1106, 2003.

Non-exhaustive reference list from other
authors
! Taku Kudo and Yuji Matsumoto. 2003. Fast methods for kernel-based

text analysis. In Proceedings of ACL’03.

!   Dell Zhang and Wee Sun Lee. 2003. Question classification using
support vector machines. In Proceedings of SIGIR’03, pages 26–32.

! Libin Shen, Anoop Sarkar, and Aravind k. Joshi. Using LTAG Based
Features in Parse Reranking. In Proceedings of EMNLP’03, 2003

! C. Cumby and D. Roth. Kernel Methods for Relational Learning. In
Proceedings of ICML 2003, pages 107–114, Washington, DC, USA,
2003.

! J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern
Analysis. Cambridge University Press, 2004.

!   A. Culotta and J. Sorensen. Dependency tree kernels for relation
extraction. In Proceedings of the 42nd Annual Meeting on ACL,
Barcelona, Spain, 2004.

Non-exhaustive reference list from other
authors
!   Kristina Toutanova, Penka Markova, and Christopher Manning. The

Leaf Path Projection View of Parse Trees: Exploring String Kernels for
HPSG Parse Selection. In Proceedings of EMNLP 2004.

!   Jun Suzuki and Hideki Isozaki. 2005. Sequence and Tree Kernels with
Statistical Feature Mining. In Proceedings of NIPS’05.

! Taku Kudo, Jun Suzuki, and Hideki Isozaki. 2005. Boosting based
parse reranking with subtree features. In Proceedings of ACL’05.

! R. C. Bunescu and R. J. Mooney. Subsequence kernels for relation
extraction. In Proceedings of NIPS, 2005.

! R. C. Bunescu and R. J. Mooney. A shortest path dependency kernel
for relation extraction. In Proceedings of EMNLP, pages 724–731,
2005.

! S. Zhao and R. Grishman. Extracting relations with integrated
information using kernel methods. In Proceedings of the 43rd Meeting
of the ACL, pages 419–426, Ann Arbor, Michigan, USA, 2005.

Non-exhaustive reference list from other
authors

! J. Kazama and K. Torisawa. Speeding up Training with Tree Kernels for
Node Relation Labeling. In Proceedings of EMNLP 2005, pages 137–
144, Toronto, Canada, 2005.

! M. Zhang, J. Zhang, J. Su, , and G. Zhou. A composite kernel to extract
relations between entities with both flat and structured features. In
Proceedings of COLING-ACL 2006, pages 825–832, 2006.

! M. Zhang, G. Zhou, and A. Aw. Exploring syntactic structured features
over parse trees for relation extraction using kernel methods.
Information Processing and Management, 44(2):825–832, 2006.

! G. Zhou, M. Zhang, D. Ji, and Q. Zhu. Tree kernel-based relation
extraction with context-sensitive structured parse tree information. In
Proceedings of EMNLP-CoNLL 2007, pages 728–736, 2007.

Non-exhaustive reference list from other
authors

!   Ivan Titov and James Henderson. Porting statistical parsers with data-
defined kernels. In Proceedings of CoNLL-X, 2006

!   Min Zhang, Jie Zhang, and Jian Su. 2006. Exploring Syntactic Features
for Relation Extraction using a Convolution tree kernel. In Proceedings
of NAACL.

! M. Wang. A re-examination of dependency path kernels for relation
extraction. In Proceedings of the 3rd International Joint Conference on
Natural Language Processing-IJCNLP, 2008.

