
Transfer Learning in
Natural Language Processing

June 2, 2019
NAACL-HLT 2019

1

Sebastian
Ruder

Matthew
Peters

Swabha
Swayamdipta

Thomas
Wolf

Transfer Learning in Natural Language ProcessingTransfer Learning in NLP

Follow along with the tutorial:

❏ Slides: http://tiny.cc/NAACLTransfer
❏ Colab: http://tiny.cc/NAACLTransferColab
❏ Code: http://tiny.cc/NAACLTransferCode

Questions:

❏ Twitter: #NAACLTransfer during the tutorial
❏ Whova: “Questions for the tutorial on Transfer Learning in NLP” topic
❏ Ask us during the break or after the tutorial

2

http://tiny.cc/NAACLTransfer
http://tiny.cc/NAACLTransferColab
http://tiny.cc/NAACLTransferCode

Pan and Yang (2010)

What is transfer learning?

3

https://www.cse.ust.hk/~qyang/Docs/2009/tkde_transfer_learning.pdf

Why transfer learning in NLP?
❏ Many NLP tasks share common knowledge about language (e.g. linguistic

representations, structural similarities)
❏ Tasks can inform each other—e.g. syntax and semantics
❏ Annotated data is rare, make use of as much supervision as available.

❏ Empirically, transfer learning has resulted in SOTA for many supervised NLP
tasks (e.g. classification, information extraction, Q&A, etc).

4

Why transfer learning in NLP? (Empirically)
Performance on Named Entity Recognition (NER) on CoNLL-2003 (English) over time

5

Ruder (2019)

We will
focus on
this

Types of transfer learning in NLP

6

http://ruder.io/thesis/neural_transfer_learning_for_nlp.pdf

What this tutorial is about and what it’s not about

❏ Goal: provide broad overview of transfer methods in NLP, focusing on the
most empirically successful methods as of today (mid 2019)

❏ Provide practical, hands on advice → by end of tutorial, everyone has ability to
apply recent advances to text classification task

❏ What this is not: Comprehensive (it’s impossible to cover all related papers in
one tutorial!)

❏ (Bender Rule: This tutorial is mostly for work done in English, extensibility to
other languages depends on availability of data and resources.)

7

Agenda

[2] Pretraining [4] Adaptation

[6]
Open Problems

[5] Downstream

[3] What’s in a
representation?

[1] Introduction

8

1. Introduction

9

Sequential transfer learning
Learn on one task / dataset, then transfer to another task / dataset

word2vec
GloVe
skip-thought
InferSent
ELMo
ULMFiT
GPT
BERT

classification
sequence labeling
Q&A
....

Pretraining Adaptation

10

Pretraining tasks and datasets
❏ Unlabeled data and self-supervision

❏ Supervised pretraining
❏ Very common in vision, less in NLP due to lack of large supervised datasets
❏ Machine translation
❏ NLI for sentence representations
❏ Task-specific—transfer from one Q&A dataset to another

❏ Easy to gather very large corpora: Wikipedia, news, web crawl, social media, etc.
❏ Training takes advantage of distributional hypothesis: “You shall know a word by the company

it keeps” (Firth, 1957), often formalized as training some variant of language model
❏ Focus on efficient algorithms to make use of plentiful data

11

Target tasks and datasets
Target tasks are typically supervised and span a range of common NLP tasks:

❏ Sentence or document classification (e.g. sentiment)
❏ Sentence pair classification (e.g. NLI, paraphrase)
❏ Word level (e.g. sequence labeling, extractive Q&A)
❏ Structured prediction (e.g. parsing)
❏ Generation (e.g. dialogue, summarization)

12

Concrete example—word vectors
Word embedding methods (e.g. word2vec) learn one vector per word:

cat = [0.1, -0.2, 0.4, …]

dog = [0.2, -0.1, 0.7, …]

13

Concrete example—word vectors
Word embedding methods (e.g. word2vec) learn one vector per word:

cat = [0.1, -0.2, 0.4, …]

dog = [0.2, -0.1, 0.7, …]

PRP VBP PRP NN CC NN .

 I love my cat and dog .

14

Concrete example—word vectors
Word embedding methods (e.g. word2vec) learn one vector per word:

cat = [0.1, -0.2, 0.4, …]

dog = [0.2, -0.1, 0.7, …]

PRP VBP PRP NN CC NN .

 I love my cat and dog .

I love my cat and dog . }-> “positive"

15

Major Themes

16

Major themes: From words to words-in-context
Word vectors

cats = [0.2, -0.3, …]

dogs = [0.4, -0.5, …]

Sentence / doc vectors

It’s raining
cats and dogs.

We have two
cats.

[0.8, 0.9, …]

[-1.2, 0.0, …]}

}

Word-in-context
vectors

We have two cats.}

[1.2, -0.3, …]

It’s raining cats and dogs.

}

[-0.4, 0.9, …]

17

Major themes: LM pretraining
❏ Many successful pretraining approaches are based on language modeling
❏ Informally, a LM learns Pϴ(text) or Pϴ(text | some other text)

❏ Doesn’t require human annotation
❏ Many languages have enough text to learn high capacity model
❏ Versatile—can learn both sentence and word representations with a variety of

objective functions

18

Bengio et al 2003: A Neural
Probabilistic Language Model

Devlin et al 2019: BERT: Pre-training of Deep
Bidirectional Transformers for Language

Understanding

1 layer 24 layers

Major themes: From shallow to deep

19

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805

Major themes: pretraining vs target task

❏ Sentence / document representations not useful for word level predictions
❏ Word vectors can be pooled across contexts, but often outperformed by other

methods
❏ In contextual word vectors, bidirectional context important

Choice of pretraining and target tasks are coupled

In general:

❏ Similar pretraining and target tasks → best results

20

Agenda

[2] Pretraining [4] Adaptation

[6]
Open Problems

[5] Downstream

[3] What’s in a
representation?

[1] Introduction

21

2. Pretraining

Image credit: Creative Stall
22

Overview
❏ Language model pretraining

❏ Word vectors

❏ Sentence and document vectors

❏ Contextual word vectors

❏ Interesting properties of pretraining

❏ Cross-lingual pretraining

23

Word Type RepresentationLM pretraining
word2vec, Mikolov et al (2013)

24

 We [have a ??? and three] dogs We have a ???

 We have a MASK and three dogs

ELMo, Peters et al. 2018, ULMFiT (Howard & Ruder
2018), GPT (Radford et al. 2018)

 We have a ???

We like pets. }
Skip-Thought
(Kiros et al.,
2015)

BERT, Devlin et al 2019
???

https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1802.05365
https://arxiv.org/abs/1801.06146
https://arxiv.org/abs/1801.06146
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://arxiv.org/abs/1506.06726
https://arxiv.org/abs/1506.06726
https://arxiv.org/abs/1810.04805

Word vectors

25

Why embed words?

❏ Embeddings are themselves parameters—can be learned

❏ Sharing representations across tasks

❏ Lower dimensional space

❏ Better for computation—difficult to handle sparse vectors.

26

Word Type RepresentationUnsupervised pretraining : Pre-Neural
Latent Semantic Analysis (LSA)—SVD
of term-document matrix, (Deerwester
et al., 1990)

Latent Dirichlet Allocation (LDA)—Documents are
mixtures of topics and topics are mixtures of words
(Blei et al., 2003)

Brown clusters, hard
hierarchical clustering
based on n-gram LMs,
(Brown et al. 1992)

27

http://lsa.colorado.edu/papers/JASIS.lsi.90.pdf
http://lsa.colorado.edu/papers/JASIS.lsi.90.pdf
http://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf
https://www.aclweb.org/anthology/J92-4003

Word Type RepresentationWord vector pretraining
n-gram neural language model
(Bengio et al. 2003)

Supervised multitask word
embeddings (Collobert and Weston,
2008)

28

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
https://ronan.collobert.com/pub/matos/2008_nlp_icml.pdf
https://ronan.collobert.com/pub/matos/2008_nlp_icml.pdf

word2vec
Efficient algorithm + large scale training → high quality word vectors

(Mikolov et al., 2013)

29

See also:
❏ Pennington et al. (2014): GloVe
❏ Bojanowski et al. (2017): fastText

https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://nlp.stanford.edu/projects/glove/
https://arxiv.org/abs/1607.04606

Sentence and document vectors

30

Doc2vecParagraph vector
Unsupervised paragraph embeddings (Le & Mikolov, 2014)

SOTA classification (IMDB, SST)

31

https://arxiv.org/abs/1405.4053

Doc2vecSkip-Thought Vectors
Predict previous / next sentence with seq2seq model (Kiros et al., 2015)

Hidden state of encoder
transfers to sentence tasks
(classification, semantic
similarity)

32

https://arxiv.org/abs/1506.06726

Dai & Le (2015): Pretrain a sequence autoencoder (SA) and generative LM

Autoencoder pretraining

SOTA classification (IMDB)

See also:
❏ Socher et. al (2011): Semi-supervised recursive auto encoder
❏ Bowman et al. (2016): Variational autoencoder (VAE)
❏ Hill et al. (2016): Denoising autoencoder

33

https://arxiv.org/abs/1511.01432
https://www.aclweb.org/anthology/D11-1014
https://arxiv.org/pdf/1511.06349.pdf
https://arxiv.org/abs/1602.03483

Autoencoder pretrainingSupervised sentence embeddings

Also possible to train sentence embeddings with supervised objective

❏ Paragram-phrase: uses paraphrase database for supervision, best for
paraphrase and semantic similarity (Wieting et al. 2016)

❏ InferSent: bi-LSTM trained on SNLI + MNLI (Conneau et al. 2017)
❏ GenSen: multitask training (skip-thought, machine translation, NLI, parsing)

(Subramanian et al. 2018)

34

https://arxiv.org/abs/1511.08198
https://arxiv.org/abs/1705.02364
https://arxiv.org/abs/1804.00079

Contextual word vectors

35

Contextual word vectors - Motivation
Word vectors compress all contexts into a single vector

Nearest neighbor GloVe vectors to “play”

VERB
playing
played

NOUN
game
games
players
football

??
plays
Play

ADJ
multiplayer

36

Contextual word vectors - Key Idea
Instead of learning one vector per word, learn a vector that depends on context

f(play | The kids play a game in the park.)

f(play | The Broadway play premiered yesterday.)

!=

Many approaches based on language models

37

Sentence completion
Lexical substitution

WSD

Use bidirectional LSTM and cloze
prediction objective (a 1 layer masked LM)

Learn representations for both
words and contexts (minus word)

context2vec

(Melamud et al., CoNLL 2016)38

https://www.aclweb.org/anthology/K16-1006

Pretrain two LMs (forward and backward) and add to sequence tagger.
SOTA NER and chunking results

TagLM

(Peters et al. ACL 2017)
39

https://arxiv.org/abs/1705.00108

Pretrain encoder and decoder
with LMs (everything shaded

is pretrained).

Large boost for MT.

Unsupervised Pretraining for Seq2Seq

(Ramachandran et al, EMNLP 2017)
40

https://www.aclweb.org/anthology/D17-1039

Pretrain bidirectional
encoder with MT
supervision, extract
LSTM states

Adding CoVe with
GloVe gives
improvements for
classification, NLI, Q&A

CoVe

(McCann et al, NeurIPS 2017)
41

https://papers.nips.cc/paper/7209-learned-in-translation-contextualized-word-vectors

Pretrain deep bidirectional LM,
extract contextual word vectors
as learned linear combination of
hidden states

SOTA for 6 diverse tasks

ELMo

(Peters et al, NAACL 2018)
42

https://aclweb.org/anthology/N18-1202

ULMFiT

Pretrain AWD-LSTM LM,
fine-tune LM in two stages with
different adaptation techniques

SOTA for six classification
datasets

(Howard and Ruder, ACL 2018)
43

https://arxiv.org/abs/1801.06146

GPT

(Radford et al., 2018)

Pretrain large 12-layer
left-to-right Transformer, fine
tune for sentence, sentence
pair and multiple choice
questions.

SOTA results for 9 tasks.

44

https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf

BERT

(Devlin et al. 2019)

BERT pretrains both sentence and contextual word representations,
using masked LM and next sentence prediction.
BERT-large has 340M parameters, 24 layers!

45
See also: Logeswaran and Lee, ICLR 2018

https://arxiv.org/abs/1810.04805
https://openreview.net/forum?id=rJvJXZb0W

BERT

(Devlin et al. 2019)

SOTA GLUE benchmark results (sentence pair classification).

46

https://arxiv.org/abs/1810.04805

BERT

(Devlin et al. 2019)

SOTA SQuAD v1.1 (and v2.0) Q&A

47

https://arxiv.org/abs/1810.04805

Other pretraining objectives

48

❏ Contextual string representations (Akbik et al., COLING 2018)—SOTA NER
results

❏ Cross-view training (Clark et al. EMNLP 2018)—improve supervised tasks
with unlabeled data

❏ Cloze-driven pretraining (Baevski et al. (2019)—SOTA NER and
constituency parsing

https://alanakbik.github.io/papers/coling2018.pdf
https://arxiv.org/abs/1809.08370
https://arxiv.org/abs/1903.07785

Why does language modeling work so well?
❏ Language modeling is a very difficult task, even for humans.
❏ Language models are expected to compress any possible context into a

vector that generalizes over possible completions.
❏ “They walked down the street to ???”

❏ To have any chance at solving this task, a model is forced to learn syntax,
semantics, encode facts about the world, etc.

❏ Given enough data, a huge model, and enough compute, can do a
reasonable job!

❏ Empirically works better than translation, autoencoding: “Language
Modeling Teaches You More Syntax than Translation Does” (Zhang et al.
2018)

49

https://arxiv.org/abs/1809.10040
https://arxiv.org/abs/1809.10040

Sample efficiency

50

Pretraining reduces need for annotated data

(Peters et al, NAACL 2018)
51

https://aclweb.org/anthology/N18-1202

Pretraining reduces need for annotated data

(Howard and Ruder, ACL 2018)
52

https://arxiv.org/abs/1801.06146

Pretraining reduces need for annotated data

(Clark et al. EMNLP 2018)
53

https://arxiv.org/abs/1809.08370

Scaling up pretraining

54

Scaling up pretraining

More data →
better word

vectors

(Pennington et al
2014)

55

https://www.aclweb.org/anthology/D14-1162
https://www.aclweb.org/anthology/D14-1162

Pretrained Language Models: More Data

Baevski et al.
(2019)

Scaling up pretraining

56

https://arxiv.org/abs/1903.07785
https://arxiv.org/abs/1903.07785

Scaling up pretraining

Bigger model →
better results

(Devlin et al
2019)

57

https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805

Cross-lingual pretraining

58

Cross-lingual pretraining

❏ Much work on training
cross-lingual word embeddings
(Overview: Ruder et al. (2017))

❏ Idea: train each language
separately, then align.

❏ Recent work aligning ELMo:
Schuster et al., (NAACL 2019)

❏ ACL 2019 Tutorial on Unsupervised
Cross-lingual Representation
Learning

59

https://arxiv.org/abs/1706.04902
https://arxiv.org/abs/1902.09492
http://www.acl2019.org/EN/tutorials.xhtml#T7
http://www.acl2019.org/EN/tutorials.xhtml#T7
http://www.acl2019.org/EN/tutorials.xhtml#T7

Cross-lingual Polyglot Pretraining
Key idea: Share vocabulary and representations across languages by training one
model on many languages.

Advantages: Easy to implement, enables cross-lingual pretraining by itself

Disadvantages: Leads to under-representation of low-resource languages
❏ LASER: Use parallel data for sentence representations (Artetxe & Schwenk,

2018)
❏ Multilingual BERT: BERT trained jointly on 100 languages
❏ Rosita: Polyglot contextual representations (Mulcaire et al., NAACL 2019)
❏ XLM: Cross lingual LM (Lample & Conneau, 2019)

60

https://arxiv.org/abs/1812.10464
https://arxiv.org/abs/1812.10464
https://github.com/google-research/bert/blob/master/multilingual.md
https://arxiv.org/abs/1902.09697
https://arxiv.org/abs/1901.07291

Hands-on #1:
Pretraining a Transformer Language Model

Image credit: Chanaky
61

Hands-on: Overview

❏ Goals:
❏ Let’s make these recent works “uncool again” i.e. as accessible as possible
❏ Expose all the details in a simple, concise and self-contained code-base
❏ Show that transfer learning can be simple (less hand-engineering) & fast (pretrained model)

❏ Plan
❏ Build a GPT-2 / BERT model
❏ Pretrain it on a rather large corpus with ~100M words
❏ Adapt it for a target task to get SOTA performances

❏ Material:
❏ Colab: http://tiny.cc/NAACLTransferColab ⇨ code of the following slides
❏ Code: http://tiny.cc/NAACLTransferCode ⇨ same code organized in a repo

Current developments in Transfer Learning combine new approaches for training schemes
(sequential training) as well as models (transformers) ⇨ can look intimidating and complex

62

http://tiny.cc/NAACLTransferColab
http://tiny.cc/NAACLTransferCode

Hands-on pre-training
Colab: http://tiny.cc/NAACLTransferColab Repo: http://tiny.cc/NAACLTransferCode

63

http://tiny.cc/NAACLTransferColab
http://tiny.cc/NAACLTransferCode

Hands-on pre-training

❏ summing words and position embeddings
❏ applying a succession of transformer blocks with:

❏ layer normalisation
❏ a self-attention module
❏ dropout and a residual connection

❏ another layer normalisation
❏ a feed-forward module with one hidden layer and

a non linearity: Linear ⇨ ReLU/gelu ⇨ Linear
❏ dropout and a residual connection

❏ The

(Child et al, 2019)

Our core model will be a Transformer. Large-scale transformer architectures (GPT-2, BERT, XLM…) are very similar
to each other and consist of:

Main differences between GPT/GPT-2/BERT are the objective functions:
❏ causal language modeling for GPT
❏ masked language modeling for BERT (+ next sentence prediction)

We’ll play with both

64

http://arxiv.org/abs/1904.10509

Hands-on pre-training
Let’s code the backbone of
our model!

PyTorch 1.1 now has a
nn.MultiHeadAttention
module: lets us encapsulate
the self-attention logic while
still controlling the internals
of the Transformer.

65

Hands-on pre-training
Two attention masks?

❏ padding_mask masks
the padding tokens. It is
specific to each sample
in the batch:

❏ attn_mask is the same
for all samples in the
batch. It masks the
previous tokens for
causal transformers:

66

Hands-on pre-training

1. A pretraining head on
top of our core model:
we choose a language
modeling head with tied
weights

To pretrain our model, we need to add a few elements: a head, a loss and initialize weights.

We add these elements
with a pretraining model
encapsulating our model.

2. Initialize the weights

3. Define a loss
function: we choose a
cross-entropy loss on
current (or next) token
predictions 67

Hands-on pre-training

Hyper-parameters taken
from Dai et al., 2018
(Transformer-XL) ⇨
~50M parameters
causal model.

Now let’s take care of our data and configurationWe'll use a pre-defined
open vocabulary
tokenizer: BERT’s model
cased tokenizer.

Use a large dataset for
pre-trainining:
WikiText-103 with 103M
tokens (Merity et al.,
2017).

Instantiate our model
and optimizer (Adam)

68

http://arxiv.org/abs/1901.02860
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe

Hands-on pre-training

A simple update loop.
We use gradient
accumulation to have a
large batch size even on 1
GPU (>64).

Learning rate schedule:
- linear warmup to start
- then cosine or inverse
square root decrease

Go!

And we’re done: let’s train!

no warm-up

69

Hands-on pre-training — Concluding remarks
❏ On pretraining

❏ Intensive: in our case 5h–20h on 8 V100 GPUs (few days w. 1 V100) to reach a good perplexity ⇨
share your pretrained models

❏ Robust to the choice of hyper-parameters (apart from needing a warm-up for transformers)
❏ Language modeling is a hard task, your model should not have enough capacity to overfit if your

dataset is large enough ⇨ you can just start the training and let it run.
❏ Masked-language modeling: typically 2-4 times slower to train than LM

We only mask 15% of the tokens ⇨ smaller signal

❏ For the rest of this tutorial
We don’t have enough time to do a full pretraining
⇨ we pretrained two models for you before the tutorial

70

Hands-on pre-training — Concluding remarks
❏ First model:

❏ exactly the one we built together ⇨ a 50M parameters causal Transformer
❏ Trained 15h on 8 V100
❏ Reached a word-level perplexity of 29 on wikitext-103 validation set (quite competitive)

❏ Second model:
❏ Same model but trained with a masked-language modeling objective (see the repo)
❏ Trained 30h on 8 V100
❏ Reached a “masked-word” perplexity of 8.3 on wikitext-103 validation set

Dai et al., 2018

Wikitext-103 Validation/Test PPL

71

http://arxiv.org/abs/1901.02860

Agenda

[2] Pretraining [4] Adaptation

[6]
Open Problems

[5] Downstream

[3] What’s in a
representation?

[1] Introduction

72

3. What is in a Representation?

Image credit: Caique Lima
73

Why care about what is in a representation?
❏ Extrinsic evaluation with downstream tasks

❏ Complex, diverse with task-specific quirks

❏ Interpretability!
❏ Are we getting our results because of the right reasons?
❏ Uncovering biases...

❏ Language-aware representations
❏ To generalize to other tasks, new inputs
❏ As intermediates for possible improvements to pretraining

74Swayamdipta, 2019

http://www.cs.cmu.edu/~sswayamd/swabha_thesis.pdf

What to analyze?

❏ Embeddings
❏ Word
❏ Contextualized

❏ Network Activations

❏ Variations
❏ Architecture (RNN / Transformer)
❏ Layers
❏ Pretraining Objectives

75

Analysis Method 1: Visualization
Hold the embeddings / network activations static or frozen

76

❏ Plotting embeddings in a lower dimensional
(2D/3D) space
❏ t-SNE van der Maaten & Hinton, 2008
❏ PCA projections

Visualizing Embedding Geometries

Image: Tensorflow

❏ Visualizing word analogies Mikolov et al.
2013
❏ Spatial relations
❏ wking - wman + wwoman ~ wqueen

❏ High-level view of lexical semantics
❏ Only a limited number of examples
❏ Connection to other tasks is unclear

Goldberg, 2017

77Pennington et al., 2014

http://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf
https://www.tensorflow.org/guide/embedding
https://arxiv.org/pdf/1310.4546.pdf
https://arxiv.org/pdf/1310.4546.pdf
https://www.morganclaypool.com/doi/abs/10.2200/S00762ED1V01Y201703HLT037
https://nlp.stanford.edu/pubs/glove.pdf

Karpathy et al., 2016

❏ Neuron activation values correlate
with features / labels

Visualizing Neuron Activations

❏ Indicates learning of recognizable features
❏ How to select which neuron? Hard to scale!
❏ Interpretable != Important (Morcos et al., 2018)

78

Radford et al.,
2017

https://arxiv.org/pdf/1506.02078.pdf
https://arxiv.org/abs/1803.06959
https://arxiv.org/abs/1704.01444
https://arxiv.org/abs/1704.01444

Layer-wise analysis (static)

❏ How important is each layer for a given performance on a downstream task?
❏ Weighted average of layers

Visualizing Layer-Importance Weights

Peters et al.. EMNLP 2018

❏ Task and architecture specific!

79

Also see Tenney et al., ACL 2019

https://aclweb.org/anthology/D18-1179
https://arxiv.org/pdf/1905.05950.pdf

Visualization: Attention WeightsVisualizing Attention Weights
❏ Popular in machine translation, or

other seq2seq architectures:
❏ Alignment between words of source and

target.
❏ Long-distance word-word dependencies

(intra-sentence attention)

Vaswani et al., 2017

❏ Sheds light on architectures
❏ Having sophisticated attention mechanisms

can be a good thing!
❏ Layer-specific

80

❏ Interpretation can be tricky
❏ Few examples only - cherry picking?
❏ Robust corpus-wide trends? Next!

https://arxiv.org/abs/1706.03762

81

Analysis Method 2: Behavioral Probes

Linzen et al., 2016; Gulordava et al. 2018; Marvin et al., 2018

❏ RNN-based language models
❏ number agreement in subject-verb dependencies
❏ natural and nonce or ungrammatical sentences
❏ evaluate on output perplexity

❏ RNNs outperform other non-neural baselines.

❏ Performance improves when trained explicitly with syntax
(Kuncoro et al. 2018)

Kuncoro et al. 2018

https://arxiv.org/abs/1611.01368
https://arxiv.org/abs/1803.11138
https://arxiv.org/abs/1808.09031
https://www.aclweb.org/anthology/papers/P/P18/P18-1132/
https://www.aclweb.org/anthology/papers/P/P18/P18-1132/

82

Analysis Method 2: Behavioral Probes

Linzen et al., 2016; Gulordava et al. 2018; Marvin et al., 2018

❏ RNN-based language models (RNN-based)
❏ number agreement in subject-verb dependencies
❏ For natural and nonce/ungrammatical sentences
❏ LM perplexity differences

❏ RNNs outperform other non-neural baselines.

❏ Performance improves when trained explicitly with syntax
(Kuncoro et al. 2018)

❏ Probe: Might be vulnerable to co-occurrence biases
❏ “dogs in the neighborhood bark(s)”
❏ Nonce sentences might be too different from original...

Kuncoro et al. 2018

https://arxiv.org/abs/1611.01368
https://arxiv.org/abs/1803.11138
https://arxiv.org/abs/1808.09031
https://www.aclweb.org/anthology/papers/P/P18/P18-1132/
https://www.aclweb.org/anthology/papers/P/P18/P18-1132/

Analysis Method 3: Classifier Probes
Hold the embeddings / network activations static and

train a simple supervised model on top

83

Probe classification task
(Linear / MLP)

❏ Given a sentence, predict properties such as
❏ Length
❏ Is a word in the sentence?

Probing Surface-level Features

84

Zhang et al. 2018; Liu et al., 2018; Conneau et al., 2018

❏ Given a word in a sentence predict properties such as:
❏ Previously seen words, contrast with language model
❏ Position of word in the sentence

❏ Checks ability to memorize
❏ Well-trained, richer architectures tend to fare better
❏ Training on linguistic data memorizes better

https://www.aclweb.org/anthology/W18-5448
https://homes.cs.washington.edu/~nfliu/papers/liu+levy+schwartz+tan+smith.repl4nlp2018.pdf
https://arxiv.org/abs/1805.01070

Sentence-level Syntax

Tree
Depth

Tense of main clause verb

Top
Constituents

Long-distance
number
agreement

Objects

 Adi et al., 2017; Conneau et al., 2018; Belinkov et al., 2017; Zhang et al., 2018; Blevins et al., 2018; Tenney et
al. 2019; Liu et al., 2019

Probing Morphology, Syntax, Semantics
Subject-Verb
Agreement

85

❏ Morphology

❏ Word-level syntax
❏ POS tags, CCG supertags
❏ Constituent parent,

grandparent…

❏ Partial syntax
❏ Dependency relations

❏ Partial semantics
❏ Entity Relations
❏ Coreference
❏ Roles

https://arxiv.org/abs/1608.04207
https://arxiv.org/abs/1805.01070
https://www.aclweb.org/anthology/P17-1080
https://www.aclweb.org/anthology/W18-5448
https://www.aclweb.org/anthology/papers/P/P18/P18-2003/
https://ai.google/research/pubs/pub47786
https://ai.google/research/pubs/pub47786
https://arxiv.org/abs/1903.08855

86

Probing classifier findings

Liu et al. NAACL 2019

Tenney et al., ACL 2019

Hewitt et al., 2019

https://arxiv.org/abs/1903.08855
https://arxiv.org/pdf/1905.05950.pdf
https://nlp.stanford.edu/pubs/hewitt2019structural.pdf

87

Probing classifier findings

Liu et al. (NAACL 2019)

Tenney et al., ACL 2019

❏ Contextualized > non-contextualized
❏ Especially on syntactic tasks
❏ Closer performance on semantic tasks
❏ Bidirectional context is important

❏ BERT (large) almost always gets the highest
performance
❏ Grain of salt: Different contextualized

representations were trained on different data,
using different architectures...

Hewitt et. al., 2019

https://arxiv.org/abs/1903.08855
https://arxiv.org/pdf/1905.05950.pdf
https://nlp.stanford.edu/pubs/hewitt2019structural.pdf

Fig. from Liu et al. (NAACL 2019)

Layer-wise analysis (dynamic)

❏ RNN layers: General linguistic properties
❏ Lowest layers: morphology
❏ Middle layers: syntax
❏ Highest layers: Task-specific semantics

❏ Transformer layers:
❏ Different trends for different tasks; middle-heavy
❏ Also see Tenney et. al., 2019

Probing: Layers of the network

88

https://arxiv.org/abs/1903.08855
https://ai.google/research/pubs/pub48153

❏ Language modeling
outperforms other
unsupervised and supervised
objectives.
❏ Machine Translation
❏ Dependency Parsing
❏ Skip-thought

❏ Low-resource settings (size of
training data) might result in
opposite trends.

Zhang et al., 2018; Blevins et al., 2018; Liu et al., 2019;

Probing: Pretraining Objectives

89

https://www.aclweb.org/anthology/W18-5448
https://www.aclweb.org/anthology/papers/P/P18/P18-2003/
https://arxiv.org/abs/1903.08855

❏ Representations are predictive of certain linguistic phenomena:
❏ Alignments in translation, Syntactic hierarchies

What have we learnt so far?

90

❏ Pretraining with and without syntax:
❏ Better performance with syntax
❏ But without, some notion of syntax at least (Williams et al. 2018)

❏ Network architectures determine what is in a representation
❏ Syntax and BERT Transformer (Tenney et al., 2019; Goldberg, 2019)
❏ Different layer-wise trends across architectures

https://www.mitpressjournals.org/doi/pdfplus/10.1162/tacl_a_00019
https://arxiv.org/abs/1905.05950
https://arxiv.org/abs/1901.05287

91

❏ What information should a good probe look for?
❏ Probing a probe!

Open questions about probes

❏ What does probing performance tell us?
❏ Hard to synthesize results across a variety of baselines...

❏ Can introduce some complexity in itself
❏ linear or non-linear classification.
❏ behavioral: design of input sentences

❏ Should we be using probes as evaluation metrics?
❏ might defeat the purpose...

❏ Progressively erase or mask
network components
❏ Word embedding dimensions
❏ Hidden units
❏ Input - words / phrases

Analysis Method 4: Model Alterations

Li et al., 2016 92

https://arxiv.org/abs/1612.08220

So, what is in a representation?
❏ Depends on how you look at it!

❏ Visualization:
❏ bird’s eye view
❏ few samples -- might call to mind cherry-picking

❏ Probes:
❏ discover corpus-wide specific properties
❏ may introduce own biases...

❏ Network ablations:
❏ great for improving modeling,
❏ could be task specific

93

❏ Analysis methods as tools to aid model development!

94

Very current and ongoing!

First column for citations in and
before 2015

What’s next?

Conneau et al., 2018

Correlation of probes to downstream tasks

❏ Linguistic Awareness

❏ Interpretability

Interpretability + transferability to
downstream tasks is key

➔ Up next!

https://arxiv.org/abs/1805.01070

96

❏ Suite of word-based and word-pair-based tasks: Liu et al. 2019 (3B Semantics)

https://github.com/nelson-liu/contextual-repr-analysis

❏ Structural Probes: Hewitt & Manning 2019 (9E Machine Learning)

❏ Overview of probes : Belinkov & Glass, 2019 (7F Poster #18)

Some Pointers

https://homes.cs.washington.edu/~nfliu/papers/liu+gardner+belinkov+peters+smith.naacl2019.pdf
https://github.com/nelson-liu/contextual-repr-analysis
https://nlp.stanford.edu/pubs/hewitt2019structural.pdf
https://arxiv.org/abs/1812.08951

Break

Image credit: Andrejs Kirma
97

Transfer Learning in Natural Language ProcessingTransfer Learning in NLP

Follow along with the tutorial:

❏ Slides: https://tinyurl.com/NAACLTransfer
❏ Colab: https://tinyurl.com/NAACLTransferColab
❏ Code: https://tinyurl.com/NAACLTransferCode

Questions:

❏ Twitter: #NAACLTransfer during the tutorial
❏ Whova: “Questions for the tutorial on Transfer Learning in NLP” topic
❏ Ask us during the break or after the tutorial

98

https://tinyurl.com/NAACLTransfer
https://tinyurl.com/NAACLTransferColab
https://tinyurl.com/NAACLTransferCode

Agenda

[2] Pretraining [4] Adaptation

[6]
Open Problems

[5] Downstream

[3] What’s in a
representation?

[1] Introduction

99

4. Adaptation

Image credit: Ben Didier
100

Several orthogonal directions we can make decisions on:

1. Architectural modifications?
How much to change the pretrained model architecture for adaptation

2. Optimization schemes?
Which weights to train during adaptation and following what schedule

3. More signal: Weak supervision, Multi-tasking & Ensembling
How to get more supervision signal for the target task

4 – How to adapt the pretrained model

4.1 – Architecture

Two general options:

Image credit: Darmawansyah

A. Keep pretrained model internals unchanged:
Add classifiers on top, embeddings at the bottom, use outputs as features

B. Modify pretrained model internal architecture:
Initialize encoder-decoders, task-specific modifications, adapters

102

4.1.A – Architecture: Keep model unchanged
General workflow:

103

1. Remove pretraining task head if not useful for
target task
a. Example: remove softmax classifier from pretrained

LM
b. Not always needed: some adaptation schemes

re-use the pretraining objective/task, e.g. for
multi-task learning

4.1.A – Architecture: Keep model unchanged
General workflow:

Task-specific, randomly initialized

General,
pretrained

104

2. Add target task-specific layers on
top/bottom of pretrained model
a. Simple: adding linear layer(s) on top of

the pretrained model

4.1.A – Architecture: Keep model unchanged
General workflow:

2. Add target task-specific layers on
top/bottom of pretrained model
a. Simple: adding linear layer(s) on top of

the pretrained model
b. More complex: model output as input for

a separate model
c. Often beneficial when target task requires

interactions that are not available in
pretrained embedding

105

4.1.B – Architecture: Modifying model internals
Various reasons:

106

1. Adapting to a structurally different target
task

a. Ex: Pretraining with a single input sequence (ex:
language modeling) but adapting to a task with
several input sequences (ex: translation, conditional
generation...)

b. Use the pretrained model weights to initialize as
much as possible of a structurally different target
task model

c. Ex: Use monolingual LMs to initialize encoder and
decoder parameters for MT (Ramachandran et al.,
EMNLP 2017; Lample & Conneau, 2019)

https://arxiv.org/abs/1611.02683
https://arxiv.org/abs/1611.02683
http://arxiv.org/abs/1901.07291

4.1.B – Architecture: Modifying model internals
Various reasons:

107

2. Task-specific modifications
a. Provide pretrained model with capabilities that

are useful for the target task
b. Ex: Adding skip/residual connections, attention

(Ramachandran et al., EMNLP 2017)

https://arxiv.org/abs/1611.02683

4.1.B – Architecture: Modifying model internals

3. Using less parameters for
adaptation:
a. Less parameters to fine-tune
b. Can be very useful given the increasing

size of model parameters
c. Ex: add bottleneck modules (“adapters”)

between the layers of the pretrained
model (Rebuffi et al., NIPS 2017; CVPR
2018)

108

Various reasons:

https://arxiv.org/abs/1705.08045
https://arxiv.org/abs/1803.10082
https://arxiv.org/abs/1803.10082

4.1.B – Architecture: Modifying model internals
Adapters

Image credit: Caique Lima
109

❏ Commonly connected with a residual
connection in parallel to an existing
layer

❏ Most effective when placed at every
layer (smaller effect at bottom layers)

❏ Different operations (convolutions,
self-attention) possible

❏ Particularly suitable for modular
architectures like Transformers
(Houlsby et al., ICML 2019; Stickland
and Murray, ICML 2019)

https://arxiv.org/abs/1902.00751
https://arxiv.org/abs/1902.02671
https://arxiv.org/abs/1902.02671

4.1.B – Architecture: Modifying model internals

❏ Multi-head attention (MH; shared
across layers) is used in parallel
with self-attention (SA) layer of
BERT

❏ Both are added together and fed
into a layer-norm (LN)

110

Adapters (Stickland & Murray, ICML
2019)

https://arxiv.org/abs/1902.02671
https://arxiv.org/abs/1902.02671

Hands-on #2:
Adapting our pretrained model

Image credit: Chanaky
111

Hands-on: Model adaptation

❏ Plan
❏ Start from our Transformer language model
❏ Adapt the model to a target task:

❏ keep the model core unchanged, load the pretrained weights
❏ add a linear layer on top, newly initialized
❏ use additional embeddings at the bottom, newly initialized

❏ Reminder — material is here:
❏ Colab http://tiny.cc/NAACLTransferColab ⇨ code of the following slides
❏ Code http://tiny.cc/NAACLTransferCode ⇨ same code in a repo

Let’s see how a simple fine-tuning scheme can be implemented with our pretrained model:

112

http://tiny.cc/NAACLTransferColab
http://tiny.cc/NAACLTransferCode

Adaptation task
❏ We select a text classification task as the downstream task

❏ TREC-6: The Text REtrieval Conference (TREC) Question Classification (Li et al., COLING 2002)

❏ TREC consists of open-domain, fact-based questions divided into broad semantic categories contains
5500 labeled training questions & 500 testing questions with 6 labels:

NUM, LOC, HUM, DESC, ENTY, ABBR

Hands-on: Model adaptation

Ex:
★ How did serfdom develop in and then leave Russia ? —> DESC
★ What films featured the character Popeye Doyle ? —> ENTY

(Howard and Ruder, ACL 2018)

Transfer learning models
shine on this type of
low-resource task

113

https://aclweb.org/anthology/C02-1150
https://arxiv.org/abs/1801.06146

❏ Modifications:
❏ Keep model internals unchanged
❏ Add a linear layer on top
❏ Add an additional embedding (classification token) at the bottom

❏ Computation flow:
❏ Model input: the tokenized question with a classification token at the end
❏ Extract the last hidden-state associated to the classification token
❏ Pass the hidden-state in a linear layer and softmax to obtain class

probabilities

Hands-on: Model adaptation

(Radford et al., 2018)

First adaptation scheme

114

https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf

Hands-on: Model adaptation

Let’s load and prepare our dataset:

Fine-tuning hyper-parameters:
– 6 classes in TREC-6
– Use fine tuning hyper parameters
from Radford et al., 2018:

● learning rate from 6.5e-5 to 0.0
● fine-tune for 3 epochs

- trim to the transformer input size &
add a classification token at the end
of each sample,
- pad to the left,
- convert to tensors,
- extract a validation set.

115

https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf

Hands-on: Model adaptation
Adapt our model architecture

Replace the pre-training head
(language modeling) with the
classification head:
A linear layer, which takes as
input the hidden-state of the
[CLF] token (using a mask)

Keep our pretrained model
unchanged as the backbone.

* Initialize all the weights of
the model.
* Reload common weights
from the pretrained model.

116

Hands-on: Model adaptation
Our fine-tuning code:

We will evaluate on our
validation and test sets:
* validation: after each epoch
* test: at the end

A simple training update
function:
* prepare inputs: transpose
and build padding &
classification token masks
* we have options to clip and
accumulate gradients

Schedule:
* linearly increasing to lr
* linearly decreasing to 0.0

117

Hands-on: Model adaptation – Results
We can now fine-tune our model on TREC:

We are at the state-of-the-art
(ULMFiT)

Remarks:
❏ The error rate goes down quickly! After one epoch we already have >90% accuracy.

⇨ Fine-tuning is highly data efficient in Transfer Learning
❏ We took our pre-training & fine-tuning hyper-parameters straight from the literature on related models.

⇨ Fine-tuning is often robust to the exact choice of hyper-parameters

118

Hands-on: Model adaptation – Results
Let’s conclude this hands-on with a few
additional words on robustness & variance.
❏ Large pretrained models (e.g. BERT large) are

prone to degenerate performance when fine-tuned
on tasks with small training sets.

❏ Observed behavior is often “on-off”: it either works
very well or doesn’t work at all.

❏ Understanding the conditions and causes of this
behavior (models, adaptation schemes) is an
open research question.

Phang et al., 2018 119

https://arxiv.org/abs/1811.01088v2

4.2 – Optimization

Several directions when it comes to the optimization itself:

Image credit: ProSymbols, purplestudio, Markus, Alfredo
120

A. Choose which weights we should update
Feature extraction, fine-tuning, adapters

B. Choose how and when to update the weights
From top to bottom, gradual unfreezing, discriminative fine-tuning

C. Consider practical trade-offs
Space and time complexity, performance

4.2.A – Optimization: Which weights?

The main question: To tune or not to tune (the pretrained weights)?

Image credit: purplestudio
121

A. Do not change pretrained weights
Feature extraction, adapters

B. Change pretrained weights
Fine-tuning

4.2.A – Optimization: Which weights?

❄

122

Don’t touch the pretrained
weights!

Feature extraction:
❏ Weights are frozen

4.2.A – Optimization: Which weights?
Don’t touch the pretrained
weights!

Feature extraction:
❏ Weights are frozen
❏ A linear classifier is trained on top of

the pretrained representations

❄

123

4.2.A – Optimization: Which weights?
Don’t touch the pretrained
weights!

Feature extraction:
❏ Weights are frozen
❏ A linear classifier is trained on top of the

pretrained representations
❏ Don’t just use features of the top layer!
❏ Learn a linear combination of layers

(Peters et al., NAACL 2018, Ruder et al.,
AAAI 2019)

124

❄

https://arxiv.org/abs/1802.05365
https://arxiv.org/abs/1705.08142
https://arxiv.org/abs/1705.08142

4.2.A – Optimization: Which weights?

Don’t touch the pretrained
weights!

Feature extraction:
❏ Alternatively, pretrained

representations are used as
features in downstream model

125

4.2.A – Optimization: Which weights?
Don’t touch the pretrained
weights!

Adapters
❏ Task-specific modules that are

added in between existing layers

126

4.2.A – Optimization: Which weights?

Don’t touch the pretrained
weights!

Adapters
❏ Task-specific modules that are

added in between existing layers
❏ Only adapters are trained

127

4.2.A – Optimization: Which weights?
Yes, change the pretrained weights!

128

Fine-tuning:

❏ Pretrained weights are used as initialization
for parameters of the downstream model

❏ The whole pretrained architecture is trained
during the adaptation phase

Hands-on #3:
Using Adapters and freezing

Image credit: Chanaky
129

❏ Modifications:
❏ add Adapters inside the backbone

model: Linear ⇨ ReLU ⇨ Linear
with a skip-connection

❏ As previously:
❏ add a linear layer on top
❏ use an additional embedding

(classification token) at the bottom

Hands-on: Model adaptation
Second adaptation scheme: Using Adapters

❏ Houlsby et al., ICML 2019

We will only train the adapters, the added
linear layer and the embeddings. The other
parameters of the model will be frozen.

130

https://arxiv.org/abs/1902.00751

Hands-on: Model adaptation
Let’s adapt our model architecture

Add the adapter modules:
Bottleneck layers with 2 linear
layers and a non-linear
activation function (ReLU)

Hidden dimension is small:
e.g. 32, 64, 256

Inherit from our pretrained
model to have all the modules.

The Adapters are inserted inside
skip-connections after:
❏ the attention module
❏ the feed-forward module

131

Hands-on: Model adaptation
Now we need to freeze the portions of our model we don’t want to train.

We just indicate that no gradient is needed for the frozen parameters by setting
param.requires_grad to False for the frozen parameters:

In our case we will train 25% of the parameters. The model is small & deep (many adapters) and we need
to train the embeddings so the ratio stay quite high. For a larger model this ratio would be a lot lower.

132

Hands-on: Model adaptation

Results similar to full-fine-tuning case with advantage of training only 25% of the full model parameters.
For a small 50M parameters model this method is overkill ⇨ for 300M–1.5B parameters models.

We use a hidden dimension of 32 for the adapters and a learning rate ten times higher for the
fine-tuning (we have added quite a lot of newly initialized parameters to train from scratch).

133

4.2.B – Optimization: What schedule?

We have decided which weights to update, but in which order and how should be
update them?

Motivation: We want to avoid overwriting useful pretrained information and
maximize positive transfer.

Related concept: Catastrophic forgetting (McCloskey & Cohen, 1989; French,
1999)
When a model forgets the task it was originally trained on.

Image credit: Markus
134

4.2.B – Optimization: What schedule?
A guiding principle:
Update from top-to-bottom

135

❏ Progressively in time: freezing
❏ Progressively in intensity: Varying the

learning rates
❏ Progressively vs. the pretrained model:

Regularization

4.2.B – Optimization: Freezing
Main intuition: Training all layers at the same time
on data of a different distribution and task may
lead to instability and poor solutions.

Solution: Train layers individually to give them
time to adapt to new task and data.

Goes back to layer-wise training of early deep
neural networks (Hinton et al., 2006; Bengio et al.,
2007).

136

https://www.cs.toronto.edu/~hinton/absps/fastnc.pdf
https://papers.nips.cc/paper/3048-greedy-layer-wise-training-of-deep-networks.pdf
https://papers.nips.cc/paper/3048-greedy-layer-wise-training-of-deep-networks.pdf

4.2.B – Optimization: Freezing

❏ Freezing all but the top layer (Long et al.,
ICML 2015)

137

https://arxiv.org/abs/1502.02791
https://arxiv.org/abs/1502.02791

4.2.B – Optimization: Freezing

❏ Freezing all but the top layer (Long et al.,
ICML 2015)

❏ Chain-thaw (Felbo et al., EMNLP 2017):
training one layer at a time
1. Train new layer

138

https://arxiv.org/abs/1502.02791
https://arxiv.org/abs/1502.02791
https://www.aclweb.org/anthology/D17-1169

4.2.B – Optimization: Freezing

❏ Freezing all but the top layer (Long et al.,
ICML 2015)

❏ Chain-thaw (Felbo et al., EMNLP 2017):
training one layer at a time
1. Train new layer
2. Train one layer at a time

139

https://arxiv.org/abs/1502.02791
https://arxiv.org/abs/1502.02791
https://www.aclweb.org/anthology/D17-1169

4.2.B – Optimization: Freezing

❏ Freezing all but the top layer (Long et al.,
ICML 2015)

❏ Chain-thaw (Felbo et al., EMNLP 2017):
training one layer at a time
1. Train new layer
2. Train one layer at a time

140

https://arxiv.org/abs/1502.02791
https://arxiv.org/abs/1502.02791
https://www.aclweb.org/anthology/D17-1169

4.2.B – Optimization: Freezing

❏ Freezing all but the top layer (Long et al.,
ICML 2015)

❏ Chain-thaw (Felbo et al., EMNLP 2017):
training one layer at a time
1. Train new layer
2. Train one layer at a time

141

https://arxiv.org/abs/1502.02791
https://arxiv.org/abs/1502.02791
https://www.aclweb.org/anthology/D17-1169

4.2.B – Optimization: Freezing

❏ Freezing all but the top layer (Long et al.,
ICML 2015)

❏ Chain-thaw (Felbo et al., EMNLP 2017):
training one layer at a time
1. Train new layer
2. Train one layer at a time
3. Train all layers

142

https://arxiv.org/abs/1502.02791
https://arxiv.org/abs/1502.02791
https://www.aclweb.org/anthology/D17-1169

4.2.B – Optimization: Freezing

❏ Freezing all but the top layer (Long et al.,
ICML 2015)

❏ Chain-thaw (Felbo et al., EMNLP 2017):
training one layer at a time

❏ Gradually unfreezing (Howard & Ruder, ACL
2018): unfreeze one layer after another

143

https://arxiv.org/abs/1502.02791
https://arxiv.org/abs/1502.02791
https://www.aclweb.org/anthology/D17-1169
https://arxiv.org/abs/1801.06146
https://arxiv.org/abs/1801.06146

4.2.B – Optimization: Freezing

❏ Freezing all but the top layer (Long et al.,
ICML 2015)

❏ Chain-thaw (Felbo et al., EMNLP 2017):
training one layer at a time

❏ Gradually unfreezing (Howard & Ruder, ACL
2018): unfreeze one layer after another

144

https://arxiv.org/abs/1502.02791
https://arxiv.org/abs/1502.02791
https://www.aclweb.org/anthology/D17-1169
https://arxiv.org/abs/1801.06146
https://arxiv.org/abs/1801.06146

4.2.B – Optimization: Freezing

❏ Freezing all but the top layer (Long et al.,
ICML 2015)

❏ Chain-thaw (Felbo et al., EMNLP 2017):
training one layer at a time

❏ Gradually unfreezing (Howard & Ruder, ACL
2018): unfreeze one layer after another

145

https://arxiv.org/abs/1502.02791
https://arxiv.org/abs/1502.02791
https://www.aclweb.org/anthology/D17-1169
https://arxiv.org/abs/1801.06146
https://arxiv.org/abs/1801.06146

4.2.B – Optimization: Freezing

❏ Freezing all but the top layer (Long et al.,
ICML 2015)

❏ Chain-thaw (Felbo et al., EMNLP 2017):
training one layer at a time

❏ Gradually unfreezing (Howard & Ruder, ACL
2018): unfreeze one layer after another

146

https://arxiv.org/abs/1502.02791
https://arxiv.org/abs/1502.02791
https://www.aclweb.org/anthology/D17-1169
https://arxiv.org/abs/1801.06146
https://arxiv.org/abs/1801.06146

4.2.B – Optimization: Freezing

❏ Freezing all but the top layer (Long et al.,
ICML 2015)

❏ Chain-thaw (Felbo et al., EMNLP 2017):
training one layer at a time

❏ Gradually unfreezing (Howard & Ruder, ACL
2018): unfreeze one layer after another

❏ Sequential unfreezing (Chronopoulou et al.,
NAACL 2019): hyper-parameters that
determine length of fine-tuning
1. Fine-tune additional parameters for epochs

147

https://arxiv.org/abs/1502.02791
https://arxiv.org/abs/1502.02791
https://www.aclweb.org/anthology/D17-1169
https://arxiv.org/abs/1801.06146
https://arxiv.org/abs/1801.06146
https://arxiv.org/abs/1902.10547
https://arxiv.org/abs/1902.10547

4.2.B – Optimization: Freezing

❏ Freezing all but the top layer (Long et al.,
ICML 2015)

❏ Chain-thaw (Felbo et al., EMNLP 2017):
training one layer at a time

❏ Gradually unfreezing (Howard & Ruder, ACL
2018): unfreeze one layer after another

❏ Sequential unfreezing (Chronopoulou et al.,
NAACL 2019): hyper-parameters that
determine length of fine-tuning
1. Fine-tune additional parameters for epochs
2. Fine-tune pretrained parameters without embedding

layer for epochs
148

https://arxiv.org/abs/1502.02791
https://arxiv.org/abs/1502.02791
https://www.aclweb.org/anthology/D17-1169
https://arxiv.org/abs/1801.06146
https://arxiv.org/abs/1801.06146
https://arxiv.org/abs/1902.10547
https://arxiv.org/abs/1902.10547

4.2.B – Optimization: Freezing

❏ Freezing all but the top layer (Long et al.,
ICML 2015)

❏ Chain-thaw (Felbo et al., EMNLP 2017):
training one layer at a time

❏ Gradually unfreezing (Howard & Ruder, ACL
2018): unfreeze one layer after another

❏ Sequential unfreezing (Chronopoulou et al.,
NAACL 2019): hyper-parameters that
determine length of fine-tuning
1. Fine-tune additional parameters for epochs
2. Fine-tune pretrained parameters without embedding

layer for epochs
3. Train all layers until convergence 149

https://arxiv.org/abs/1502.02791
https://arxiv.org/abs/1502.02791
https://www.aclweb.org/anthology/D17-1169
https://arxiv.org/abs/1801.06146
https://arxiv.org/abs/1801.06146
https://arxiv.org/abs/1902.10547
https://arxiv.org/abs/1902.10547

4.2.B – Optimization: Freezing

❏ Freezing all but the top layer (Long et al.,
ICML 2015)

❏ Chain-thaw (Felbo et al., EMNLP 2017):
training one layer at a time

❏ Gradually unfreezing (Howard & Ruder, ACL
2018): unfreeze one layer after another

❏ Sequential unfreezing (Chronopoulou et al.,
NAACL 2019): hyper-parameters that
determine length of fine-tuning

Commonality: Train all parameters jointly in the
end

150

https://arxiv.org/abs/1502.02791
https://arxiv.org/abs/1502.02791
https://www.aclweb.org/anthology/D17-1169
https://arxiv.org/abs/1801.06146
https://arxiv.org/abs/1801.06146
https://arxiv.org/abs/1902.10547
https://arxiv.org/abs/1902.10547

Hands-on #4:
Using gradual unfreezing

Image credit: Chanaky
151

Hands-on: Adaptation
Gradual unfreezing is similar to our previous freezing process.
We start by freezing all the model except the newly added parameters:

We then gradually unfreeze an additional block along the training so that we train the full model at the end:

Find index of layer
to unfreeze

Name pattern
matching

Unfreezing interval

152

Hands-on: Adaptation
Gradual unfreezing has not been investigated in details for Transformer models

⇨ no specific hyper-parameters advocated in the literature
Residual connections may have an impact on the method

⇨ should probably adapt LSTM hyper-parameters

We show simple experiments in the Colab. Better hyper-parameters settings can probably be found.

153

4.2.B – Optimization: Learning rates
Main idea: Use lower learning rates to avoid
overwriting useful information.

Where and when?

❏ Lower layers (capture general information)
❏ Early in training (model still needs to adapt

to target distribution)
❏ Late in training (model is close to

convergence)

154

4.2.B – Optimization: Learning rates
❏ Discriminative fine-tuning (Howard & Ruder,

ACL 2018)
❏ Lower layers capture general information

→ Use lower learning rates for lower layers

155

https://arxiv.org/abs/1801.06146
https://arxiv.org/abs/1801.06146

4.2.B – Optimization: Learning rates
❏ Discriminative fine-tuning
❏ Triangular learning rates (Howard & Ruder,

ACL 2018)
❏ Quickly move to a suitable region, then slowly

converge over time

156

https://arxiv.org/abs/1801.06146
https://arxiv.org/abs/1801.06146

4.2.B – Optimization: Learning rates
❏ Discriminative fine-tuning
❏ Triangular learning rates (Howard & Ruder,

ACL 2018)
❏ Quickly move to a suitable region, then slowly

converge over time
❏ Also known as “learning rate warm-up”
❏ Used e.g. in Transformer (Vaswani et al., NIPS

2017) and Transformer-based methods (BERT,
GPT)

❏ Facilitates optimization; easier to escape
suboptimal local minima

157

https://arxiv.org/abs/1801.06146
https://arxiv.org/abs/1801.06146
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762

4.2.B – Optimization: Regularization
Main idea: minimize catastrophic forgetting by
encouraging target model parameters to stay
close to pretrained model parameters
using a regularization term .

158

4.2.B – Optimization: Regularization
❏ Simple method:

Regularize new parameters
not to deviate too much
from pretrained ones (Wiese
et al., CoNLL 2017):

159

https://www.aclweb.org/anthology/K17-1029
https://www.aclweb.org/anthology/K17-1029

4.2.B – Optimization: Regularization
❏ More advanced (elastic

weight consolidation; EWC):
Focus on parameters that
are important for the
pretrained task based on the
Fisher information matrix
(Kirkpatrick et al., PNAS
2017):

160

https://www.pnas.org/content/114/13/3521
https://www.pnas.org/content/114/13/3521

4.2.B – Optimization: Regularization

EWC has downsides in continual
learning:

❏ May over-constrain
parameters

❏ Computational cost is linear
in the number of tasks
(Schwarz et al., ICML 2018)

161

https://arxiv.org/abs/1805.06370

4.2.B – Optimization: Regularization

❏ If tasks are similar, we may
also encourage source and
target predictions to be close
based on cross-entropy,
similar to distillation:

162

Hands-on #5:
Using discriminative learning

Image credit: Chanaky
163

Hands-on: Model adaptation
Discriminative learning rate can be implemented using two steps in our example:

We can then compute the learning rate of each group depending on its label (at each training iteration):

First we organize the parameters of the various layers in labelled parameters groups in the optimizer:

Hyper-parameter

164

Several trade-offs when choosing which weights to update:

Image credit: Alfredo

4.2.C – Optimization: Trade-offs

165

A. Space complexity
Task-specific modifications, additional parameters, parameter reuse

B. Time complexity
Training time

C. Performance

4.2.C – Optimization trade-offs: Space

Many Few

Feature extraction Fine-tuningAdapters
Task-specific modifications

Many Few

Feature extraction Fine-tuningAdaptersAdditional
parameters

All None

Feature extraction Fine-tuningAdaptersParameter reuse

166

Feature extraction Fine-tuningAdapters
Training time

Slow Fast

4.2.C – Optimization trade-offs: Time

167

❏ Rule of thumb: If task source and target tasks are dissimilar*, use feature
extraction (Peters et al., 2019)

❏ Otherwise, feature extraction and fine-tuning often perform similar
❏ Fine-tuning BERT on textual similarity tasks works significantly better
❏ Adapters achieve performance competitive with fine-tuning
❏ Anecdotally, Transformers are easier to fine-tune (less sensitive to

hyper-parameters) than LSTMs

4.2.C – Optimization trade-offs: Performance

*dissimilar: certain capabilities (e.g. modelling inter-sentence relations) are
beneficial for target task, but pretrained model lacks them (see more later)

168

https://arxiv.org/abs/1903.05987

4.3 – Getting more signal
The target task is often a low-resource task. We can often
improve the performance of transfer learning by
combining a diverse set of signals:

Image credit: Naveen
169

A. From fine-tuning a single model on a single adaptation task….
The Basic: fine-tuning the model with a simple classification objective

B. … to gathering signal from other datasets and related tasks …
Fine-tuning with Weak Supervision, Multi-tasking and Sequential Adaptation

C. … to ensembling models
Combining the predictions of several fine-tuned models

4.3.A – Getting more signal: Basic fine-tuning
Simple example of fine-tuning on a text
classification task:

A. Extract a single fixed-length vector from the
model:
hidden state of first/last token or mean/max of
hidden-states

B. Project to the classification space with an
additional classifier

C. Train with a classification objective

170

4.3.B – Getting more signal: Related datasets/tasks
A. Sequential adaptation

Intermediate fine-tuning on related datasets and tasks

B. Multi-task fine-tuning with related tasks
Such as NLI tasks in GLUE

C. Dataset Slicing
When the model consistently underperforms on particular slices of the data

D. Semi-supervised learning
Use unlabelled data to improve model consistency

171

4.3.B – Getting more signal: Sequential adaptation
Fine-tuning on related high-resource dataset

1. Fine-tune model on related task with more
data

172

4.3.B – Getting more signal: Sequential adaptation
Fine-tuning on related high-resource dataset

1. Fine-tune model on related task with more
data

2. Fine-tune model on target task

173

❏ Helps particularly for tasks with limited
data and similar tasks (Phang et al., 2018)

❏ Improves sample complexity on target task
(Yogatama et al., 2019)

https://arxiv.org/abs/1811.01088v2
https://arxiv.org/abs/1901.11373

4.3.B – Getting more signal: Multi-task fine-tuning
Fine-tune the model jointly on related
tasks

❏ For each optimization step,
sample a task and a batch for
training.

❏ Train via multi-task learning for a
couple of epochs.

174

4.3.B – Getting more signal: Multi-task fine-tuning
Fine-tune the model jointly on related
tasks

❏ For each optimization step,
sample a task and a batch for
training.

❏ Train via multi-task learning for a
couple of epochs.

❏ Fine-tune on the target task only
for a few epochs at the end.

175

4.3.B – Getting more signal: Multi-task fine-tuning
Fine-tune the model with an unsupervised
auxiliary task

❏ Language modelling is a related task!
❏ Fine-tuning the LM helps adapting the

pretrained parameters to the target
dataset.

❏ Helps even without pretraining (Rei et
al., ACL 2017)

❏ Can optionally anneal ratio
(Chronopoulou et al., NAACL 2019)

❏ Used as a separate step in ULMFiT

176

https://arxiv.org/abs/1704.07156
https://arxiv.org/abs/1704.07156
https://arxiv.org/abs/1902.10547

4.3.B – Getting more signal: Dataset slicing
Use auxiliary heads that are trained only on
particular subsets of the data

❏ Analyze errors of the model
❏ Use heuristics to automatically identify

challenging subsets of the training
data

❏ Train auxiliary heads jointly with main
head

See also Massive Multi-task Learning with
Snorkel MeTaL

177

https://dawn.cs.stanford.edu/2019/03/22/glue/
https://dawn.cs.stanford.edu/2019/03/22/glue/

4.3.B – Getting more signal: Semi-supervised learning
Can be used to make model
predictions more consistent
using unlabelled data

❏ Main idea: Minimize
distance between
predictions on original
input and perturbed
input

178

4.3.B – Getting more signal: Semi-supervised learning
Can be used to make model
predictions more consistent
using unlabelled data

❏ Perturbation can be noise,
masking (Clark et al., EMNLP
2018), data augmentation,
e.g. back-translation (Xie et
al., 2019)

179

https://arxiv.org/abs/1809.08370
https://arxiv.org/abs/1809.08370
https://arxiv.org/abs/1904.12848
https://arxiv.org/abs/1904.12848

4.3.C – Getting more signal: Ensembling
Reaching the state-of-the-art by ensembling independently fine-tuned models

❏ Ensembling models
Combining the predictions of models fine-tuned with various hyper-parameters

❏ Knowledge distillation
Distill an ensemble of fine-tuned models in a single smaller model

180

4.3.C – Getting more signal: Ensembling

Model fine-tuned...

❏ on different tasks
❏ on different dataset-splits
❏ with different parameters

(dropout, initializations…)
❏ from variant of pre-trained

models (e.g. cased/uncased)

Combining the predictions of models
fine-tuned with various hyper-parameters.

181

4.3.C – Getting more signal: Distilling

❏ knowledge distillation: train
a student model on soft
targets produced by the
teacher (the ensemble)

❏ Relative probabilities of the
teacher labels contain
information about how the
teacher generalizes

Distilling ensembles of large models back in a single model

182

Hands-on #6:
Using multi-task learning

Image credit: Chanaky
183

Hands-on: Multi-task learning
Multitasking with a classification loss +
language modeling loss.

Create two heads:
– language modeling head
– classification head

Total loss is a weighted sum of
– language modeling loss and
– classification loss

184

Hands-on: Multi-task learning

Multi-tasking helped us
improve over single-task
full-model fine-tuning!

We use a coefficient of 1.0 for the classification loss and 0.5 for the language modeling loss and
fine-tune a little longer (6 epochs instead of 3 epochs, the validation loss was still decreasing).

185

Agenda

[2] Pretraining [4] Adaptation

[6]
Open Problems

[5] Downstream

[3] What’s in a
representation?

[1] Introduction

186

5. Downstream applications
Hands-on examples

Image credit: Fahmi
187

5. Downstream applications - Hands-on examples
In this section we will explore downstream applications and practical
considerations along two orthogonal directions:

A. What are the various applications of transfer learning in NLP
Document/sequence classification, Token-level classification, Structured
prediction and Language generation

B. How to leverage several frameworks & libraries for practical applications
Tensorflow, PyTorch, Keras and third-party libraries like fast.ai, HuggingFace...

188

Practical considerationsFrameworks & libraries: practical considerations
❏ Pretraining large-scale models is costly

Use open-source models
Share your pretrained models

“Energy and Policy Considerations for Deep Learning in NLP” - Strubell, Ganesh, McCallum - ACL 2019

❏ Sharing/accessing pretrained models
❏ Hubs: Tensorflow Hub, PyTorch Hub
❏ Author released checkpoints: ex BERT, GPT...
❏ Third-party libraries: AllenNLP, fast.ai, HuggingFace

❏ Design considerations
❏ Hubs/libraries:

❏ Simple to use but can be difficult to modify model internal architecture
❏ Author released checkpoints:

❏ More difficult to use but you have full control over the model internals

189

5. Downstream applications - Hands-on examples

A. Sequence and document level classification
Hands-on: Document level classification (fast.ai)

B. Token level classification
Hands-on: Question answering (Google BERT & Tensorflow/TF Hub)

C. Language generation
Hands-on: Dialog Generation (OpenAI GPT & HuggingFace/PyTorch Hub)

Icons credits: David, Susannanova, Flatart, ProSymbols
190

5.A – Sequence & document level classification
Transfer learning for document classification using the fast.ai library.

❏ Target task:
IMDB: a binary sentiment classification dataset containing 25k highly polar
movie reviews for training, 25k for testing and additional unlabeled data.
http://ai.stanford.edu/~amaas/data/sentiment/

❏ Fast.ai has in particular:
❏ a pre-trained English model available for download
❏ a standardized data block API
❏ easy access to standard datasets like IMDB

❏ Fast.ai is based on PyTorch

191

http://ai.stanford.edu/~amaas/data/sentiment/
https://www.fast.ai/

5.A – Document level classification using fast.ai
fast.ai gives access to many high-level API out-of-the-box
for vision, text, tabular data and collaborative filtering.

DataBunch for the language model and the classifier

Load IMDB dataset & inspect it.

Load an AWD-LSTM (Merity et al., 2017) pretrained on
WikiText-103 & fine-tune it on IMDB using the language
modeling loss.

Fast.ai then comprises all the high level modules needed to
quickly setup a transfer learning experiment.

The library is designed for speed of experimentation, e.g. by
importing all necessary modules at once in interactive
computing environments, like:

192

https://github.com/fastai
https://arxiv.org/abs/1708.02182

5.A – Document level classification using fast.ai

Now we fine-tune in two steps:

Once we have a fine-tune language model
(AWD-LSTM), we can create a text classifier by adding
a classification head with:
– A layer to concatenate the final outputs of the RNN
with the maximum and average of all the intermediate
outputs (along the sequence length)
– Two blocks of nn.BatchNorm1d ⇨ nn.Dropout ⇨
nn.Linear ⇨ nn.ReLU with a hidden dimension of 50.

Colab: http://tiny.cc/NAACLTransferFastAiColab

1. train the classification head only while keeping
the language model frozen, and

2. fine-tune the whole architecture.

193

http://tiny.cc/NAACLTransferFastAiColab

5.B – Token level classification: BERT & Tensorflow
Transfer learning for token level classification: Google’s BERT in TensorFlow.

❏ Target task:
SQuAD: a question answering dataset.
https://rajpurkar.github.io/SQuAD-explorer/

❏ In this example we will directly use a Tensorflow checkpoint
❏ Example: https://github.com/google-research/bert
❏ We use the usual Tensorflow workflow: create model graph comprising

the core model and the added/modified elements
❏ Take care of variable assignments when loading the checkpoint

194

https://rajpurkar.github.io/SQuAD-explorer/
https://github.com/google-research/bert

5.B – SQuAD with BERT & Tensorflow
Let’s adapt BERT to the target task.

Replace the pre-training head
(language modeling) with a
classification head:
a linear projection layer to
estimate 2 probabilities for
each token:
– being the start of an answer
– being the end of an answer.

Keep our core model unchanged.

195

5.B – SQuAD with BERT & Tensorflow

Load our pretrained checkpoint

To load our checkpoint, we just
need to setup an
assignement_map from the
variables of the checkpoint to
the model variable, keeping only
the variables in the model.

And we can use
tf.train.init_from_ckeckpoint

196

5.B – SQuAD with BERT & Tensorflow
TensorFlow-Hub

TensorFlow Hub is a library
for sharing machine learning
models as self-contained
pieces of TensorFlow graph
with their weights and assets.

Working directly with TensorFlow
requires to have access to–and
include in your code– the full
code of the pretrained model.

Modules are automatically
downloaded and cached when
instantiated.

Each time a module m is called
e.g. y = m(x), it adds operations
to the current TensorFlow graph
to compute y from x.

197

5.B – SQuAD with BERT & Tensorflow
Tensorflow Hub host a nice selection of pretrained models for NLP

198

Tensorflow Hub can also used with Keras exactly how we saw in the BERT example

The main limitations of Hubs are:
❏ No access to the source code of the model (black-box)
❏ Not possible to modify the internals of the model (e.g. to add Adapters)

5.C – Language Generation: OpenAI GPT & PyTorch
Transfer learning for language generation: OpenAI GPT and HuggingFace library.

❏ Target task:
ConvAI2 – The 2nd Conversational Intelligence Challenge for training and
evaluating models for non-goal-oriented dialogue systems, i.e. chit-chat
http://convai.io

❏ HuggingFace library of pretrained models
❏ a repository of large scale pre-trained models with BERT, GPT, GPT-2, Transformer-XL
❏ provide an easy way to download, instantiate and train pre-trained models in PyTorch

❏ HuggingFace’s models are now also accessible using PyTorch Hub

199

http://convai.io

5.C – Chit-chat with OpenAI GPT & PyTorch

A dialog generation task:

Language generation tasks are close to the language modeling pre-training objective, but:
❏ Language modeling pre-training involves a single input: a sequence of words.
❏ In a dialog setting: several type of contexts are provided to generate an output sequence:

❏ knowledge base: persona sentences,
❏ history of the dialog: at least the last utterance from the user,
❏ tokens of the output sequence that have already been generated.

How should we adapt the model?

200

5.C – Chit-chat with OpenAI GPT & PyTorch

Golovanov, Kurbanov, Nikolenko, Truskovskyi, Tselousov and Wolf, ACL 2019

Several options:
❏ Duplicate the model to initialize an encoder-decoder structure

e.g. Lample & Conneau, 2019
❏ Use a single model with concatenated inputs

see e.g. Wolf et al., 2019, Khandelwal et al. 2019

Concatenate the various context separated by delimiters and add position and segment embeddings

201

https://arxiv.org/abs/1901.07291
http://arxiv.org/abs/1901.08149
http://arxiv.org/abs/1905.08836

5.C – Chit-chat with OpenAI GPT & PyTorch
Let’s import pretrained versions of OpenAI
GPT tokenizer and model.

Now most of the work is about preparing the
inputs for the model.

Then train our model using the pretraining
language modeling objective.

And add a few new tokens to the vocabulary

We organize the contexts in segments

Add delimiter at the extremities of the segments

And build our word, position and segment inputs
for the model.

202

5.C – Chit-chat with OpenAI GPT & PyTorch
PyTorch Hub
Last Friday, the PyTorch team soft-launched a beta version of PyTorch Hub. Let’s have a quick look.
❏ PyTorch Hub is based on GitHub repositories
❏ A model is shared by adding a hubconf.py script to the root of a GitHub repository
❏ Both model definitions and pre-trained weights can be shared
❏ More details: https://pytorch.org/hub and https://pytorch.org/docs/stable/hub.html

In our case, to use torch.hub instead of pytorch-pretrained-bert, we can simply call torch.hub.load
with the path to pytorch-pretrained-bert GitHub repository:

PyTorch Hub will fetch the model from the master branch on GitHub. This means that you don’t
need to package your model (pip) & users will always access the most recent version (master).

203

https://pytorch.org/hub
https://pytorch.org/docs/stable/hub.html

Agenda

[2] Pretraining [4] Adaptation

[6]
Open Problems

[5] Downstream

[3] What’s in a
representation?

[1] Introduction

204

6. Open problems and future directions

Image credit: Yazmin Alanis
205

6. Open problems and future directions

A. Shortcomings of pretrained language models

B. Pretraining tasks

C. Tasks and task similarity

D. Continual learning and meta-learning

E. Bias

Image credit: Yazmin Alanis
206

Shortcomings of pretrained language models
❏ Recap: LM can be seen as a general pretraining task; with enough data,

compute, and capacity a LM can learn a lot.
❏ In practice, many things that are less represented in text are harder to learn
❏ Pretrained language models are bad at

❏ fine-grained linguistic tasks (Liu et al., NAACL 2019)
❏ common sense (when you actually make it difficult; Zellers et al., ACL 2019); natural language

generation (maintaining long-term dependencies, relations, coherence, etc.)
❏ tend to overfit to surface form information when fine-tuned; ‘rapid surface learners’
❏ ...

207

https://arxiv.org/abs/1903.08855
https://arxiv.org/abs/1905.07830

Shortcomings of pretrained language models

Large, pretrained language models can be difficult to optimize.

❏ Fine-tuning is often unstable and has a high variance, particularly if the target
datasets are very small

❏ Devlin et al. (NAACL 2019) note that large (24-layer) version of BERT is
particularly prone to degenerate performance; multiple random restarts are
sometimes necessary as also investigated in detail in (Phang et al., 2018)

208

https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1811.01088

Shortcomings of pretrained language models
Current pretrained language models are very large.

❏ Do we really need all these parameters?
❏ Recent work shows that only a few of the attention heads in BERT are

required (Voita et al., ACL 2019).
❏ More work needed to understand model parameters.
❏ Pruning and distillation are two ways to deal with this.
❏ See also: the lottery ticket hypothesis (Frankle et al., ICLR 2019).

209

https://arxiv.org/abs/1905.09418
https://arxiv.org/abs/1803.03635

Pretraining tasks
Shortcomings of the language modeling objective:

❏ Not appropriate for all models
❏ If we condition on more inputs, need to pretrain those parts
❏ E.g. the decoder in sequence-to-sequence learning (Song et al., ICML 2019)

❏ Left-to-right bias not always be best
❏ Objectives that take into account more context (such as masking) seem useful (less

sample-efficient)
❏ Possible to combine different LM variants (Dong et al., 2019)

❏ Weak signal for semantics and long-term context vs. strong signal for syntax
and short-term word co-occurrences
❏ Need incentives that promote encoding what we care about, e.g. semantics

210

https://arxiv.org/abs/1905.02450
https://arxiv.org/abs/1905.03197

211

Pretraining tasks
More diverse self-supervised objectives

❏ Taking inspiration from computer vision

Sampling a patch and a neighbour and
predicting their spatial configuration
(Doersch et al., ICCV 2015)

Image colorization (Zhang et al.,
ECCV 2016)

❏ Self-supervision in language mostly
based on word co-occurrence (Ando and
Zhang, 2005)

❏ Supervision on different levels of
meaning
❏ Discourse, document, sentence, etc.
❏ Using other signals, e.g. meta-data

❏ Emphasizing different qualities of
language

https://arxiv.org/abs/1505.05192
https://arxiv.org/abs/1603.08511
https://arxiv.org/abs/1603.08511
http://www.jmlr.org/papers/volume6/ando05a/ando05a.pdf
http://www.jmlr.org/papers/volume6/ando05a/ando05a.pdf

Pretraining tasks
Specialized pretraining tasks that teach what our model is missing

❏ Develop specialized pretraining tasks that explicitly learn such relationships
❏ Word-pair relations that capture background knowledge (Joshi et al., NAACL 2019)
❏ Span-level representations (Swayamdipta et al., EMNLP 2018)
❏ Different pretrained word embeddings are helpful (Kiela et al., EMNLP 2018)

❏ Other pretraining tasks could explicitly learn reasoning or understanding
❏ Arithmetic, temporal, causal, etc.; discourse, narrative, conversation, etc.

❏ Pretrained representations could be connected in a sparse and modular way
❏ Based on linguistic substructures (Andreas et al., NAACL 2016) or experts (Shazeer et al., ICLR

2017)

212

https://arxiv.org/abs/1810.08854
https://arxiv.org/abs/1808.10485
https://arxiv.org/abs/1804.07983
https://arxiv.org/abs/1601.01705
https://openreview.net/forum?id=B1ckMDqlg
https://openreview.net/forum?id=B1ckMDqlg

Pretraining tasks
Need for grounded representations

❏ Limits of distributional hypothesis—difficult to learn certain types of
information from raw text
❏ Human reporting bias: not stating the obvious (Gordon and Van Durme, AKBC 2013)
❏ Common sense isn’t written down
❏ Facts about named entities
❏ No grounding to other modalities

❏ Possible solutions:
❏ Incorporate other structured knowledge (e.g. knowledge bases like ERNIE, Zhang et al 2019)
❏ Multimodal learning (e.g. with visual representations like VideoBERT, Sun et al. 2019)
❏ Interactive/human-in-the-loop approaches (e.g. dialog, Hancock et al. 2018)

213

https://openreview.net/forum?id=AzxEzvpdE3Wcy
http://arxiv.org/abs/1905.07129
https://arxiv.org/abs/1904.01766
https://arxiv.org/abs/1901.05415

Tasks and task similarity
Many tasks can be expressed as variants of language modeling

❏ Language itself can directly be used to specify tasks, inputs, and outputs, e.g.
by framing as QA (McCann et al., 2018)

❏ Dialog-based learning without supervision by forward prediction (Weston,
NIPS 2016)

❏ NLP tasks formulated as cloze prediction objective (Children Book Test,
LAMBADA, Winograd, ...)

❏ Triggering task behaviors via prompts e.g. TL; DR:, translation prompt
(Radford, Wu et al. 2019); enables zero-shot adaptation

❏ Questioning the notion of a “task” in NLP

214

https://arxiv.org/abs/1806.08730
https://arxiv.org/abs/1604.06045
https://arxiv.org/abs/1604.06045
https://openai.com/blog/better-language-models/

Tasks and task similarity
❏ Intuitive similarity of pretraining and target tasks (NLI, classification)

correlates with better downstream performance
❏ Do not have a clear understanding of when and how two tasks are similar and

relate to each other
❏ One way to gain more understanding: Large-scale empirical studies of

transfer such as Taskonomy (Zamir et al., CVPR 2018)
❏ Should be helpful for designing better and specialized pretraining tasks

215

https://arxiv.org/abs/1804.08328

Continual and meta-learning
❏ Current transfer learning performs adaptation once.
❏ Ultimately, we’d like to have models that continue to retain and accumulate

knowledge across many tasks (Yogatama et al., 2019).
❏ No distinction between pretraining and adaptation; just one stream of tasks.
❏ Main challenge towards this: Catastrophic forgetting.
❏ Different approaches from the literature:

❏ Memory, regularization, task-specific weights, etc.

216

https://arxiv.org/abs/1901.11373

Continual and meta-learning
❏ Objective of transfer learning: Learn a representation that is general and

useful for many tasks.
❏ Objective does not incentivize ease of adaptation (often unstable); does not

learn how to adapt it.
❏ Meta-learning combined with transfer learning could make this more

feasible.
❏ However, most existing approaches are restricted to the few-shot setting and

only learn a few steps of adaptation.

217

Bias
❏ Bias has been shown to be pervasive in word embeddings and neural models

in general
❏ Large pretrained models necessarily have their own sets of biases
❏ There is a blurry boundary between common-sense and bias
❏ We need ways to remove such biases during adaptation
❏ A small fine-tuned model should be harder to misuse

218

Conclusion
❏ Themes: words-in-context, LM pretraining, deep models

❏ Pretraining gives better sample-efficiency, can be scaled up

❏ Predictive of certain features—depends how you look at it

❏ Performance trade-offs, from top-to-bottom

❏ Transfer learning is simple to implement, practically useful

❏ Still many shortcomings and open problems

219

Questions?

220

❏ Slides: http://tiny.cc/NAACLTransfer
❏ Colab: http://tiny.cc/NAACLTransferColab
❏ Code: http://tiny.cc/NAACLTransferCode

❏ Twitter: #NAACLTransfer

❏ Whova: “Questions for the tutorial on
Transfer Learning in NLP” topic

http://tiny.cc/NAACLTransfer
http://tiny.cc/NAACLTransferColab
http://tiny.cc/NAACLTransferCode

Extra slides

221

https://paperswithcode.com/sota/question-answering-on-squad20

BERT +
X

Why transfer learning in NLP? (Empirically)

222

https://paperswithcode.com/sota/question-answering-on-squad20

*General Language
Understanding
Evaluation (GLUE;
Wang et al., 2019):
includes 11 diverse
NLP tasks

GLUE* performance over time

223

https://w4ngatang.github.io/static/papers/superglue.pdf

Pretrained Language Models: More Parameters

224

More word vectors

GLoVe: very large scale (840B tokens),
co-occurrence based. Learns linear
relationships (SOTA word analogy)
(Pennington et al., 2014)

❏ fastText: incorporates
subword information
(Bojanowski et al., 2017)

fastText

skipgram
225

https://nlp.stanford.edu/projects/glove/
https://arxiv.org/abs/1607.04606

Semi-supervised Sequence Modeling with Cross-View Training

(Clark et al. EMNLP 2018)
SOTA sequence modeling results

226

https://arxiv.org/abs/1809.08370

Pretrain bidirectional character level model, extract
embeddings from first/last character

SOTA CoNLL 2003 NER results

Contextual String Embeddings

(Akbik et al., COLING 2018) (see also Akbik et al., NAACL 2019)
227

https://alanakbik.github.io/papers/coling2018.pdf
http://alanakbik.github.io/papers/naacl2019_embeddings.pdf

Cloze-driven Pretraining of Self-attention Networks

Pretraining
Fine-tuning

SOTA NER and PTB
constituency parsing,
~3.3% less than
BERT-large for GLUE

Baevski et al. (2019)

228

https://arxiv.org/abs/1903.07785

UniLM - Dong et al., 2019

Model is jointly pretrained on
three variants of LM

(bidirectional, left-to-right,
seq-to-seq)

SOTA on three natural
language generation tasks

229

Masked Sequence to Sequence Pretraining (MASS)

(Song et al., ICML 2019)

Pretrain encoder-decoder

230

https://arxiv.org/abs/1905.02450

Probing tasks for sentential features:

❏ Bag-of-Vectors is surprisingly good at capturing sentence-level proper-
ties, thanks to redundancies in natural linguistic input.

❏ BiLSTM-based models are better than CNN-based models at capturing
interesting linguistic knowledge, with same objective

❏ Objective matters - training on NLI is bad. Most tasks are structured so
a seq 2 tree objective works best.

❏ Supervised objectives for sentence embeddings do better than
unsupervised, like SkipThought (Kiros et al.)

What matters: Pretraining Objective, Encoder

231

From lower to higher layers, information goes from general to task-specific.

Image credit: Distill

An inspiration from Computer Vision

232

https://distill.pub/2017/feature-visualization/

Other analyses

❏ Textual omission and multi-modal: Kadar et al. , 16

❏ Adversarial Approaches
❏ Adversary: input which differs from original just enough to

change the desired prediction
❏ SQuAD: Jia & Liang, 2017
❏ NLI: Glockner et al., 2018; Minervini & Riedel, 2018
❏ Machine Translation: Belinkov & Bisk, 2018

❏ Requires identification (manual or automatic) of inputs to
modify.

Other methods for analysis

Adversarial
methods

233

https://arxiv.org/pdf/1602.08952.pdf
https://arxiv.org/abs/1808.08609

Analysis: Inputs and Outputs

What to analyze?

❏ Embeddings
❏ Word types and tokens
❏ Sentence
❏ Document

❏ Network Activations
❏ RNNs
❏ CNNs
❏ Feed-forward nets

❏ Layers
❏ Pretraining Objectives

What to look for?

❏ Surface-level features
❏ Lexical features

❏ E.g. POS tags

❏ Morphology
❏ Syntactic Structure

❏ Word-level
❏ Sentence-level

❏ Semantic Structure
❏ E.g. Roles, Coreference

 Belinkov et al. (2019)—More details in Table 1. 234

https://www.mitpressjournals.org/doi/full/10.1162/tacl_a_00254
https://boknilev.github.io/nlp-analysis-methods/table1.html

Analysis: Methods

❏ Visualization:
❏ 2-D plots
❏ Attention mechanisms
❏ Network activations

Model
Alterations

Visualization

❏ Model Alterations:
❏ Network Erasure
❏ Perturbations

❏ Model Probes:
❏ Surface-level features
❏ Syntactic features
❏ Semantic features

Model Probes

* Not hard and fast categories

Adversarial Approaches

❏ How does this say what’s in a representation?
❏ Roundabout: what’s wrong with a representation...

Credits: Jia & Liang (2017) and Percy Liang. AI Frontiers. 2018

Analysis / Evaluation : Adversarial Methods

236

Liu et al., NAACL 2019

Probes are simple linear / neural layers

237

❏ Interpretability is difficult Lipton et al., 2016
❏ Many variables make synthesis challenging
❏ Choice of model architecture, pretraining

objective determines informativeness of
representations

What is still left unanswered?

Conneau et al., 2018

Transferability to downstream tasks

Interpretability is important, but not enough
on its own.

Interpretability + transferability to
downstream tasks is key - that’s next!

https://arxiv.org/pdf/1606.03490.pdf
https://arxiv.org/abs/1805.01070

