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Transfer Learning in NLP

Follow along with the tutorial:

A Slides: http://tiny.cc/NAACLTransfer
1 Colab: http://tiny.cc/NAACLTransferColab
A Code: http://tiny.cc/NAACLTransferCode

Questions:

d  Twitter: #NAACLTransfer during the tutorial

d  Whova: “Questions for the tutorial on Transfer Learning in NLP” topic
[ Ask us during the break or after the tutorial


http://tiny.cc/NAACLTransfer
http://tiny.cc/NAACLTransferColab
http://tiny.cc/NAACLTransferCode

What is transfer learning?

. ; N ; , Learning Process of Transfer Learning
Learning Process of Traditional Machine Learning
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(a) Traditional Machine Learning (b) Transfer Learning

Pan and Yang (2010) .



https://www.cse.ust.hk/~qyang/Docs/2009/tkde_transfer_learning.pdf

Why transfer learning in NLP?

Many NLP tasks share common knowledge about language (e.g. linguistic
representations, structural similarities)

Tasks can inform each other—e.g. syntax and semantics

Annotated data is rare, make use of as much supervision as available.

Empirically, transfer learning has resulted in SOTA for many supervised NLP
tasks (e.g. classification, information extraction, Q&A, etc).



Why transfer learning in NLP? (Empirically)

Performance on Named Entity Recognition (NER) on CoNLL-2003 (English) over time
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Types of transfer learning in NLP

Different domains

Same task;

Transductive

transfer

learning

labeled data
only in source
domain

Transfer

learning

Different tasks;
labeled data
in target

Different languages

Domain

adaptation

Cross-lingual

learning

Tasks learned
simultaneously

domain

Inductive

transfer

learning

Tasks learned
sequentially

Multi-task

learning

[

|

Sequential

transfer learning

We will

focus on

this

Ruder (2019)


http://ruder.io/thesis/neural_transfer_learning_for_nlp.pdf

What this tutorial is about and what it's not about

Goal: provide broad overview of transfer methods in NLP, focusing on the
most empirically successful methods as of today (mid 2079)

Provide practical, hands on advice — by end of tutorial, everyone has ability to
apply recent advances to text classification task

What this is not: Comprehensive (it's impossible to cover all related papers in
one tutorial!)

(Bender Rule: This tutorial is mostly for work done in English, extensibility to
other languages depends on availability of data and resources.)
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1. Introduction
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Sequential transfer learning

Learn on one task / dataset, then transfer to another task / dataset

Pretraining

—>

word2vec
GloVe
skip-thought
InferSent
ELMo
ULMFIT
GPT

BERT

Adaptation

—>

classification
sequence labeling
Q&A

Q
o202
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Pretraining tasks and datasets

d Unlabeled data and self-supervision

J
m

J

Easy to gather very large corpora: Wikipedia, news, web crawl, social media, etc.

Training takes advantage of distributional hypothesis: “You shall know a word by the company
it keeps” (Firth, 1957), often formalized as training some variant of language model

Focus on efficient algorithms to make use of plentiful data

A Supervised pretraining

I W Wiy W

Very common in vision, less in NLP due to lack of large supervised datasets
Machine translation

NLI for sentence representations

Task-specific—transfer from one Q&A dataset to another

1



Target tasks and datasets

Target tasks are typically supervised and span a range of common NLP tasks:

Sentence or document classification (e.g. sentiment)
Sentence pair classification (e.g. NLI, paraphrase)
Word level (e.g. sequence labeling, extractive Q&A)
Structured prediction (e.g. parsing)

Generation (e.g. dialogue, summarization)

Iy My Wiy Ny N
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Concrete example—word vectors

Word embedding methods (e.g. word2vec) learn one vector per word:

cat=[0.1,-0.2,0.4, ..]

dog =[0.2,-0.1,0.7, ..]

13



Concrete example—word vectors

Word embedding methods (e.g. word2vec) learn one vector per word:

cat=[0.1,-0.2,0.4, ..]

dog =[0.2,-0.1,0.7, ..]

—»

—

PRP VBP PRP NN CC NN

love my cat and dog .
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Concrete example—word vectors

Word embedding methods (e.g. word2vec) learn one vector per word:

cat=[0.1,-0.2,0.4, ..]

—

dog =[0.2,-0.1,0.7, ... \

PRP VBP PRP NN CC NN

RN

love my cat and dog .

| love my cat and dog . }-> “positive"
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Major Themes

16



Major themes: From words to words-in-context

Word vectors
cats = [0.2,-0.3, ..]

dogs =1[0.4,-0.5, ..]

Sentence / doc vectors

We have two
} [1.2,0.0, ..]
cats.

It's raining 0.8 05
cats and dogs. } (08 ) ]

Word-in-context
vectors

[1.2,-0.3, ..]

~—
We have two cats.

[-0.4,0.9, ..]

; Y
It's raining cats and dogs.
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Major themes: LM pretraining

Many successful pretraining approaches are based on language modeling
Informally, a LM learns P (text) or P(text | some other text)

Doesn't require human annotation

Many languages have enough text to learn high capacity model
Versatile—can learn both sentence and word representations with a variety of
objective functions

18



Major themes: From shallow to deep

i-th output = P(w, = i| context)

softmax
(eoe [ X .- [ XX D)
/ 4 Y
’ v 3 \
’ ’ most| computation here \
‘ ’ \
’ . \
! ] \
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;] / tanh !
' , e 3 °se) |
1 \ '
! ’
1 ’
1
1 ~
C(WlfrH» Yoo R C(W 2) C(Wt l)
(ee o) ... (e o
Table 1 ~. Matrix C
:ﬁoé—up shared parameters
across words
index for wy_,41 index for w;_» index for w,_;

Bengio et al 2003: A Neural
Probabilistic Lanquage Model

BERT (Ours)

Devlin et al 2019: BERT: Pre-training of Deep

Bidirectional Transformers for Language
Understanding
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http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805

Major themes: pretraining vs target task

Choice of pretraining and target tasks are coupled

d Sentence / document representations not useful for word level predictions

d  Word vectors can be pooled across contexts, but often outperformed by other
methods

A In contextual word vectors, bidirectional context important

In general:

A Similar pretraining and target tasks — best results

20
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[1] Introduction

[2] Pretraining

[4] Adaptation

N\

[5] Downstream

[3] What's in a
representation?

|

Q;

[6]

Open Problems
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2. Pretraining

AO
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Overview

Language model pretraining

Word vectors

Sentence and document vectors
Contextual word vectors
Interesting properties of pretraining

Cross-lingual pretraining

23



LM pretraining

word2vec, Mikolov et al (2013) ELMo, Peters et al. 2018, ULMFiT (Howard & Ruder
2018), GPT (Radford et al. 2018)

- D
A 775t

7 T TIT

We [have a 77?2 and three] c}ogs We have a 777

BERT, Devlin et al 2019

P 777
Skip-Thought

0? q@»@ (@0 (Kiros et al. @f‘_’ @{}_@?’W@P I
2015)
00 (00 (00 (?

We like pets. } —

-+

@0 @0 @0 @0 (g9 (@0
V\}e haIveeIl 227 We have a MASK and thlIee dc@gs
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https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1802.05365
https://arxiv.org/abs/1801.06146
https://arxiv.org/abs/1801.06146
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://arxiv.org/abs/1506.06726
https://arxiv.org/abs/1506.06726
https://arxiv.org/abs/1810.04805

Word vectors

25



Why embed words?

A Embeddings are themselves parameters—can be learned
A Sharing representations across tasks

[ Lower dimensional space

A Better for computation—difficult to handle sparse vectors.

26



Unsupervised pretraining : Pre-Neural

Latent Semantic Analysis (LSA)—SVD
of term-document matrix, (Deerwester
et al., 1990)

documents

| | \ |1 [ |
| ) | \ [ * || [
| X =1 T | | §*| D |
| | \ [ [ PP [
terms | | | | k x k k x d
| | \ |
| | \ |
| | \ |
| oo g sonsece I [ |
t x d t x k
X = T S D

plan

letter

request

memo

case

question

Brown clusters, hard charge
statement

hierarchical clustering draft
based on n-gram LMs, day

year
week

(Brown et al. 1992) o
quarter
half

reps
representatives
representative

rep

evaluation
assessment
analysis
understanding
opinion —
conversation —
discussion —J

accounts
people
customers
individuals
employees
students

-

(Blei et al., 2003)

Latent Dirichlet Allocation (LDA)—Documents are
mixtures of topics and topics are mixtures of words
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http://lsa.colorado.edu/papers/JASIS.lsi.90.pdf
http://lsa.colorado.edu/papers/JASIS.lsi.90.pdf
http://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf
https://www.aclweb.org/anthology/J92-4003

Word vector pretraining

n-gram neural language model
(Bengio et al. 2003)

i-th output = P(w, = i| context)

softmax
(eoee S [ X s [ XX D]
‘ 7 X
4 most| computation here
’
1
[
! 1
! ! tanh
1 \ 1
f i Ceeoo =0 el o0 ) ¥
! 1 1
I \ i
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(e -—~9) ... (@0 . 9) (oo --.0)
Table . Matrix C 57
:zo(l;—up shared parameters
across words
index for wy_,41 index for wy_» index for w,_;

Supervised multitask word
embeddings (Collobert and Weston,

2008)

Lookup Tables Lookup Tables
T s 1Y/ T Ve 1
wejl ¢ 2 w

E Convolution ] C Convolution ]
]
J
]

E Max ] C Max
[— _ Classical NN Layer(s)] C Classical NN Layer(s)

[ ¥ softmax ]l:_ " Softmax

Task 1 Task 2
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http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
https://ronan.collobert.com/pub/matos/2008_nlp_icml.pdf
https://ronan.collobert.com/pub/matos/2008_nlp_icml.pdf

word2vec

Efficient algorithm + large scale training — high quality word vectors

Wt-2

(Mikolov et al., 2013) We.2

cBOWwW SKIPGRAM

Wi.1 Wi-1

Wi, 1 Wit

Wi 2

Wt 2

(00 (00 (00 (00
(00
(00

T
1 1
> logp(uwi ) 33 logp(uwr.j|wr)

iy e
t=1 —c<j<c,j#0 t=1 —¢c<j<c,j#0

See also:
[ Pennington et al. (2014): GloVe

A Bojanowski et al. (2017): fastText
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https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://nlp.stanford.edu/projects/glove/
https://arxiv.org/abs/1607.04606

Sentence and document vectors

30



Paragraph vector

Unsupervised paragraph embeddings (Le & Mikolov, 2014)

[the] [cat] [sat] [on ]

Classifier Classifier

Average/Concatenate

###

Paraqraph the

Paragraph Matrix----- 5 Paragraph Matrix ---------2 >

Paragraph
id

DM (Distributed Memory) DBOW (Distributed Bag of Words)

SOTA classification (IMDB, SST)

Model Error rate
BoW (bnc) (Maas et al., 2011) 12.20 %
BoW (bAt’c) (Maas et al., 2011) 11.77%
LDA (Maas et al., 2011) 32.58%
Full+BoW (Maas et al., 2011) 11.67%
Full+Unlabeled+BoW (Maas et al., 2011) 11.11%
WRRBM (Dahl et al., 2012) 12.58%
WRRBM + BoW (bnc) (Dahl et al., 2012) 10.77%
MNB-uni (Wang & Manning, 2012) 16.45%
MNB-bi (Wang & Manning, 2012) 13.41%
SVM-uni (Wang & Manning, 2012) 13.05%
SVM-bi (Wang & Manning, 2012) 10.84%
NBSVM-uni (Wang & Manning, 2012) 11.71%
NBSVM-bi (Wang & Manning, 2012) 8.78%
Paragraph Vector 7.42%

31



https://arxiv.org/abs/1405.4053

Skip-Thought Vectors

Predict previous / next sentence with seq2seq model (Kiros et al., 2015)

| got back home <eos>
e <eos> }‘I )g:: back home
| could see the cat on the steps . _: This was strange <eos>
<eos> This was strange
Method MR CR SUBJ] MPQA TREC
NB-SVM [41] 794 818 932 863 Hidden state of encoder
MNB [41] 790 800  93.6 86.3
cBoW [6] 772 799 913 86.4 87.3 transfers to sentence tasks
GrConv [6] 763 813 895 84.5 88.4 . . .
RNN [6] 772 823 937 90.1 90.2 (CIaSS|ﬂcat|on, semantic
BRNN [6] 823 826 942 90.3 91.0 Ca .
CNN [4] 81,5 850 934 89.6 93.6 simila I’Ity)
AdaSent [6] 831 863 955 93.3 92.4
Paragraph-vector [7] 74.8  78.1 90.5 74.2 91.8
uni-skip 755 193 O2.1 86.9 91.4
bi-skip 739 779 925 83.3 89.4
combine-skip 76.5 80.1 93.6 87.1 92.2
combine-skip + NB 804 813 93.6 87.5

32


https://arxiv.org/abs/1506.06726

Autoencoder pretraining

Dai & Le (2015): Pretrain a sequence autoencoder (SA) and generative LM

SOTA classification (IMDB)
W X Y z <eos>

\ Model Test error rate
LSTM with tuning and dropout 13.50%

i 10
T T T T LM-LSTM (see Section 2) 7.64%
SA-LSTM (see Figure 1 7.24%
W X Y VA <eos> w X Y z
= 0

with linear gain (see Section 3)

SA-LSTM with joint training (see Section 3) 14.70%
Full+Unlabeled+BoW [21] 11.11%
WRRBM + BoW (bnc) [21] 10.77%
NBSVM-bi (Naive Bayes SVM with bigrams) [35] 8.78%
seq2-bowrn-CNN (ConvNet with dynamic pooling) [11] 7.67%
Paragraph Vectors [18] 7.42%

See also:
O Socher et. al (2011): Semi-supervised recursive auto encoder
O Bowman et al. (2016): Variational autoencoder (VAE)

O Hilletal. (2016): Denoising autoencoder

33


https://arxiv.org/abs/1511.01432
https://www.aclweb.org/anthology/D11-1014
https://arxiv.org/pdf/1511.06349.pdf
https://arxiv.org/abs/1602.03483

Supervised sentence embeddings

Also possible to train sentence embeddings with supervised objective

Paragram-phrase: uses paraphrase database for supervision, best for
paraphrase and semantic similarity (Wieting et al. 2016)

InferSent: bi-LSTM trained on SNLI + MNLI (Conneau et al. 2017)

GenSen: multitask training (skip-thought, machine translation, NLI, parsing)
(Subramanian et al. 2018)

34


https://arxiv.org/abs/1511.08198
https://arxiv.org/abs/1705.02364
https://arxiv.org/abs/1804.00079

Contextual word vectors

35



Contextual word vectors - Motivation

Word vectors compress all contexts into a single vector

Nearest neighbor GloVe vectors to “play”

VERB NOUN ADJ 2?

playing game multiplayer plays

played CEINES Play
players

football

36



Contextual word vectors - Key Idea

Instead of learning one vector per word, learn a vector that depends on context

f(play | The kids play a game in the park.)
=
f(play | The Broadway play premiered yesterday.)

Many approaches based on language models

37



context2vec

Use bidirectional LSTM and cloze Learn representations for both Sentence completion
prediction objective (a 1 layer masked LM) words and contexts (minus word) Lexical substitution
WSD

objective function

sentential
context

c2v c2v | AWE || S-1 | S-2

embeddings target word Are you [ ] with the service ? :
embeddings A | iters+ )
26 MCSS
A.Vi\?’/‘ test || 64.0 | 627 ] 484 || - | -
lam[] 2t .O all | 65.1 | 613 | 49.7 || 589 | 56.2
toinformyou ()~ satisfied LST07
@ happy test || 56.1 | 54.8 | 419 || 552 | -
O all || 56.0 | 54.6 | 42.5 || 55.1 | 53.6
@ product LST-14
here roatils O test | 47.7 | 473 | 38.1 [ 500 | -
= all || 47.9 | 475 | 389 || 50.2 | 483
7 A SE-3

John [ submitted ] a paper submitted Are you happy with the[]7 test H 72.8 | 712 | 61.4 H 74.1 | 73.6

[:] left-to-right context word embeddings

l:l right-to-left context word embeddings

(Melamud et al., CoNLL 2036)



https://www.aclweb.org/anthology/K16-1006

Pretrain two LMs (forward and backward) and add to sequence tagger.
SOTA NER and chunking results

C

B-LOC

RF . £Loc — Sequence

Pre-trained bi-LM

tagging

h,, Sequence
representation

bi-RNN
(R)

e JI 0 ] o 0 ]

* bi-RNN (R,)

Backward LM

Token
representation

New York is located ...

o

Concat LM
embedding

Token
representation

£ £
Char
CNN/ Token \
RNN embedding(”_)
R X

—i N

—— Forward LM

Token
representation

New York is located ...

New York is

located

Model Fi+ std

Chiu and Nichols (2016) | 90.91 £ 0.20
Lample et al. (2016) 90.94

Ma and Hovy (2016) 91.37

Our baseline without LM | 90.87 +0.13
TaglLM 91.93 +0.19

Table 1: Test set F1 comparison on CoNLL 2003
NER task, using only CoNLL 2003 data and unla-

beled text.

(Peters et al. ACL 2017)
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https://arxiv.org/abs/1705.00108

Unsupervised Pretraining for Seq2Seq

<EOS>

2

Softmax

vwww

Pretrain encoder and decoder
Second RNN Layer with LMs (everything shaded
is pretrained).

First RNN Layer
Embedding
| | | | | | | |
1 1 I 1 I I 1 I
A B ¢ <EOS> w X Y z
BLEU
System ensemble? newstest2014  newstest2015
Phrase Based MT (Williams et al., 2016) - 21.9 237
Supervised NMT (Jean et al., 2015) single - 22.4 Large boost for MT.
Edit Distance Transducer NMT (Stahlberg et al., 2016) single 21.7 24.1
Edit Distance Transducer NMT (Stahlberg et al., 2016)  ensemble 8 22.9 25.7
Backtranslation (Sennrich et al., 2015a) single 22.7 25.7
Backtranslation (Sennrich et al., 2015a) ensemble 4 23.8 26.5
Backtranslation (Sennrich et al., 2015a) ensemble 12 24.7 27.6
No pretraining single 21.3 243
Pretrained seq2seq single 24.0 27.0
Pretrained seq2seq ensemble 5 24.7 28.1

(Ramachandran et al, EMNLP 2017)
40



https://www.aclweb.org/anthology/D17-1039

CoVe

a) _ ~ b) T Pretrain bidirectional
frencietion™ | \ \ encoder with MT
f | i | supervision, extract
Encoder —» Decoder | Encoder Encoder LSTM states
' A A
1 | | . .
Word 3 Word Word Adding CoVe with
Vectors i Vectors Vectors

GloVe gives
Glover ______— _— ITprQ}/eﬁl?nts Nfﬂ 0en

Dataset Random GloVe Char CoVe- - CoVe-L Char+CoVe-L classitcation, '
y 4

SST-2 84.2 88.41 90.1 89.0 90.9 21,1 91.2
SST-5 48.6 335 522 54.0 54.7 54.5 55.2
IMDb 88.4 91.1] 913 90.6 91.6 91.7 92.1
TREC-6 88.9 949) 94.7 94.7 95.1 95.8 95.8
TREC-50 81.9 89.2] 89.8 89.6 89.6 90.5 91.2
SNLI 823 877y 8117 87.3 87.5 87.9 88.1
SQuAD 65.4 76.0) 78.1 76.5 Tl 79.5 79.9

(McCann et al, NeurlPS 2017)
41



https://papers.nips.cc/paper/7209-learned-in-translation-contextualized-word-vectors

ELMo

)

LSTM

o

LSTM LSTM LSTM

oy o e

The Broadway play premiered vesterday

LSTM

o

INCREASE
TASK PREVIOUS SOTA Our ELMo + (ABSOLUTE/
BASELINE BASELINE RELATIVE)
SQuAD | Liu et al. (2017) 84.4 || 81.1 85.8 4.7124.9%
SNLI Chen et al. (2017) 88.6 || 88.0 88.7+0.17 0.7/5.8%
SRL He et al. (2017) 81.7 || 81.4 84.6 32/17.2%
Coref Lee et al. (2017) 67.2 || 67.2 70.4 3.2/9.8%
NER Peters et al. (2017) 91.93 £ 0.19 || 90.15 9222 +£0.10 2.06/21%
SST-5 McCann et al. (2017) 53.7 || 514 54.7+£0.5 3.3/6.8%

Pretrain deep bidirectional LM,
extract contextual word vectors
as learned linear combination of
hidden states

SOTA for 6 diverse tasks

(Peters et al, NAACL 2018)
42



https://aclweb.org/anthology/N18-1202

ULMFIT

I
ayer
i { H \ [ ‘} i
Layer3 | Hon ayerdt | .
N TR 7 N " Pretrain AWD-LSTM LM,
IR —— ge 4 fine-tune LM in two stages with
pabm : B | different adaptation techniques
Layer] d Layer | 0t Layer 1 it
R R el e R B PRV oo ot
The gold dollar or gold The best scene ever The best scene ever
(a) LM pre-training (b) LM fine-tuning (c) Classifier fine-tuning
Model Test  Model Test SOTA for six classification
CoVe (McCann et al., 2017) 82  CoVe (McCann et al., 2017) 4.2 datasets
g oh-LSTM (Johnson and Zhang, 2016) 5.9 ) TBCNN (Mou et al., 2015) 4.0
E Virtual (Miyato et al., 2016) 5.9 '&3 LSTM-CNN (Zhou et al., 2016) 3.9
ULMEFIT (ours) 4.6 T ULMFIT (ours) 3.6

AG DBpedia Yelp-bi Yelp-full

Char-level CNN (Zhang et al., 2015) 9.51  1.55 4.88 37.95
CNN (Johnson and Zhang, 2016) 6.57 0.84 2.90 32.39
DPCNN (Johnson and Zhang, 2017) 6.87  0.88 2.64 30.58
ULMEFiT (ours) 501  0.80 2.16 29.98 (Howard and Ruder, ACL 2018)
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https://arxiv.org/abs/1801.06146

GPT

Classification l Start I Text I Extract IH Transformer H Linear I Pretrain |arge 1 2_|ayer
S .
left-to-right Transformer, fine
tune for sentence, sentence
P pair and multiple choice

I Start | Text 1 | Delim l Text 2 IExtract I—-.{ Transformer .
Similarity = Linear q u eStIO ns.
| Start ] Text 2 I Delim l Text 1 l Extract |—~[ Transformer

l Start ] Context I Delim ] Answer 1 ]Exlracl I——’{ Transformer H Linear

Entailment | Start I Premise | Delim l Hypothesis I Extract |——-I Transformer H Linear ]

Feed Forward

12x -

Multiple Choicel Start I Context | Delim | Answer 2 IExll'acl |~—>{ Transformer H Linear

]::l : : , SOTA results for 9 tasks.
Text & Position Embed l Start ] Context I Delim ] Answer N I Extract I —»{ Transformer H Linear

Method MNLI-m MNLI-mm SNLI SciTail QNLI RTE

ESIM + ELMo [44] (5x) - - 89.3 - - -

CAFE [58] (5x) 80.2 79.0 89.3 - - -

Stochastic Answer Network [35] (3x) 80.6 80.1 - - - -

CAFE [58] 78.7 77.9 88.5 83.3

GenSen [64] 71.4 71.3 - - 823 59.2

Multi-task BILSTM + Attn [64] 122 72.1 - - 82.1 61.7

(Radford et al., 2018)
44

Finetuned Transformer LM (ours) 82.1 814 89.9 88.3 88.1 56.0



https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf

BERT

BERT pretrains both sentence and contextual word representations,
using masked LM and next sentence prediction.
BERT-large has 340M parameters, 24 layers!

ﬁp Mask LM Mai LM \ /m /%D Start/End Span\
i *

20—
Le ) ()] (0] EEA EB™Ea &
L .| >
BERT ... .............. . .-..h .. ’ BERT
[Eea | & | [ & ][ Eenl[ & |- [&] [Eeall & | [ ][ Een|[ & |- [&]
—— u| pommmy | pemmms " S pe—— ar T s
[[CISI][TOK1]“. [TokN][ [SEP] ][Tou]m [Toku] m Tok1 | . [TokN][ [SEP) ][rou]_" [Tcm]

Masked Sentence A Masked Sentence B Question Paragraph
* *
Unlabeled Sentence A and B Pair Question Answer Pair

Pre-training Fine-Tuning

See also: Logeswaran and Lee, ICLR 2018 (Devlin et al. 2019)
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BERT

SOTA GLUE benchmark results (sentence pair classification).

System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE Average
392k 363k 108k 67k 8.5k 5.7k 3.5k 2.9k -
Pre-OpenAl SOTA 80.6/80.1 66.1 82.3 93.2 35.0 81.0 86.0 61.7 74.0
BiLSTM+ELMo+Attn 76.4/76.1 64.8 79.8 90.4 36.0 133 84.9 56.8 71.0
OpenAl GPT 82.1/81.4 70.3 87.4 91.3 45.4 80.0 82.3 56.0 751
BERTgasE 84.6/83.4 T2 90.5 93.5 a2l 85.8 88.9 66.4 79.6
BERTLARGE 86.7/85.9 72.1 92.7 94.9 60.5 86.5 89.3 70.1 82.1

(Devlin et al. 2019)
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BERT

SOTA SQUAD v1.1 (and v2.0) Q&A

System Dev Test
EM F1 EM Fl

Top Leaderboard Systems (Dec 10th, 2018)

Human - - 823 912
#1 Ensemble - nlnet - - 86.0 91.7
#2 Ensemble - QANet - - 84.5 90.5
Published
BiDAF+ELMo (Single) - 856 - 858
R.M. Reader (Ensemble) 81.2 879 82.3 88.5
Ours

BERTgask (Single) 80.8 88.5 - -
BERT| srce (Single) 84.1 90.9 - -
BERT| srce (Ensemble) 85.8 91.8

BERT srce (Sgl+TriviaQA) 84.2 91.1 85.1 91.8
BERT, srce (Ens.+TriviaQA) 862 922 87.4 93.2

(Devlin et al. 2019)
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Other pretraining objectives

O Contextual string representations (Akbik et al., COLING 2018)—SOTA NER
results

O Cross-view training (Clark et al. EMNLP 2018)—improve supervised tasks
with unlabeled data

d Cloze-driven pretraining (Baevski et al. (2019)—SOTA NER and
constituency parsing
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L L

Why does language modeling work so well?

Language modeling is a very difficult task, even for humans.

Language models are expected to compress any possible context into a
vector that generalizes over possible completions.

d  “They walked down the street to ???”

To have any chance at solving this task, a model is forced to learn syntax,
semantics, encode facts about the world, etc.

Given enough data, a huge model, and enough compute, can do a
reasonable job!

Empirically works better than translation, autoencoding: “Language
Modeling Teaches You More Syntax than Translation Does” (Zhang et al.
2018)
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Sample efficiency
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Pretraining reduces need for annotated data

SNLI (Accuracy) SRL (F1)

+1.41 90+ +3.1
+10.8

90+ +1.5

80 -
80- 70
60 -
70‘.|.12_ 50 _+18.
601" 401 -
301 ,/ —— with ELMo
504 20 '/l ---- Baseline

0.1% 1% 10% 100% 0.1% 1% 10% 100%

(Peters et al, NAACL 2018)
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Pretraining reduces need for annotated data

—— From scratch

340 —— ULMFiT, supervised
%’ —— ULMFIT, semi-supervised
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(Howard and Ruder, ACL 2018)
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Pretraining reduces need for annotated data

Accuracy

CCG

[te] o e}
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1 1 1
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Dependency Parsing
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94 >
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Percent of Training Set Provided

10 25 50 75 100

Percent of Training Set Provided

-®- Supervised

(Clark et al. EMNLP 2018)
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Scaling up pretraining
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Scaling up pretraining

- Semantic - Syntactic - Overall

85 [

More data —
better word
vectors

Accuracy [%)]

(Pennington et al
2014)

Gigaword5 +

Wiki2010 Wiki2014 Wiki2014 Common Crawl
1B tokens 1.6B tokens 4.3B tokens 6B tokens 42B tokens

Gigaword5
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Scaling up pretraining

8 1 . 5 | | | | | |
—e— Average GLUE score

0]
—_
|
|

Avg. GLUE score
Qo
(@)
3y
|
|

80 | :

| | | | |
562M 1.1B 2.25B 4.5B 9B 18B
Train data tokens

Figure 3: Average GLUE score with different amounts
of Common Crawl data for pretraining.

Baevski et al.

(2019) 56
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Scaling up pretraining

Hyperparams Dev Set Accuracy

#L #H #A LM (ppl) MNLI-m MRPC SST-2 B d |
—
3 768 12 5.84 779 79.8 88.4 Igger mode

6 768 3 524 80.6 822 907 better results
6 768 12 4.68 819 848 913

12 768 12 3599 84.4 86.7 929
12 1024 16 3.54 85.7 869 '93.3 ;
24 1024 16 3.23 86.6 87.8 93.7 (DeV“n et al

2019)

Table 6: Ablation over BERT model size. #L = the
number of layers; #H = hidden size; #A = number of at-
tention heads. “LM (ppl)” is the masked LM perplexity
of held-out training data.
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Cross-lingual pretraining
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Cross-lingual pretraining

10 e
d Much work on training
cross-lingual word embeddings g §L§P%’ffﬂ%‘§»
(Overview: Ruder et al. (2017)) i ol g;ﬁgt,::, .
3 Idea: train each language L PG é,:ci?ffi:mm =
separately, then align. 00 @m;&vgzgffﬁéﬁff v . ‘s"&mgﬁp@ﬂ“g@
3 Recent work aligning ELMo: oo by g‘é’&&mm P
Schuster et al., (NAACL 2019) T I )
3 ACL 2019 Tutorial on Unsupervised T g g SRR .
Cross-lingual Representation y Py B o
ALearnln | -1.0 —-0.5 0.0 — 0.5 1.0
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Cross-lingual Polyglot Pretraining
Key idea: Share vocabulary and representations across languages by training one
model on many languages.

Advantages: Easy to implement, enables cross-lingual pretraining by itself

Disadvantages: Leads to under-representation of low-resource languages
O LASER: Use parallel data for sentence representations (

)
a : BERT trained jointly on 100 languages

O Rosita: Polyglot contextual representations ( )
d  XLM: Cross lingual LM ( )
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Hands-on #1:
Pretraining a Transformer Language Model
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Hands-on: Overview .~

Current developments in Transfer Learning combine new approaches for training schemes
(sequential training) as well as models (transformers) = can look intimidating and complex

d  Goals:

[ Let's make these recent works “uncool again” i.e. as accessible as possible
d  Expose all the details in a simple, concise and self-contained code-base
O Show that transfer learning can be simple (less hand-engineering) & fast (pretrained model)

d  Plan
A Build a GPT-2 / BERT model
A Pretrain it on a rather large corpus with ~100M words
d Adapt it for a target task to get SOTA performances

d Material:

[ Colab: http://tiny.cc/NAACLTransferColab > code of the following slides
O Code: http://tiny.cc/NAACLTransferCode = same code organized in a repo
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Hands-on pre-training

Colab: http://tiny.cc/NAACLTransferColab

& NAACL 2019 Tutorial on Transfer Learning in Natural Language Processing

File Edit View Insert Runtime Tools Help

Locate in Drive

Table of ¢ Open in playground mode [N
Noigbool  “emPython3netabock otebook accompanying NAACL 2019 tutori:
on ‘I’ran_s New Python 2 notebook . n
Processif atural Language Processing".
Instal S weo » tutorial will be given on June 2 at NAACL 2019 in Mit lis, MN, USA by Seb

Upload notebook... ) . .
Introducti 1 can check the webpage of NAACL tutorials for more information.
Rename... . "
ther material: slides and code.

Colabanc ~ Move to trash

Ourtrans!  save acopy in Drive...

stall and notebook preparation

Pretrz Save a copy as a GitHub Gist... } 1 cell hidden

Save a copy in GitHub...
Pretrain o

Repo: http://tiny.cc/NAACLTransferCode

[J huggingface / naacl_transfer_learning_tutorial @unwatch~ 11 HAstar 52 YFork 3
<> Code Issues 0 Pull requests 0 Projects 0 Wiki Security Insights Settings

Repository of code for the NAACL tutorial on Transfer Learning in NLP Edit
nlp  transfer-learning  tutorial  naacl Manage topics

Code repository accompanying NAACL 2019 tutorial on
"Transfer Learning in Natural Language Processing"

The tutorial will be given on June 2 at NAACL 2019 in Minneapolis, MN, USA by Sebastian Ruder, Matthew Peters, Swabha
Swayamdipta and Thomas Wolf.

Here is the webpage of NAACL tutorials for more information.
Installation
To use this codebase, simply clone the Github repository and install the requirements like this:

git clone https://github.com/huggingface/naacl_transfer_learning_tutorial
cd naacl_transfer_learning_tutorial
pip install -r requirements.txt
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Hands-on pre-training

Our core model will be a Transformer. Large-scale transformer architectures (GPT-2, BERT, XLM...) are very similar

to each other and consist of:

O summing words and position embeddings

d  applying a succession of transformer blocks with:

a
a
a

a
a

a

Main differences between GPT/GPT-2/BERT are the objective functions:

layer normalisation

a self-attention module
dropout and a residual connection

another layer normalisation

a feed-forward module with one hidden layer and
a non linearity: Linear = ReLU/gelu = Linear
dropout and a residual connection

[  causal language modeling for GPT
O masked language modeling for BERT (+ next sentence prediction)

(Z1,22y. .y 2n)
I embed —l
norm
attention
. :
+ dropout
e —
norm
> feed-forward
1
I dropout
hlg_—,

We'll play with both

(Child et al. 2679)
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Hands-on pre-training

Let’s code the backbone of © imvort toron :

import torch.nn as nn

our model!

class Transformer(nn.Module):
def _ init_ (self, embed_dim, hidden_dim, num_embeddings, num max_positions, num heads, num layers, dropout, causal):
super().__init_ ()

PYTOI’Ch 1 1 nOW haS a self.tokens_embeddings = nn.Embedding(num_embeddings, embed dim)

self.position_embeddings = nn.Embedding(num max positions, embed dim)

nn.MUItiHeadAttentlon A self.drogout = nn.Drogout‘drogout)
module: lets us encapsulate s e e e L e )
the self-attention logic while e e —

. . . self.feed forwards.append(nn.Sequential(nn.Linear(embed dim, hidden dim),
still controlling the internals B Tn i re—

nn.LinearZhidden_dim, embed_dim)))
Wu, ) —
Of the Tra n Sformer self.layer norms_2 .append(nn.LayerNorm(em.bed_dim: eps=le-12))

def forward(self, x, padding mask=None):
-

(21,22, .., 2n) positions = torch.arange(len(x), device=x.device).unsqueeze(-1)
h self.tokens_embeddings(x)
/ h = h + self.position_embeddings(positions).expand_as(h)

h self.dropout(h)

attn_mask = None

if self.causal:

attn_mask = torch.full((len(x), len(x)), -float('Inf'), device=h.device, dtype=h.dtype)
attn _mask = torch.triu(attn_mask, diagonal=1)

for layer_norm 1, attention, layer norm 2, feed forward in zip(self.layer norms_1l, self.attentions,
self.layer norms_2, self.feed forwards):

= layer _norm_1(h)
, _ = attention(h, h, h, attn_mask=attn_mask, need weights=False, key_ padding mask=padding_mask)
self.dropout(x)

x + h
4

layer norm 2(h)
feed_forward(h)
self.dropout (x)
Xo+ h'

1
dropout

h
X
X
h
h
X
x
h

65
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Hands-on pre-training

Two attention masks? © imort torch :

import torch.nn as nn

. class Transformer(nn.Module):
D p addl ng mas k maSkS def _ init (self, embed dim, hidden dim, num_embeddings, num max positions, num heads, num_ layers, dropout, causal):
_— super()._ init_ ()

the padding tokens. It is self.causal = Causal

self.tokens_embeddings = nn.Embedding(num_embeddings, embed dim)

H self.position_embeddings = nn.Embedding(num max positions, embed dim)
SpeCIﬁC to eaCh Sample self.dropout = nn.Dropout(dropout) '
i n the batCh: self.attentions, self.feed_ forwards = nn.ModuleList(), nn.ModuleList()

self.layer_norms_1l, self.layer norms_2 = nn.ModuleList(), nn.ModuleList()
for _ in range(num_layers):

| love |[Mom| s cooki ng self.attentions.append(nn.MultiheadAttention(embed_dim, num heads, dropout=dropout))
self.feed forwards.append(nn.Sequential(nn.Linear(embed dim, hidden_dim),
| love| you | too | ! nn.ReLU(),
No way nn.Linear (hidden_dim, embed_dim)))
s : . self.layer_norms_l.append(nn.LayerNorm(embed dim, eps=le-12))
This IS the | shit selfsvlayer norms 2.append(nn.LayerNorm(embed dim, eps=le-12))
Yes

def forward(self, 'x, padding_mask=None):

positions = torch.arange(len(x), device=x.device).unsqueeze(-1)
h self.tokens_embeddings(x)

D attn maSk |S the same h = h + self.position_embeddings(positions).expand_as(h)
— . h self.dropout(h)
for all samples in the e
if self.causal:
batCh. It maSkS the attn_mask = torch.full((len(x), len(x)), -float('Inf'), device=h.device, dtype=h.dtype)
. t k f attn _mask = torch.triu(attn_mask, diagonal=1)
revi n r
p e ous O e S O for layer_norm 1, attention, layer norm 2, feed forward in zip(self.layer norms_1l, self.attentions,

Causal transformers self.layer norms_2, self.feed forwards):

h = layer_norm_1(h)
| love Mom * s cooking X, _ = attention(h, h, h, attn_mask=attn_mask, | need weights=False, key padding mask=padding_mask)
x = self.dropout(x)
' h=x+h
love
Mom h = layer norm 2(h)
' x = feed_forward(h)
x = self.dropout(x)
S h=x+h
cooking 66

return h




Hands-on pre-training

To pretrain our model, we need to add a few elements: a head, a loss and initialize weights.

class TransformerWithLMHead(nn.Module): :
We add these elements © S
H . """ Transformer with a language modeling head on top (tied weights) """
with a pretraining model e, e

: self.config = config
encapSUIatlng our mOdeI T > self.transformer = Transformer(config.embed dim, config.hidden dim, config.num_ embeddings,

config.num max_positions, config.num heads, config.num layers,
config.dropout, causal=not config.mlm)

{ self.lm head = nn.Linear(config.embed_dim, config.num embeddings, bias=False) R
ini self.apply(self.init _weights)

1. A pretraining head on e g i

top of our core model: /' PRI ———

we ChOOSG a |anguage self.lm head.weight = self.transformer.tokens_ embeddings.weight
init_weights(self, module):

mOdeIIng head Wlth tled """ initialize weights - nn.MultiheadAttention is already initalized by PyTorch (xavier)
We|ghts if isinstance(module, (nn.Linear, nn.Embedding, nn.LayerNorm)):
module.weight.data.normal_ (mean=0.0, std=self.config.initializer range)
if isinstance(module, (nn.Linear, nn.LayerNorm)) and module.bias is not None:
\ module.bias.data.zero_() y

non

2. Initialize the weights

def forward(self, x, labels=None, padding mask=None):
""" x has shape [seq length, batch], padding mask has shape [batch, seq length]
hidden_states = self.transformer(x, padding mask)
logits = self.lm head(hidden_states)

3. Define a loss
if labels is not None:

functlon: we ChOOSG a shift logits logits[:-1] if self.transformer.causal else logits
shift labels labels[1l:] if self.transformer.causal else labels

CrOSS-enTI’Opy IOSS on loss_fct = nn.CrossEntropylLoss(ignore_index=-1)
loss = loss_fct(shift logits.view(-1, shift logits.size(-1)), shift labels.view(-1))
current (or next) token return logits, loss - -

predictions return logits o




Hands-on pre-training

We'll use a pre-defined
open vocabulary
tokenizer: BERT's model
cased tokenizer.

Hyper-parameters taken
from Dai et al., 2018
(Transformer-XL) =
~50M parameters
causal model.

Use a large dataset for
pre-trainining:
WikiText-103 with 103M
tokens (Merity et al.,
2017).

Instantiate our model

and optimizer (Adam) —»

—

—

Now let’s take care of our data and configuration

from pytorch_pretrained bert import BertTokenizer, cached path :

tokenizer = BertTokenizer.from pretrained('bert-base-cased', do_lower_ case=False)

from collections import namedtuple E

Config = namedtuple('Config',
field_names="embed_dim, hidden_dim, num max positions, num_embeddings , num_heads, num layers,"
"dropout, initializer range, batch size, lr, max norm, n_epochs, n_warmup,"
"mlm, gradient accumulation_steps, device, log_dir, dataset_cache")

args = Config( 410 s 2100 7 256 , len(tokenizer.vocab), 10 , 16 Y

0.1 , 0.02 , 16 , 2.5e-4, 1.0 , 50 , 1000 ,

False, 4, "cuda" if torch.cuda.is_available() else "cpu", "./" "./dataset_cache.bin")
dataset_file = cached path("https://s3.amazonaws.com/datasets.huggingface.co/wikitext-103/" :

"wikitext-103-train-tokenized-bert.bin")
datasets = torch.load(dataset_file)

# Convert our encoded dataset to torch.tensors and reshape in blocks of the transformer's input length
for split name in [ 'train', 'valid']:
tensor = torch.tensor(datasets[split_name], dtype=torch.long)
num_sequences = (tensor.size(0) // args.num max positions) * args.num max_positions
datasets[split_name] = tensor.narrow(0, 0, num_sequences).view(-1, args.num max_positions)

model = TransformerWithLMHead(args).to(args.device) E
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
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Hands-on pre-training

And we're done: let’s train! B imcort os :

torch.utils.data import DataLoader
from ignite.engine import Engine, Events
from ignite.metrics import RunningAverage

A Simple update |Oop. from ignite.handlers import ModelCheckpoint

from ignite.contrib.handlers import CosineAnnealingScheduler, create_ lr scheduler with warmup, ProgressBar
We use gradient

dataloader = DataLoader(datasets['train'], batch_size=args.batch_size, shuffle=True)
aCCumU|at|0n tO have a ﬁDefine training function 1
large batc
[seg length, batch]
GPU (>64)| . :
° for batch in self.state.dataloader: :
self.state.batch = batch
. self.state.iteration += 1
Learn | ng I self. fire event(Events.ITERATION_STARTED)
. self.state.output = self. process_function(self, batch)
- linear we self. fire event(Events.ITERATION COMPLETED)
- then cos <
Sq uare rOO| ”ecrease RunningAverage (outpjit_transform=lambda x: x).attach(trainer, "loss")
ProgressBar (persisy=True).attach(trainer, metric_names=['loss'])
100
s # Learning rate sfghedule: linearly warm-up to lr and then decrease the learning rate to zero with cosine
a5 cos_scheduler = JosineAnnealingScheduler(optimizer, 'lr', args.lr, 0.0, len(dataloader) * args.n_epochs)
025 scheduler = cregte_lr_scheduler_with_warmup(cos_scheduler, 0.0, args.lr, args.n_warmup)
B'M trainer.add_evejit_handler(Events.ITERATION_STARTED, scheduler)
) 0 200 400 600 800 1000
# Save checkpgints and training config
training/loss checkpoint_hajidler = ModelCheckpoint(args.log dir, 'checkpoint', save_interval=1, n_saved=5)
trainer.add ¢vent_ handler (Events.EPOCH_COMPLETED, checkpoint_handler, {'mymodel': model})
° torch.save(grgs, os.path.join(args.log _dir, 'training args.bin'))
0 no warm-up

8

o, trainer.run(train_dataloader, max epochs=args.n_epochs)
7

; Go! » .. 69
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Hands-on pre-training — Concluding remarks gf?

A On pretraining

O Intensive: in our case 5h—-20h on 8 V100 GPUs (few days w. 1 V100) to reach a good perplexity =
share your pretrained models

3 Robust to the choice of hyper-parameters (apart from needing a warm-up for transformers)

[ Language modeling is a hard task, your model should not have enough capacity to overfit if your
dataset is large enough = you can just start the training and let it run.

 Masked-language modeling: typically 2-4 times slower to train than LM
We only mask 15% of the tokens = smaller signal

3  For the rest of this tutorial

We don't have enough time to do a full pretraining
= we pretrained two models for you before the tutorial
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a

d Second model:

average_word_ppl

30

First model:

a

(A Trained 15h on 8 V100

Hands-on pre-training — Concluding remarks gf?

exactly the one we built together = a 50M parameters causal Transformer

A Reached a word-level perplexity of 29 on wikitext-103 validation set (quite competitive)

A Same model but trained with a masked-language modeling objective (see the repo)

a
a

Trained 30h on 8 V100

Reached a “masked-word” perplexity of 8.3 on wikitext-103 validation set

Name

Smoothed Value Step
May21_15-47-52_thunder 28.99
© May29_11-08-45_thunder 8.311

20

28.99 270.8k Wed May 22,09:11:55 15h 11m 34s
8.311 545.1k Thu May 30,19:39:34 1d 6h 18m 34s

25

30

Time

35

Relative

Model \ #Params Validation PPL  Test PPL
Grave et al.|(2016b) — LSTM 48.7
Bai et al. (2018) - TCN 45.2
Dauphin et al.[(2016) - GCNN-8 44.9
Grave et al.|(2016b) — LSTM + Neural cache 40.8
|Dauphin et al.[(2016) - GCNN-14 - = 37.2
Merity et al. (2018) — 4-layer QRNN 151IM 32.0 33.0
Rae et al.| (2018) — LSTM + Hebbian + Cache - 29.7 299
Ours — Transformer-XL Standard 151M 23.1 24.0
Baevski & Auli|(2018) — adaptive input® 247T™M 19.8 20.5
Ours — Transformer-XL Large 25T™M 17.7 18.3

Wikitext-103 Validation/Test PPL

71
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3. What is in a Representation?

Image credit: Caique Lima



Why care about what is in a representation?
A Extrinsic evaluation with downstream tasks @I”\@

[ Complex, diverse with task-specific quirks

A Language-aware representations
A To generalize to other tasks, new inputs
[ Asintermediates for possible improvements to pretraining

[ Interpretability!

O Are we getting our results because of the right reasons? '
A Uncovering biases...
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What to analyze?

1 Embeddings
O Word [ X

O  Contextualized T @ @'@ @

1 Network Activations & ® T T T T

ies @9 - 09
A A A A

A Variations
@  Architecture (RNN / Transformer)

a Layers - Ll '"'

T T T T

d  Pretraining Objectives

E

5



Analysis Method 1: Visualization

Hold the embeddings / network activations static or frozen

e @900 @O

T | | T

00 ©9 - @9
A A A A

Q Q

11

L,

Q
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Visualizing Embedding Geometries

d  Plotting embeddings in a lower dimensional Mo i
(2D/3D) space ———— =

O t-SNE van der Maaten & Hinton, 2008 05l - ]

O PCA projections oy ;
0 = ) I 1
. « . . . 0.3F I me?zunt ’l /' coy(rj]lt.lecshsess—

A Visualizing word analogies Mikolov et al. A , ;]
2013 . . 021 I' :I lll / /// /’ /- empress
Spatial relations | M !+ madam ron l
I I / / /
- Wking ) Wman + Wwoman ~ uneen o : ‘”eleeW ‘h/e" A /I/ 1
01 : l ;woman ,/ 1/ I///
. . . . -0.1}F u earl e
O High-level view of lexical semantics L f e
. . rotner
[ Only alimited number of examples il . s Ly I
O  Connection to other tasks is unclear “oaf ! ; ) KT !
Goldberg, 2017 Bl ) h ; l
/ {sir I
_05F {man Lking .
—0{5 —0!4 —0?3 —0{2 —0{1 (IJ 011 0{2 0?3 0i4 015
(mind

Pennington et al., 2014 77

Image: Tensorflow


http://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf
https://www.tensorflow.org/guide/embedding
https://arxiv.org/pdf/1310.4546.pdf
https://arxiv.org/pdf/1310.4546.pdf
https://www.morganclaypool.com/doi/abs/10.2200/S00762ED1V01Y201703HLT037
https://nlp.stanford.edu/pubs/glove.pdf

Visualizing Neuron Activations

R
2

adford et al.,
01

-
/

d  Neuron activation values correlate
with features / labels

800

Negative reviews
Positive reviews

600

[ Indicates learning of recognizable features
A  How to select which neuron? Hard to scale!

O Interpretable !'= Important (Morcos et al., 2018) I

Cell that is sensitive to the depth of an expression: T 7 Vae of the SentimentNewon ’
#ifdef CONFIG_AUDITSYSCALL
static inline intaUdEENa e as SRS nNENca s s a s TN as k)

Number of Reviews

400

for (1 = ©; 1 < AUDIT_BITMAS

0 KOS ZE: A+ F)
it inaskii] acElTasisielsFcararsisiiEEe)
lnm Karpathy et al., 2016
}
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https://arxiv.org/pdf/1506.02078.pdf
https://arxiv.org/abs/1803.06959
https://arxiv.org/abs/1704.01444
https://arxiv.org/abs/1704.01444

Visualizing Layer-Importance Weights

d How important is each layer for a given performance on a downstream task?
[ Weighted average of layers

LSTM 4-layer Transformer Gated CNN

[ MNLI
[ NER
[ Parsing

4

A Task and architecture specific!

2 |

0.0 0.2 0.4 0.0 0.2 0.4 0.6 0.00 0.05 0.10 0.15

Also see Tenney et al., ACL 2019

Peters et al.. EMNLP 2018
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https://aclweb.org/anthology/D18-1179
https://arxiv.org/pdf/1905.05950.pdf

Visualizing Attention Weights

A Popular in machine translation, or

The The
other seq2seq architectures: L§¥45ﬁﬁ”
3 Q:::Tent between words of source and peﬁ:;7 :?zm
Q Long-distance word-word dependencies ‘1?;4::;“
(intra-sentence attention) el - e
A Sheds light on architectures —— - ot
d  Having sophisticated attention mechanisms - -

. this ;his this ;his
can be a good thing! is éis s s
Q Layer-specific et et et et
are E Eare are are
missing missing missing

[ Interpretation can be tricky R | , |
d  Few examples only - cherry picking? i é‘“ in%“

d  Robust corpus-wide trends? Next! o o5 aion  opiion

<E0S ———_f0s> <€os>/ <€0s>

<pad> m—_ <pad> <pad> oo <pad>

Vaswani et al,, 2017 80



https://arxiv.org/abs/1706.03762

Analysis Method 2: Behavioral Probes
@

d RNN-based language models
d  number agreement in subject-verb dependencies
[  natural and nonce or ungrammatical sentences
[ evaluate on output perplexity

~

Q

[ RNNSs outperform other non-neural baselines.

[  Performance improves when trained explicitly with syntax

( )

Parts of the river valley have/has
LLL O
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https://arxiv.org/abs/1611.01368
https://arxiv.org/abs/1803.11138
https://arxiv.org/abs/1808.09031
https://www.aclweb.org/anthology/papers/P/P18/P18-1132/
https://www.aclweb.org/anthology/papers/P/P18/P18-1132/

Analysis Method 2: Behavioral Probes
@

O RNN-based language models (RNN-based)
d  number agreement in subject-verb dependencies
d  For natural and nonce/ungrammatical sentences
[ LM perplexity differences

~

Q

3 RNNSs outperform other non-neural baselines.

d  Performance improves when trained explicitly with syntax

( )

A Probe: Might be vulnerable to co-occurrence biases Parts of the river valley have/has
3 “dogs in the neighborhood bark(s)” ol
d  Nonce sentences might be too different from original...

AGREE
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https://arxiv.org/abs/1611.01368
https://arxiv.org/abs/1803.11138
https://arxiv.org/abs/1808.09031
https://www.aclweb.org/anthology/papers/P/P18/P18-1132/
https://www.aclweb.org/anthology/papers/P/P18/P18-1132/

Analysis Method 3: Classifier Probes

Hold the embeddings / network activations static and

train a simple supervised model on top

llee @o @0 @9
| | | !

L,

Probe classification task $ e 3 ;

(Linear / MLP) L

| | | |
:



Probing Surface-level Features

d Given a sentence, predict properties such as
d  Length
3 Isawordin the sentence?

[  Given a word in a sentence predict properties such as:
d  Previously seen words, contrast with language model
[ Position of word in the sentence

A Checks ability to memorize
@  Well-trained, richer architectures tend to fare better
A Training on linguistic data memorizes better

Zhang et al. 2018:; Liu et al., 2018; Conneau et al., 2018
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https://www.aclweb.org/anthology/W18-5448
https://homes.cs.washington.edu/~nfliu/papers/liu+levy+schwartz+tan+smith.repl4nlp2018.pdf
https://arxiv.org/abs/1805.01070

Probing Morphology, Syntax, Semantics

0 Morphology Long-distance Tree Subject-Verb Top
number Depth Adreement -
g Constituents
agreement
d  Word-level syntax ’\ T T /
A POS tags, CCG supertags
O Constituent parent, f{fﬂpvliﬁ
grandparent... \VE
O Partial syntax i e N oo
O Dependency relations * I~
p y /\NP NP /1\1;\ NP i NP
D Partial SemantiCS After  encouraging them, he told them goodbye and left for Macedonia
d  Entity Relations l l
 Coreference _
d Roles # Objects Tense of main clause verb

Adi et al., 2017; Conneau et al., 2018; Belinkov et al., 2017; Zhang et al., 2018; Blevins et al., 2018; Tenney et
al. 2019; Liu et al., 2019
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https://arxiv.org/abs/1608.04207
https://arxiv.org/abs/1805.01070
https://www.aclweb.org/anthology/P17-1080
https://www.aclweb.org/anthology/W18-5448
https://www.aclweb.org/anthology/papers/P/P18/P18-2003/
https://ai.google/research/pubs/pub47786
https://ai.google/research/pubs/pub47786
https://arxiv.org/abs/1903.08855

Probing classifier findings

CoVe ELMo GPT
Lex. Full Abs. A | Lex. Full Abs. A \ Lex. cat mix
Part-of-Speech | 85.7 94.0 84| 904 96.7 63 |
Constituents 56.1 81.6 254 | 69.1 84.6 154 | . i POS Supersense ID
Dependencies 750 83.6 86 | 804 939 136 | Pretrained Representation —_—
Entities 88.4 903 19| 920 95.6 35 | Avg. CCG PTB EWT Chunk NER ST GED PS-Role PS-Fxn EF
R e ek s roo | U ELMo (original) best layer  81.58 9331 97.26 9561 90.04 8285 9382 29.37 7544 8487 7320
Non-core roles | 67.7  78.8 111 754 841 88 | ELMo (4-layer) best layer 81.58 93.81 97.31 9560 89.78 82.06 94.18 29.24 7478 8596 73.03
OntoNotes coref. | 72.9 79.2 63 | 753 84.0 8.7 | - ELMo (transformer) best layer 80.97 92.68 97.09 95.13 93.06 81.21 93.78 30.80 72.81 82.24 70.88
SPRI1 737 711 34| 80.1 848 4.7 | © OpenAl transformer best layer 75.01 82.69 93.82 91.28 86.06 58.14 87.81 33.10 66.23 7697 74.03
SPR2 76.6 80.2 36 | 821 8.1 1.0 | - BERT (base, cased) best layer 84.09 93.67 96.95 9521 92.64 8271 93.72 43.30 79.61 87.94 75.11
Winograd coref. | 52.1 543 22| 543 535 08| BERT (large, cased) best layer 85.07 94.28 96.73 95.80 93.64 84.44 9383 4646 79.17 90.13 76.25
Rel. (SemEval) | 51.0 60.6 96 | 557 718 21 | .
Mucro Average | 691 78.1 00 | 754 844 91| Glove (840B.300d) 59.94 71.58 90.49 8393 6228 5322 8092 1494 4079 51.54 49.70
BERT-base BER) Previous staie of the ark 8344 947 9796 9582 9577 9138 9515 39.83 66.89 7829 77.10
F1 Score Abs. A F1 Score (without pretraining)
Lex. cat mix ELMo | Lex. cat mi:
Part-of-Speech | 884 97.0 96.7 00|81 965 969 02 02 Liu et al. NAACL 2019
Constituents 684 837 867 21| 69.0 80.1 87.0 0.4 25
Dependencies 80.1 93.0 95.1 1.1 | 802 915 954 0.3 1.4
Entities 909 96.1 962 06| 91.8 962 96.5 0.3 0.9 Distance Depth
SRL (all) 754 894 913 12765 882 923 1.0 22 Method UUAS DSpr. Root% NSpr.
Core roles 749 914 936 10| 763 899 946 1.0 2.0
Non-core roles | 76.4 84.7 859 18| 769 84.1 86.9 1.0 2.8 LINEAR 48.9 0.58 2.9 0.27
OntoNotes coref. | 74.9 88.7 90.2 63 | 757 89.6 914 1.2 7.4 ELMo0 26.8 0.44 543 0.56
SPRI 79.2 847 86.1 13796 851 858 03 1.0
DECAYO 51.7 0.61 54.3 0.56
SPR2 817 830 83.8 07| 816 832 84.1 0.3 1.0 ;
Winograd coref. | 543 53.6 54.9 14530 538 614 65 78 PROJO 598 073 644 075 Hewittetal., 2019
Rel. (SemEval) 574 783 82.0 42 | 562 776 824 0.5 4.6 ELMOI 77.0 083 865 087
Macro Average | 75.1 84.8 86.3 19| 752 842 813 1.0 29 BERTBASE7 79.8 0.85 88.0 0.87

BERTLARGELS  82.5 0.86 89.4 0.88

BERTLARGEL6 81.7 0.87 90.1 0.89
Tenney et al., ACL 2019 86



https://arxiv.org/abs/1903.08855
https://arxiv.org/pdf/1905.05950.pdf
https://nlp.stanford.edu/pubs/hewitt2019structural.pdf

Probing classifier findings

| CoVe ELMo GPT
| Lex. Full Abs. A | Lex. Full Abs. A | Lex. cat mix
Part-of-Speech | 85.7 94.0 84 | 904 96.7 63 |
Constituents 56.1 81.6 254 Supersense ID
Dependencies 750 83.6 8.6 ; ;
EaahalNcoSR-elIRel (1 Contextualized > non-contextualized GED PSRole PSFxn EF
SRL (all) 597 804 207 i i
Lah )37 84 207 J ElspeC|aIIy fon syntactic tasks _ ’ 82 2937 ik 88T 7320
Non-core roles | 67.7 78.8 11.1 . ¥ ¢ b .
OntoNotes coref. | 72.9  79.2 6.3 D C‘O.Ser p‘er ormance O'n Semantlc taS S . 30.80 72.81 82.24 70.88
SPRI 737 771 3.4 d Bidirectional context is important 81 33.10 6623 7697 74.03
SP_R2 76.6 80.2 3.6 4330 79.61 87.94 75.11
Winograd coref. | 52.1 54.3 22 46.46 79.17 90.13  76.25
Rel. (SemEval) | 51.0 60.6 96 |
Macro Average | 69.1 78.1 9.0 | . 1494 40.79 51.54 4970
——eewan 1 BERT (large) almost always gets the highest T
F1 Score
Lex. cat mix performance . .
Part-of-Speech | 884 97.0 96.7 [  Grain of salt: Different contextualized 2019
Constituents 634 837 86.7 : : :
Dependencies | 801 93.0 951 representations were trained on different data,
e 209 el 902 using different architectures...
Core roles 749 914 936
Non-coreroles | 76.4 84.7 85.9 .
OntoNotes coref. | 749 88.7 90.2 6.3 | 757 89.6 914 1.2 7.4 ELMoO 26.8 0.44 54.3 0.56
SPR1 792 847 86.1 13796 851 858 03 1.0
DECAY0 517 061 543 056
SPR2 81.7 830 838 07 | 816 832 841 0.3 1.0 . .
Winograd coref. | 543 53.6 54.9 14530 538 614 65 7.8 PrOJO 598 073 e44 075 Hewittet. al., 2019
Macro Average | 75.1 84.8 86.3 1.9 752 842 873 1.0 2.9 BERTBASE7 79.8 0.85 88.0 0.87

BERTLARGE15 82.5 0.86 89.4 0.88
BERTLARGE16 81.7 0.87 90.1 0.89

Tenney et al., ACL 2019 87



https://arxiv.org/abs/1903.08855
https://arxiv.org/pdf/1905.05950.pdf
https://nlp.stanford.edu/pubs/hewitt2019structural.pdf

(a) ELMo (original)

||
L ]
Layer2 [0 [ || [ |

(b) ELMo (4-layer)

|

Layer 0
|||
H =

Layer 0

RAINIRONRRN (/1777 U Layer 4 = = --
\\§§ \\\§ : (c) ELMo (transformer)
\ = £l o Layer 0 e == =
%commux ™ Erts \Aa er:rr;i;(;dtlbzm Obc layers ddmixedAe Layer 6 i Eree——— l-” -—=--_
. L . (d) OpenAl transformer
3  RNN layers: General linguistic properties e
O  Lowest layers: morphology Layen 12—
O Middle layers: syntax ayer (6) BERT (hiise, easec)
d  Highest layers: Task-specific semantics T e
d Transformer layers: oo e DA S (TR RS ER)
d  Different trends for different tasks; middle-heavy _— = _—
O Also see Tenney et. al., 2019 C —
Lower Pe:l‘formance Higher Pelrformance

Fig. from Liu et al. (NAACL 2019)
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https://arxiv.org/abs/1903.08855
https://ai.google/research/pubs/pub48153

Probing: Pretraining Objectives

Dependency Parsing Semantic Role Labeling

A Language modeling
outperforms other
unsupervised and supervised

objectives.
A Machine Translation
[ Dependency Parsing
A Skip-thought

[ Low-resource settings (size of .«

training data) might result in
Opposlte ‘trends ovs //:etersetaol.52018~aer [cs.CL]

0.4 ¥
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Zhang et al., 2018; Blevins et al., 2018; Liu et al., 2019;
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https://www.aclweb.org/anthology/W18-5448
https://www.aclweb.org/anthology/papers/P/P18/P18-2003/
https://arxiv.org/abs/1903.08855

What have we learnt so far?

(d Representations are predictive of certain linguistic phenomena:
A Alignments in translation, Syntactic hierarchies

a  Pretraining with and without syntax:
[  Better performance with syntax
O But without, some notion of syntax at least (Williams et al. 2018)

[  Network architectures determine what is in a representation

O Syntax and BERT Transformer (Tenney et al., 2019; Goldberg, 2019)
d Different layer-wise trends across architectures
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https://www.mitpressjournals.org/doi/pdfplus/10.1162/tacl_a_00019
https://arxiv.org/abs/1905.05950
https://arxiv.org/abs/1901.05287

Open questions about probes /

1 What information should a good probe look for?
A Probing a probe!

A What does probing performance tell us?

[d  Hard to synthesize results across a variety of baselines...

[ Can introduce some complexity in itself
[ linear or non-linear classification.
[ behavioral: design of input sentences

1 Should we be using probes as evaluation metrics?
[ might defeat the purpose...
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Analysis Method 4: Model Alterations (((((l)))

d Progressively erase or mask

LSTM RNN Bi-LSTM LSTM RNN Bi-LSTMLSTM RNN
3.2
12 the
network components
0.4 0.8
0.0 0.0 loses
1 1 H 00-tepi -0.4 i -0.8 i
d  Word embedding dimensions ' e
biopic 2 ! Fe
. . .5 —:2 in
3 Hidden units . {oso
(a) Neutral (b) Strong positive tasEmiiite
A Input - words / phrases
Bi-LSTM LSTM RNN Bi-LSTM LSTM RNN ending
offe 2.0 one is that o.00
tha 15 of :
the 3.0 even
mbination 0.5 plausible
N o family-oriented o than -
, the
entertainment- - fantasy-adventure =L3 rest
and -1 of -0.75
movies _30 the
educ =1
B e picture —1.00
(c) Strong positive (d) Strong positive (e) Strong negative

Figure 5: Heatmap of word importance (computed using Eq. 1) in sentiment analysis.

Lietal., 2016
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https://arxiv.org/abs/1612.08220

So, what is in a representation?

([ Depends on how you look at it!

d  Visualization:
d  bird’s eye view
d  few samples - might call to mind cherry-picking

Probes:
[ discover corpus-wide specific properties
 may introduce own biases...

d Network ablations:

A great for improving modeling,
[ could be task specific

A Analysis methods as tools to aid model development!
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Very current and ongoing!

Citation counts by year in "Part 3. What do
representations learn"?

B Num. citations

-2015

2016

2017

2018

2019

First column for citations in and
0 5 10 15 20 before 2015 94



What's next?

SentLen

WordContent 0.6
A Linguistic Awareness Treeepfh 04
TopConst i5
BShift
Tense 0.0
d Interpretability ' SubjNumm 0.2
ObjNum
-0.4
SOMO
Interpretability + transferability to Sy ~06

& X P O L LK R N
W && AP & c)\d‘ O)\cf &2 (;\(’x

downstream tasks is key

Conneau et al., 2018

=> Up next!
Correlation of probes to downstream tasks



https://arxiv.org/abs/1805.01070

[ Suite of word-based and word-pair-based tasks: Liu et al. 2019 (3B Semantics)

https://github.com/nelson-liu/contextual-repr-analysis

(A Structural Probes: Hewitt & Manning 2019 (9E Machine Learning)

A Overview of probes : Belinkov & Glass, 2019 (7F Poster #18)
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https://homes.cs.washington.edu/~nfliu/papers/liu+gardner+belinkov+peters+smith.naacl2019.pdf
https://github.com/nelson-liu/contextual-repr-analysis
https://nlp.stanford.edu/pubs/hewitt2019structural.pdf
https://arxiv.org/abs/1812.08951

Break
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Transfer Learning in NLP

Follow along with the tutorial:

A Slides: https://tinyurl.com/NAACLTransfer
d Colab: https://tinyurl.com/NAACLTransferColab
A Code: https://tinyurl.com/NAACLTransferCode

Questions:

d  Twitter: #NAACLTransfer during the tutorial

d  Whova: “Questions for the tutorial on Transfer Learning in NLP” topic
[ Ask us during the break or after the tutorial
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https://tinyurl.com/NAACLTransfer
https://tinyurl.com/NAACLTransferColab
https://tinyurl.com/NAACLTransferCode

F

[1] Introduction

[2] Pretraining

[4] Adaptation

N\

[5] Downstream

!

Q

[3] What's in a
representation?

|

Q;

[6]

Open Problems

99



4. Adaptation )

Image credit: Ben Didier



4 — How to adapt the pretrained model

Several orthogonal directions we can make decisions on:

1. Architectural modifications?
How much to change the pretrained model architecture for adaptation

2. Optimization schemes?
Which weights to train during adaptation and following what schedule

3. More signal: Weak supervision, Multi-tasking & Ensembling
How to get more supervision signal for the target task




4.1 — Architecture
A

* A
A. Keep pretrained model internals unchanged.:
Add classifiers on top, embeddings at the bottom, use outputs as features

Two general options:

B. Modify pretrained model internal architecture:
Initialize encoder-decoders, task-specific modifications, adapters

102
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4.1.A — Architecture: Keep model unchanged

General workflow:

e o o T
1. Remove pretraining task head if not useful for 7 [0 00
target task i 1 i 1
a. Example: remove softmax classifier from pretrained L
LM i A A A
b. Not always needed: some adaptation schemes : : : :
re-use the pretraining objective/task, e.g. for L,

multi-task learning I I I |
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4.1.A — Architecture: Keep model unchanged

Task-specific, randomly initialized
General workflow:

llee @©o--@0 @O

T T T

A

2. Add target task-specific layers on

top/bottom of pretrained model |
a. Simple: adding linear layer(s) on top of L,
A

the pretrained model
General, /L1
pretrained T I T I

104



4.1.A — Architecture: Keep model unchanged

( )
General workflow: L ’
2. Add target task-specific layers on I — — —
top/bottom of pretrained model " - _ _ —
a. Simple: adding linear layer(s) on top of - : |
the pretrained model L, (@@ D@ (X (X
b. More complex: model output as input for : T T T T g
a separate model
c. Often beneficial when target task requires E [. ® LU UL ® .]
interactions that are not available in 1 1 1

pretrained embedding
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4.1.B — Architecture: Modifying model internals

Various reasons:
1. Adapting to a structurally different target

task

a. Ex: Pretraining with a single input sequence (ex: o0 @000 @0
language modeling) but adapting to a task with T ] ] ]
several input sequences (ex: translation, conditional
generation...) .

b. Use the pretrained model weights to initialize as : ’ ’ :
much as possible of a structurally different target |
task model T T ] T T T T T :

c. Ex:Use monolingual LMs to initialize encoder and E (0 |
decoder parameters for MT (

; )

L
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https://arxiv.org/abs/1611.02683
https://arxiv.org/abs/1611.02683
http://arxiv.org/abs/1901.07291

4.1.B — Architecture: Modifying model internals

Various reasons:

2. Task-specific modifications
a. Provide pretrained model with capabilities that
are useful for the target task
b.  Ex: Adding skip/residual connections, attention

( )

X o:-co al
I I A R T T |
15 - O -0 &
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https://arxiv.org/abs/1611.02683

4.1.B — Architecture: Modifying model internals

Various reasons:

3. Using less parameters for

adaptation:
a. Less parameters to fine-tune
b. Can be very useful given the increasing
size of model parameters
c. Ex: add bottleneck modules (“adapters”)
between the layers of the pretrained
model ( ;

)

llee @o--@0 @9

T A
L,
A A A A A

. CHCETDD
] T | T
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https://arxiv.org/abs/1705.08045
https://arxiv.org/abs/1803.10082
https://arxiv.org/abs/1803.10082

4.1.B — Architecture: Modifying model internals
Adapters

d Commonly connected with a residual

connection in parallel to an existing 7 [COBSCOEERCIORSNCT )
T T T L X

layer
d  Most effective when placed at every L,
layer (smaller effect at bottom layers) . A A A

O Different operations (convolutions, : : : :
self-attention) possible L,

A Particularly suitable for modular ] | | | A

architectures like Transformers E
( ;

109
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https://arxiv.org/abs/1902.00751
https://arxiv.org/abs/1902.02671
https://arxiv.org/abs/1902.02671

Adapters (

4.1.B — Architecture: Modifying model internals

N ee ©0- 00 OO
LN,
SA

)

Multi-head attention (MH; shared
across layers) is used in parallel
with self-attention (SA) layer of

BERT LN,
Both are added together and fed ] ! ] T
into a layer-norm (LN)

SA,

| | | |
6 oo-00 &

| | | ]
5 - @

MH,

MH;
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https://arxiv.org/abs/1902.02671

Hands-on #2:
Adapting our pretrained model

111

Image credit: Chanaky



Hands-on: Model adaptation &

Let's see how a simple fine-tuning scheme can be implemented with our pretrained model:
d  Plan

A Start from our Transformer language model
A Adapt the model to a target task:
A keep the model core unchanged, load the pretrained weights
A add a linear layer on top, newly initialized
A use additional embeddings at the bottom, newly initialized
d Reminder — material is here:
d Colab http://tiny.cc/NAACLTransferColab = code of the following slides
A Code http://tiny.cc/NAACLTransferCode = same code in arepo
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http://tiny.cc/NAACLTransferCode

Hands-on: Model adaptation &

Adaptation task
d  We select a text classification task as the downstream task

[  TREC-6: The Text REtrieval Conference (TREC) Question Classification (Li et al., COLING 2002)

 TREC consists of open-domain, fact-based questions divided into broad semantic categories contains
5500 labeled training questions & 500 testing questions with 6 labels:
NUM, LOC, HUM, DESC, ENTY, ABBR

Ex:
% How did serfdom develop in and then leave Russia ? —> DESC
%  What films featured the character Popeye Doyle ? —> ENTY
Model Test
& CoVe (McCann et al., 2017) 4.2 Transfer |earning models
C) TBCNN (Mou et al., 2015) 4.0 shine on this type of
~ LSTM-CNN (Zhou et al., 2016) 3.9  |ow-resource task
= ULMFiT (ours) 3.6

(Howard and Ruder, ACL 20%8)


https://aclweb.org/anthology/C02-1150
https://arxiv.org/abs/1801.06146

d Modifications:

Hands-on: Model adaptation &

First adaptation scheme

Classification Start Text Extract J—» Transformer > Linear

A Keep model internals unchanged
A Add alinear layer on top
A Add an additional embedding (classification token) at the bottom

[ Computation flow:

3
3
a

Model input: the tokenized question with a classification token at the end
Extract the last hidden-state associated to the classification token

Pass the hidden-state in a linear layer and softmax to obtain class
probabilities

(Radford et al., 20111@)



https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf

Hands-on: Model adaptation

Fine-tuning hyper-parameters:

° AdaptationConfig = namedtuple( 'AdaptationConfig', :
. field names="num classes, dropout, initializer_range, batch_size, lr, max_norm, n_epochs,"
- 6 Classes N TREC-6 e "n_warmup, valid_set_prop, gradient_accumulation_steps, device,"
"log_dir, dataset_cache")
. adapt_args = AdaptationConfig(
— Use fine tuning hyper parameters ” 0, 0.02 , 16 , 6.5e-5, 1.0, 3,
10 0.1 , 1, "cuda" if torch.cuda.is_available() else "cpu",
from Radford et al., 2018: s e Gaohe
e learning rate from 6.5e-510 0.0
import random :
[ ] ﬁne'tune fOI' 3 epOChS ° from torch.utils.data import TensorDataset, random split

dataset_file = cached_path("https://s3.amazonaws.com/datasets.huggingface.co/trec/"

) "trec-tokenized-bert.bin")
Let's load and prepare our dataset: datasets = torch.load(dataset_file)
- trim to the transformer input size & for split _name in ['train’, 'test']:
add a CIaSSIﬁcatlon tOken at the end # Trim the s;mples to the transformer's inpl}t'length minus 1 & add a c1a§sific?.tion token
datasets[split_name] = [x[:arg§.num_max_pos.lt}ons—l] + [tokenizer.vocab['[CLS]']]
Of eaCh Sample, for x in datasets[split_name]]

- pad 'to 'the Ief‘t # Pad the dataset to max length
4 padding_length = max(len(x) for x in datasets[split_name])
- convert to tensors’ datasets[split_name] = [x + [tokenizer.vocab['[PAD]']] * (padding_length - len(x))

for x in datasets[split_name]]
- extract a validation set.

# Convert to torch.Tensor and gather inputs and labels
tensor = torch.tensor(datasets[split_name], dtype=torch.long)

P " labels = torch.tensor(datasets[split_name + '_labels'], dtype=torch.long)
| love | Mom S cooklng [CLS] datasets[split_name] = TensorDataset(tensor, labels)
I Iove you too ! [CLS] # Create a validation dataset from a fraction of the training dataset
valid_size = int(adapt_args.valid set_prop * len(datasets['train']))
NO Way [CLS] train size = len(datasets['train']) - valid _size
This is the | one |[CLS] valid dataset, train dataset = random split(datasets['train'], [valid size, train size])
Yes |[CLS] train_loader = Dataloader(train dataset, batch_size=adapt args.batch_size, shuffle=True)

valid loader = DataLoader(valid dataset, batch_size=adapt_args.batch_size, shuffle=False) 115
test_loader = DataLoader(datasets['test'], batch_size=adapt_args.batch size, shuffle=False)


https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf

Hands-on: Model adaptation

Adapt our model architecture

° class TransformerWithClfHead(nn.Module): 5
def _ init (self, config, fine_tuning config):
super()._ init ()

1 self.config = fine_tuning_config
Keep Our pretralned mOdel self.transformer = Transformer(config.embed dim, config.hidden_dim, config.num embeddings,

b config.num max positions, config.num heads, config.num_layers,

u n C h a n g ed a S th e baCkbo n e . fine_tuning config.dropout, causal=not config.mlm)

self.classification_head = nn.Linear(config.embed dim, fine tuning config.num classes) ]

Replace the pre-training head self.apply(self.init veights)
(language mOdeIing) With the B iIflizggfxiggﬁzé?:\ig\alz?dl(l}xiTI:..inear, nn.Embedding, nn.LayerNorm)):

module.weight.data.normal_ (mean=0.0, std=self.config.initializer_range)

CIaSSlﬁcation head_ if isinstance(module, (nn.Linear, nn.LayerNorm)) and module.bias is not None:

module.bias.data.zero_()

A Ilnear Iayei; WhiCh takes aS def fc_)rward(self, f’ clf_ tokens_mask, clf_lal:';els=None, padding_mask=None) :
Input the hldden-State Of the hidden_states = self.transformer(x, padding mask)

clf tokens_states = (hidden states * clf_ tokens_mask.unsqueeze(-1).float()).sum(dim=0)

[CLF] token (using a mask) clf logits = self.classification_head(clf_tokens_states)

if clf_labels is not None:
loss_fct = nn.CrossEntropyLoss(ignore_index=-1)
loss = loss_fct(clf_ logits.view(-1, clf logits.size(-1)), clf_labels.view(-1))
return clf logits, loss

return clf logits

* 141 1 1 f # If you have pretrained a model in the first section, you can use its weigths :
Initialize all the weights o B '

the |||Ode|. # Otherwise, just load pretrained model weigths (and reload the training config as well)
% state_dict = torch.load(cached_path("https://s3.amazonaws.com/models.huggingface.co/"
mm 1 "naacl-2019-tutorial/model_checkpoint.pth"), map_ location='cpu')
Reload CO on Welghts args = torch.load(cached_path("https://s3.amazonaws.com/models.huggingface.co/"

"naacl-2019-tutorial/model_training args.bin"))

from the pretrained model.

adaptation_model = TransformerWithClfHead(config=args, fine_tuning_config=adapt_args).to(adapt_args.device)

incompatible keys = adaptation_model.load state_dict(state_dict, strict=False)
print(f"Parameters discarded from the pretrained model: {incompatible_ keys.unexpected keys}")
print(f"Parameters added in the adaptation model: {incompatible_keys.missing_keys}")

[> Parameters discarded from the pretrained model: ['lm_head.weight'] 116
Parameters added in the adaptation model: ['classification head.weight', 'classification_head.bias']




Hands-on: Model adaptation

. . ° pptimizer = torch.optim.Adam(adaptation_model.parameters(), lr=adapt_args.lr) H
Our fine-tuning code: '

g r # Training function and trainer 1
. .. def update(engine, batch):

adaptation model.train()

A SImple tralnlng update batch, labels = (t.to(adapt_args.device) for t in batch)
H . inputs = batch.transpose(0, 1).contiguous() # to shape [seqg length, batch]
fU nCtlon —_— _+ loss = adaptation_model(inputs, clf_tokens_mask=(inputs == tokenizer.vocab['[CLS]']), clf_ labels=labels,
padding_mask=(batch == tokenizer.vocab['[PAD]']))

* prepare Inpu‘ts.‘ transpose loss = loss / adapt_args.gradient_accumulation_steps

loss.backward()

and bUIld Da ddina & torch.nn.utils.clip_grad_norm (adaptation_model.parameters(), adapt_args.max_ norm)

if engine.state.iteration % adapt_args.gradient accumulation steps == 0:
optimizer.step()

classification token masks optimizer.zero_grad()

return loss.item()

* we have options to clip and el v

. # Evaluation function and evaluator (evaluator output is the input of the metrics)
accumulate gradients def inference(engine, batch):

adaptation_model.eval()
. with torch.no_grad():
batch, labels = (t.to(adapt_args.device) for t in batch)
We WI” evaluate On Our inputé = batch.transpose(0, 1).contiguous() # to shape [seq length, batch]
H . . > clf logits = adaptation model (inputs, clf_ tokens mask=(inputs == tokenizer.vocab['[CLS]']),
validation and test sets:

padding_mask=(batch == tokenizer.vocab['[PAD]']))

return clf_ logits, labels

* validation: after each epoch evaluator = Engine(inference)

* . # Attache metric to evaluator & evaluation to trainer: evaluate on valid set after each epoch
teSt- at the end Accuracy().attach(evaluator, "accuracy")

@trainer.on(Events.EPOCH_COMPLETED)
def log_validation_results(engine):

. evaluator.run(valid_loader)
SChedUIQ. print(f"validation Epoch: {engine.state.epoch} Error rate: {100*(1 - evaluator.state.metrics['accuracy'])}")
* Ilnearly IncreaSIng to Ir # Learning rate schedule: linearly warm-up to lr and then to zero

scheduler = PiecewiseLinear(optimizer, 'lr', [(0, 0.0), (adapt_args.n_warmup, adapt_args.lr),

* Ilneafly decreas’ng to 00 A (len(train_loader)*adapt_args.n_epochs, 0.0)])

trainer.add event_handler (Events.ITERATION STARTED, scheduler)

# Add progressbar with loss
RunningAverage(output_transform=lambda x: x).attach(trainer, "loss")
ProgressBar (persist=True).attach(trainer, metric_names=['loss'])

# Save checkpoints and finetuning config

checkpoint_handler = ModelCheckpoint(adapt_args.log dir, 'finetuning checkpoint', save_interval=l, require_empty=False1
trainer.add_event_handler (Events.EPOCH_COMPLETED, checkpoint_handler, {'mymodel': adaptation_model}) 17
torch.save(args, os.path.join(adapt args.log dir, 'fine tuning args.bin'))




Hands-on: Model adaptation — Results .~

We can now fine-tune our model on TREC:

[50] trainer.run(train_loader, max_epochs=adapt_args.n_epochs)

g Epoch [1/3] [307/307] 100% . |oss=3.85¢-01 [01:10<00:00]
Validation Epoch: 1 Error rate: 9.174311926605505 Model Test
Epoch [2/3] [307/307] 100%| . '0s5=1.73¢-01 [01:10<00:00] - CoVe (McCann et al., 2017) 4.2
Validation Epoch: 2 Error rate: 5.871559633027523 ) TBCNN (Mou et al., 2015) 4.0
Epoch [3/3] [307/307] 100%| . |oss=9.63¢-02 [01:10<00:00] § LSTM-CNN (Zhou et al., 2016) 3.9
Validation Epoch: 3 Error rate: 5.688073394495408 &= ULMEFiT (ours) 3.6
<ignite.engine.engine.State at 0x7ff4c8b385f8>
° ::ii:?tf:?;c;:En}(lZ:i;:Eiofdgiior rate: {100*(1.00 - evaluator.state.metrics[ 'accuracy']):.3£f}") S We are at the State-Of-the-a rt
(ULMFiT)
[> Test Results - Error rate: 3.600
Remarks:
Q  The error rate goes down quickly! After one epoch we already have >90% accuracy.
= Fine-tuning is highly data efficient in Transfer Learning
J

We took our pre-training & fine-tuning hyper-parameters straight from the literature on related models.
= Fine-tuning is often robust to the exact choice of hyper-parameters
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Hands-on: Model adaptation — Results

100

Let's conclude this hands-on with a few

L. ] 80 . %E&
additional words on robustness & variance. o b QF T : T
O Large pretrained models (e.g. BERT large) are S ol

prone to degenerate performance when fine-tuned e —

BERT-MNLI BERT-MNLI BERT-MNLI BERT-MNLI

on tasks with small training sets. col MRPC muw o RE

d  Observed behavior is often “on-off”: it either works . T ”f’ e e Tm ‘t"i‘“ = .-I «f» s@
very well or doesn't work at all. o § P «f - T

[ Understanding the conditions and causes of this x
behavior (models, adaptation schemes) is an olommae -

open research question. oA =T wec op s mue om

100
e ’Kffr\ Sam £ —
8 X 5 ¥ % OO 4 W
Tfe=e s~ —wr,

60 ‘*I,‘

;m x X * Kx o x K
201" «‘T

x o o X Y e~

20

o

Task Score

o

(c)

Task Score

BERT BERT BERT BERT El BERT El BERT
BERT-MNLI BERT-MNLI BERT-MNLI BERT-MNLI BERT-MNLI BERT-MNLI BERT-MNLI BERT-MNLI

Figure 1: Distribution of task scores across 20 random restarts for BERT, and BERT with intermediary fine-tuning
on MNLI. Each cross represents a single run. Error lines show mean=1std. (a) Fine-tuned on all data, tﬁrgasks

Ph a nq e-t al 20'] 8 with <10k training examples. (b) Fine-tuned on no more than 5k examples for each task. (c) Fine-tun n no
more than 1k examples for each task. (*) indicates that the intermediate task is the same as the target task.



https://arxiv.org/abs/1811.01088v2

4.2 — Optimization

Several directions when it comes to the optimization itself:

A.

Choose which weights we should update QE
Feature extraction, fine-tuning, adapters

Choose how and when to update the weights (O

- & =
;aee e

From top to bottom, gradual unfreezing, discriminative fine-tuning ==

Consider practical trade-offs {}{}
] : =~
Space and time complexity, performance

120

Image credit: ProSymbols, purplestudio, Markus, Alfredo



4.2 A — Optimization: Which weights?

The main question: To tune or not to tune (the pretrained weights)?

A. Do not change pretrained weights
Feature extraction, adapters

B. Change pretrained weights
Fine-tuning

121

Image credit: purplestudio



4.2 A — Optimization: Which weights?
Don't touch the pretrained
weights!

Feature extraction:
d  Weights are frozen
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4.2 A — Optimization: Which weights?

Don't touch the pretrained
weights!

Feature extraction:
d  Weights are frozen

[ A linear classifier is trained on top of
the pretrained representations

lee @9 @0 @9
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4.2 A — Optimization: Which weights?

Don't touch the pretrained
weights!

Feature extraction:

J
H

o
m

Weights are frozen

A linear classifier is trained on top of th
pretrained representations

Don't just use features of the top layer!
Learn a linear combination of layers

( :
)

(N ©0 ©0 00 @0

ENEO @0 @9
! I I

124


https://arxiv.org/abs/1802.05365
https://arxiv.org/abs/1705.08142
https://arxiv.org/abs/1705.08142

T )

Don't touch the pretrained ] T T [

weights! L, [00 00) === (OC ooj

Feature extraction: g

A Alternatively, pretrained b [" o e ..J
representations are used as [ T T T T

features in downstream model F | o® X @ @ 00]




4.2 A — Optimization: Which weights?
Don't touch the pretrained

weights! i ee 9000 @9

T | | T A3
Adapters L,

A Task-specific modules that are
L,

added in between existing layers
D .
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4.2 A — Optimization: Which weights?

Don't touch the pretrained
weights!

Adapters

A Task-specific modules that are
added in between existing layers

A Only adapters are trained
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4.2 A — Optimization: Which weights?

Yes, change the pretrained weights!

, . (@0 @900 @9
Fine-tuning: T T T T

QO Pretrained weights are used as initialization L»
for parameters of the downstream model i H 4 4

1 The whole pretrained architecture is trained |
during the adaptation phase i i T i
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Hands-on #3:
Using Adapters and freezing

Image credit: Chanaky



Hands-on: Model adaptation

Second adaptation scheme: Using Adapters

PP O R —

Y
d Modifications: e |
1 Transformer

O add Adapters inside the backbone | [LQQOQOOJ | & e
model: Linear » RelLU = Linear Fedionier o —
with a skip-connection |
A As previously:
A add a linear layer on top

Nonlinearity
Layer Norm

i o &)
A use an additional embedding | Feedonvrd o
(classification token) at the bottom ! o .
: : . [00000O] | I -
We will only train the adapters, the added N T S atenton ,
linear layer and the embeddings. The other B St o

parameters of the model will be frozen.

Houlsby et al., ICML 26%%



https://arxiv.org/abs/1902.00751

Hands-on: Model adaptation

° class TransformerWithAdapter,
s_dim, embed dim, hidden_dim, num embeddings, num max positions,

Let's adapt our model architecture def _init_(selt, adeprirs d
eads, num_layers, dropout, causal):

Tansformer with adapters (small bottleneck layers)

super()._ init_ (embed_dim, hidden_dim, num embeddings, num max positions, num heads, num_layers,
dropout, causal)

self.adapters_1 = nn.ModuleList()

Inherit from our pretrained
model to have all the modules. e e a0

self.adapters_l.append(nn.Sequential (nn.Linear(embed_dim, adapters_dim),
nn.ReLU(),
nn.Linear(adapters_dim, embed dim)))

Add the adapter modules: self.adapters_z.append(nn.Sequential(2::§izgiu)rfembed_dim, adapters_dim),

. . nn.Linear (adapters_dim, embed dim
Bottleneck layers with 2 linear —— —
Iayers and a non-linear positions = torch.arange(len(x), device=x.device) .unsqueeze(-1)
activation function (ReLU) HE BT e e

h self.dropout(h)

ransformer) :

def forward(self, x, padding_mask=None):
""" x has shape [seq length, batch], padding mask has shape [batch, seq length] """

attn_mask = None

H H H H . if self.causal:
Hldden dlmenSIOn IS Sma”. attn mask = torch.full((len(x), len(x)), -float('Inf'), device=h.device, dtype=h.dtype)
attn_mask = torch.triu(attn_mask, diagonal=1)
e.g. 32, 64, 256

for (layer_norm_ 1, attention, adapter_1, layer_norm 2, feed forward, adapter_2)\
in zip(self.layer norms_1, self.attentions, self.adapters_1,
self.layer norms_2, self.feed forwards, self.adapters 2):
= layer norm 1(h)

. . . h
The Adapters are Inserted InSIde X, = attention(h, h, h, attn mask=attn_mask, need_weights=False, key padding mask=padding_mask)
X

Sklp'COnneCtlonS after. /[ = adapter_1(x) + x # Add an adapter with a skip-connection after attention module ]

X
Il

= self.dropout(x)
the attention module e
d  the feed-forward module h = layer_norm_2(h)

x = feed forward(h)
= self.dropout(x)

x = adapter_2(x) + x # Add an adapter with a skip-connection after feed-forward module ]

h=x+h 131

coo




Hands-on: Model adaptation &

Now we need to freeze the portions of our model we don’t want to train.
We just indicate that no gradient is needed for the frozen parameters by setting

param.requires_grad to False for the frozen parameters:

° for name, param in adaptation_model.named_parameters():
if 'embeddings' not in name and 'classification’' not in name and 'adapters_1' not in name and 'adapters_2' not in name:

param.detach_ ()
param.requires_grad = False

else:
param.requires_grad = True

full parameters = sum(p.numel() for p in adaptation model.parameters())
sum(p.numel() for p in adaptation model.parameters() if p.requires_grad)

trained_parameters =

print(f"We will train {trained_parameters:3e} parameters out of {full parameters:3e},"
f" i.e. {100 * trained parameters/full_ parameters:.2f}%")

[> We will train 1.284961le+07 parameters out of 5.125265e+07, i.e. 25.07%

In our case we will train 25% of the parameters. The model is small & deep (many adapters) and we need
to train the embeddings so the ratio stay quite high. For a larger model this ratio would be a lot lower.
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Hands-on: Model adaptation &

We use a hidden dimension of 32 for the adapters and a learning rate ten times higher for the
fine-tuning (we have added quite a lot of newly initialized parameters to train from scratch).

[185] trainer.run(train_loader, max_epochs=adapt_args.n_epochs)

> Epoch1/3] [307/307] 100% . |oss=2.04e-01 [01:00<00:00]

Validation Epoch: 1 Error rate: 9.174311926605505

poc 0ss=8.40e- 0 /<0U;
Epoch [2/3] [307/307] 100%]| I 8.40e-02 [00:57<00:00]

Validation Epoch: 2 Error rate: 7.522935779816509

Epoch [3/3] [307/307] 100% . |oss-4.83¢-02 [01:00<00:00]

Validation Epoch: 3 Error rate: 7.522935779816509
<ignite.engine.engine.State at 0x7ff4c60fd710>

° evaluator.run(test_loader)|

print(f"Test Results - Error rate: {100*(1.00 - evaluator.state.metrics['accuracy']):.3£f}")

[> Test Results - Error rate: 4.000

Results similar to full-fine-tuning case with advantage of training only 25% of the full model parameters.
For a small 50M parameters model this method is overkill = for 300M-1.5B parameters models.
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4.2.B — Optimization: What schedule?

We have decided which weights to update, but in which order and how should be
update them?

Motivation: We want to avoid overwriting useful pretrained information and
maximize positive transfer.

Related concept: Catastrophic forgetting (McCloskey & Cohen, 1989; French,
1999)

When a model forgets the task it was originally trained on.

134

Image credit: Markus



4.2.B — Optimization: What schedule?

A guiding principle: oo @0 -0 @O
Update from top-to-bottom T i 1 T

A Progressively in time: freezing L,
A Progressively in intensity: Varying the A A A A

learning rates

A Progressively vs. the pretrained model:

Regularization | ] T T

L,

\/
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4.2.B — Optimization: Freezing

Main intuition: Training all layers at the same time 7 @0 ©0 00 @
on data of a different distribution and task may T T T T

lead to instability and poor solutions.

L,
A A A A

Solution: Train layers individually to give them
time to adapt to new task and data.

Goes back to layer-wise training of early deep
neural networks ( :

)

136


https://www.cs.toronto.edu/~hinton/absps/fastnc.pdf
https://papers.nips.cc/paper/3048-greedy-layer-wise-training-of-deep-networks.pdf
https://papers.nips.cc/paper/3048-greedy-layer-wise-training-of-deep-networks.pdf

4.2.B — Optimization: Freezing

e @000 @O

O Freezing all but the top layer ( T T I I
) L,
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https://arxiv.org/abs/1502.02791
https://arxiv.org/abs/1502.02791

4.2.B — Optimization: Freezing

e @000 @O

O Freezing all but the top layer (

)
d  Chain-thaw ( )

training one layer at a time
1. Train new layer
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https://arxiv.org/abs/1502.02791
https://arxiv.org/abs/1502.02791
https://www.aclweb.org/anthology/D17-1169

4.2.B — Optimization: Freezing

T
O Freezing all but the top layer ( .
)
d  Chain-thaw ( ) : :
training one layer at a time I8 | OO (@]¢

1. Train new layer

2. Train one layer at a time T T
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4.2.B — Optimization: Freezing

O Freezing all but the top layer (

)
d  Chain-thaw ( )

training one layer at a time
1. Train new layer
2. Train one layer at a time
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https://www.aclweb.org/anthology/D17-1169

4.2.B — Optimization: Freezing

O Freezing all but the top layer (

)
d  Chain-thaw ( )

training one layer at a time
1. Train new layer
2. Train one layer at a time
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https://arxiv.org/abs/1502.02791
https://www.aclweb.org/anthology/D17-1169

4.2.B — Optimization: Freezing

llee @©o @0 @O
T T T T

O Freezing all but the top layer (

) L,
d  Chain-thaw ( ) ! ! ! !
training one layer at a time L,

1. Train new layer T T T I
2. Train one layer at a time

3. Train all layers E
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4.2.B — Optimization: Freezing

Freezing all but the top layer (
)
Chain-thaw ( )
training one layer at a time
Gradually unfreezing (
): unfreeze one layer after another
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4.2.B — Optimization: Freezing

lee @90 ©9

Freezing all but the top layer ( T T I I
> qeo oo @
Chain-thaw ( ) H H ! H
training one layer at a time
Gradually unfreezing (
): unfreeze one layer after another
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4.2.B — Optimization: Freezing

Freezing all but the top layer (

)

Chain-thaw ( )

training one layer at a time
Gradually unfreezing (
): unfreeze one layer after another

lee @90 ©9

] | ] ]
Neo cs-co @0

N0 ©9--©9

145


https://arxiv.org/abs/1502.02791
https://arxiv.org/abs/1502.02791
https://www.aclweb.org/anthology/D17-1169
https://arxiv.org/abs/1801.06146
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4.2.B — Optimization: Freezing

Freezing all but the top layer (
)
Chain-thaw ( )
training one layer at a time
Gradually unfreezing (
): unfreeze one layer after another

T

Ln

L,

E

T T T T

11
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4.2.B — Optimization: Freezing

lee @90 ©9

Freezing all but the top layer (

)
Chain-thaw ( ) : :
training one layer at a time @9 @O
Gradually unfreezing ( i i 7
): unfreeze one layer after another ¢

Sequential unfreezing (
): hyper-parameters that

determine length of fine-tuning
1. Fine-tune additional parameters for 7 epochs

147


https://arxiv.org/abs/1502.02791
https://arxiv.org/abs/1502.02791
https://www.aclweb.org/anthology/D17-1169
https://arxiv.org/abs/1801.06146
https://arxiv.org/abs/1801.06146
https://arxiv.org/abs/1902.10547
https://arxiv.org/abs/1902.10547

4.2.B — Optimization: Freezing

Freezing all but the top layer (
)

Chain-thaw ( )
training one layer at a time
Gradually unfreezing (

): unfreeze one layer after another
Sequential unfreezing (

): hyper-parameters that

determine length of fine-tuning
1. Fine-tune additional parameters for 7 epochs
2. Fine-tune pretrained parameters without embedding
layer for k epochs

T

L

L,

T T T T

n
A A A A
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4.2.B — Optimization: Freezing

Freezing all but the top layer (
)

Chain-thaw ( )
training one layer at a time
Gradually unfreezing (

): unfreeze one layer after another
Sequential unfreezing (

): hyper-parameters that

determine length of fine-tuning
1. Fine-tune additional parameters for 7 epochs
2. Fine-tune pretrained parameters without embedding
layer for k epochs
3. Train all layers until convergence

T

Ln

L,

E

T T T T

11
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4.2.B — Optimization: Freezing

O Freezing all but the top layer (
)

d  Chain-thaw ( )

training one layer at a time
O Gradually unfreezing (

): unfreeze one layer after another
O Sequential unfreezing (
): hyper-parameters that
determine length of fine-tuning

Commonality: Train all parameters jointly in the
end

T

Ln

L,

E

T T T T

11
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Hands-on #4:
Using gradual unfreezing

151

Image credit: Chanaky



Hands-on: Adaptation

Gradual unfreezing is similar to our previous freezing process.
We start by freezing all the model except the newly added parameters:

° for name, param in adaptation_model.named parameters(): :
if 'embeddings' not in name and 'classification' not in name:
param.detach_ ()
param.requires_grad = False

else:
param.requires_grad = True

full_parameters = sum(p.numel() for p in adaptation_model.parameters())
trained parameters = sum(p.numel() for p in adaptation model.parameters() if p.requires_grad)

print(f"We will start by training {trained parameters:3e} parameters out of {full parameters:3e},"
f" i.e. {100 * trained parameters/full parameters:.2f}%")

[> We will start by training 1.199579e+07 parameters out of 5.039883e+07, i.e. 23.80%

We then gradually unfreeze an additional block along the training so that we train the full model at the end:
° import re :

UnfreeZIng interval S # We will unfreeze blocks regqularly along the training: one block every “unfreezing interval™ step

unfreezing_interval = int(len(train_loader) * adapt_args.n_epochs / (args.num layers + 1))

@trainer.on(Events.ITERATION COMPLETED)
def unfreeze_ layer_if needed(engine):

H H if engine.state.iteration % unfreezing_interval == 0:
Flnd IndeX Of |ayer # Which layer should we unfreeze now
—lp- UNfreezing_index = args.num_layers - (engine.state.iteration // unfreezing_interval)
to unfreeze ‘
# Let's unfreeze it

unfreezed = []

for name, param in adaptation model.named_parameters():
Name pattern :

P> if re.match(r"transformer\.["\.]*\." + str(unfreezing index) + r"\.", name):

unfreezed.append (name)

matChing param.require grad = True

print(f£"Unfreezing block {unfreezing index} with {unfreezed}")
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Hands-on: Adaptation

Gradual unfreezing has not been investigated in details for Transformer models
= no specific hyper-parameters advocated in the literature

Residual connections may have an impact on the method
= should probably adapt LSTM hyper-parameters

[209] trainer.run(train loader, max_epochs=adapt_args.n_epochs)

B Epochlizal [307/307] 100% N, (o5 =7.56¢-02 [00:57<00:00]

Unfreezing block 15 with ['transformer.attentions.15.in_proj_weight', 'transformer.attentions.15.in proj_bias
Unfreezing block 14 with ['transformer.attentions.l4.in proj_weight', 'transformer.attentions.l4.in proj_bias
Unfreezing block 13 with ['transformer.attentions.13.in proj weight', 'transformer.attentions.13.in proj_bias
Unfreezing block 12 with ['transformer.attentions.l2.in proj weight', 'transformer.attentions.l2.in proj_bias
Unfreezing block 11 with ['transformer.attentions.ll.in proj_weight', 'transformer.attentions.ll.in_proj_bias
validation Epoch: 1 Error rate: 7.706422018348624

Epoch [2/3] [307/307] 100% [, 1055 =2.27e-02 [00:59<00:00]
Unfreezing block 10 with ['transformer.attentions.10.in proj_weight', 'transformer.attentions.10.in proj_bias
Unfreezing block 9 with ['transformer.attentions.9.in proj_weight', 'transformer.attentions.9.in proj_bias',
Unfreezing block 8 with ['transformer.attentions.8.in proj_weight', 'transformer.attentions.8.in proj_bias',
Unfreezing block 7 with ['transformer.attentions.7.in proj_weight', 'transformer.attentions.7.in proj_bias',
Unfreezing block 6 with ['transformer.attentions.6.in proj_weight', 'transformer.attentions.6.in proj_bias',
Unfreezing block 5 with ['transformer.attentions.5.in proj_weight', 'transformer.attentions.5.in proj_bias',
Validation Epoch: 2 Error rate: 6.788990825688068

Epoch [3/3] [307/3071 100% | N '0s5-=5.05e-03 [00:56<00:00]
Unfreezing block 4 with ['transformer.attentions.d.in proj_weight', 'transformer.attentions.4.in proj_bias',
Unfreezing block 3 with ['transformer.attentions.3.in proj_weight', 'transformer.attentions.3.in proj_bias',
Unfreezing block 2 with ['transformer.attentions.2.in proj_weight', 'transformer.attentions.2.in proj_bias',
Unfreezing block 1 with ['transformer.attentions.l.in proj_weight', 'transformer.attentions.l.in proj_bias',
Unfreezing block 0 with ['transformer.attentions.0.in proj_weight', 'transformer.attentions.0.in proj_bias',
Unfreezing block -1 with []
Validation Epoch: 3 Error rate: 7.339449541284404
<ignite.engine.engine.State at 0x7££4c61999e8>

[210] evaluator.run(test_loader)

print(£"Test Results - Error rate: {100%(1.00 - evaluator.state.metrics['accuracy']):.3£}")

[> Test Results - Error rate: 5.200

We show simple experiments in the Colab. Better hyper-parameters settings can probably be found.
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4.2.B — Optimization: Learning rates

Main idea: Use lower learning rates to avoid

overwriting useful information.
lee @000 @O

Where and when? i 1
O Lower layers (capture general information) L
3  Early in training (model still needs to adapt : : : :
to target distribution) L,
O Late in training (model is close to T T
convergence)

A A A

(4)

(3)

(2)

77(1)

Y
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4.2.B — Optimization: Learning rates

O Discriminative fine-tuning (

) (a)
T n
O Lower layers capture general information g ©9--e0 e
— Use lower learning rates for lower layers | | | |
. o .
N =nxd;’ L, n®
A A A A

2)

T T T

L,

3

T

ey

n
Y
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4.2.B — Optimization: Learning rates

A Discriminative fine-tuning
O Triangular learning rates (

)

I Quickly move to a suitable region, then slowly | T T I T |
converge over time
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4.2.B — Optimization

A Discriminative fine-tuning
O Triangular learning rates (

a

)

Quickly move to a suitable region, then slowly
converge over time
Also known as “learning rate warm-up”
Used e.g. in Transformer (

) and Transformer-based methods (BERT,
GPT)
Facilitates optimization; easier to escape
suboptimal local minima

. Learning rates

T

Ln

L,

E

T T T T

I

Nt

Nt

Nt

Nt
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4.2.B — Optimization: Regularization

Main idea: minimize catastrophic forgetting by
encouraging target model parameters to stay

close to pretrained model parameters o0 @000 9o
using a regularization term (). T T T i

L,
A A A

<>

L,
A A A A

A

NEo eo--@o 7
! | | |
T | | | |
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4.2.B — Optimization: Regularization
A Simple method.

Regularize new parameters e @000 OO

not to deviate too much I | ! |

from pretrained ones ( L, (@@ - - -
) L ) <
/ j ! /

=Sl - Lill: . o < CONCCNES

f 1 ! ! ] ]
N .
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4.2.B — Optimization: Regularization

O More advanced (elastic
weight consolidation; EWC): o'

Focus on parameters 6 that 0  — A~

are important for the f’\ - _

pretrained task based on the % ’ B - S5

Fisher information matrix F'

( : — AGo eo--e0 @O
E [ S

Q= Z 2F;(0. — 6:)? E'
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4.2.B — Optimization: Regularization

EWC has downsides in continual

learning: y
O May over-constrain 0 — A~

parameters 5 Lr,z
d Computational costis linear 4 : : A A A A

T T T

in the number of tasks L Li

( ) | | | |

T
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4.2.B — Optimization: Regularization

[ If tasks are similar, we may yT

also encourage source and g o0 @0 -0 ©°
target predictions to be close !
T

based on cross-entropy, T T I

/

!

T T T T

L
similar to distillation: IMCcO ©9-©9 ¢

900 ©9--©@9

Q=H(D,7) e ©©  ©9 - ©9
T T T T
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Hands-on #5:
Using discriminative learning
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Hands-on: Model adaptation

Discriminative learning rate can be implemented using two steps in our example:
First we organize the parameters of the various layers in labelled parameters groups in the optimizer:

l/ . .
\J
‘°' import re :

# Build parameters groups by layer, numbered from the top ['1l', '2', ..., '15']
parameter_groups = []
for i in range(args.num_layers):
name_pattern = r"transformer\.["\.]*\." + str(i) + r"\."
group = {'name': str(args.num layers - i),
'params': [p for n, p in adaptation_model.named_parameters() if re.match(name_pattern, n)]}
parameter groups.append(group)

# Add the rest of the parameters (embeddings and classification layer) in a group labeled '0'
name_pattern = r"transformer\.[”\.]*\.\d*\."
group = {'name': '0',

'params': [p for n, p in adaptation_model.named parameters() if not re.match(name_pattern, n)]}
parameter_groups.append(group)

# Sanity check that we still have the same number of parameters
assert sum(p.numel() for g in parameter groups for p in g['params'])\
== sum(p.numel() for p in adaptation_model.parameters())

optimizer = torch.optim.Adam(parameter groups, lr=adapt args.lr)

We can then compute the learning rate of each group depending on its label (at each training iteration):

eoe

—1
?7?/ f— /]7 X df ° @trainer.on(Events.ITERATION_STARTED)
def update_layer_ learning rates(engine):
for param group in optimizer.param groups:
layer_index = int(param_group|["name"])
Hypel’-parametel’ param_group["lr"] = param group["lr"] / (adapt_args.decreasing factor ** layer_index)

164



4.2.C — Optimization: Trade-offs

Several trade-offs when choosing which weights to update: 3

A. Space complexity

Task-specific modifications, additional parameters, parameter reuse

B. Time complexity
Training time

C. Performance
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4.2.C — Optimization trade-offs: Space

Task-specific modifications

Feature extraction Adapters Fine-tuning
< >
Many Few
Additional Feature extraction Adapters Fine-tuning
< >
parameters
Many Few
Pararneter reuse Feature e:tractlon Adapters Fine-tuning _

All

None
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4.2.C — Optimization trade-offs: Time

Training time . . .
J Feature extraction Adapters Fine-tuning

- >

Slow Fast
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4.2.C — Optimization trade-offs: Performance

Rule of thumb: If task source and target tasks are dissimilar®, use feature
extraction ( )

Otherwise, feature extraction and fine-tuning often perform similar
Fine-tuning BERT on textual similarity tasks works significantly better
Adapters achieve performance competitive with fine-tuning

Anecdotally, Transformers are easier to fine-tune (less sensitive to
hyper-parameters) than LSTMs

L

R My Ny

*dissimilar: certain capabilities (e.g. modelling inter-sentence relations) are
beneficial for target task, but pretrained model lacks them (see more later)
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4.3 — Getting more signal

The target task is often a low-resource task. We can often (( ))
improve the performance of transfer learning by

combining a diverse set of signals:
A. From fine-tuning a single model on a single adaptation task....

The Basic: fine-tuning the model with a simple classification objective

B. .. to gathering signal from other datasets and related tasks ...
Fine-tuning with Weak Supervision, Multi-tasking and Sequential Adaptation

C. ..toensembling models

Combining the predictions of several fine-tuned models
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4.3.A — Getting more signal: Basic fine-tuning

Simple example of fine-tuning on a text =0,y

classification task: T

A. Extract a single fixed-length vector from the 7 [UDESRCIESICIRNCT )

model: hi

y)
hidden state of first/last token or mean/max of
hidden-states Ln
A A

A A
[ ]

B. Project to the classification space with an ' ' ' '
’ > L,

additional classifier

T | T T
C. Train with a classification objective E
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4.3.B — Getting more signal: Related datasets/tasks

A. Sequential adaptation
Intermediate fine-tuning on related datasets and tasks

B. Multi-task fine-tuning with related tasks
Such as NLI tasks in GLUE

C. Dataset Slicing

When the model consistently underperforms on particular slices of the data

D. Semi-supervised learning
Use unlabelled data to improve model consistency
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4.3.B — Getting more signal: Sequential adaptation

Fine-tuning on related high-resource dataset

1. Fine-tune model on related task with more 1)7 [(CORSCDOREICORNC D)

data T T i i
Neo o0 am
;
T T T T
:
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4.3.B — Getting more signal: Sequential adaptation
Fine-tuning on related high-resource dataset

1. Fine-tune model on related task with more 2)T

data
2. Fine-tune model on target task

[ Helps particularly for tasks with limited
data and similar tasks ( )
A Improves sample complexity on target task

( )
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4.3.B — Getting more signal: Multi-task fine-tuning

Fine-tune the model jointly on related ﬁ ﬁl -I— Lz F £3
tasks ® o coied eon

[ For each optimization step,
sample a task and a batch for L,
training. A A A A
[ Train via multi-task learning for a : : : :
couple of epochs. L,

T T T
:

T
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4.3.B — Getting more signal: Multi-task fine-tuning

Fine-tune the model jointly on related
tasks

[ For each optimization step,
sample a task and a batch for
training.

[ Train via multi-task learning for a
couple of epochs.

d Fine-tune on the target task only
for a few epochs at the end.
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4.3.B — Getting more signal: Multi-task fine-tuning
Fine-tune the model with an unsupervised L=L1+ \o

auxiliary task
Ty, T5
A Language modelling is a related task! T T

3 Fine-tuning the LM helps adapting the L
pretrained parameters to the target A " A A

dataset. : : : :
3 Helps even without pretraining ( L,
)
O Can optionally anneal ratio A T T T T

( YA CO ©O - ©O

A Used as a separate step in ULMFIT
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4.3.B — Getting more signal: Dataset slicing

Use auxiliary heads that are trained only on _
particular subsets of the data L=L 1+ ‘62 + ‘C3

T1_3 @ @On e
[ Analyze errors of the model
A Use heuristics to automatically identify L,
challenging subsets of the training : : : :
data : : : :
d  Train auxiliary heads jointly with main L,
head I I I I

See also I8 CO
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4.3.B — Getting more signal: Semi-supervised learning

Can be used to make model
predictions more consistent
using unlabelled data

A  Main idea: Minimize
distance between
predictions on original
input 2z and perturbed
input x!

Y
_ / T

Y

t

@ @o--00 ©9

T
| |
G0 ©9--00 @9
A
Ll

| |
@9 - @9
©9 - 60

| |

@l®)
| |
:

1
i

T

L

L,

E

n

@ @o--@® @9

T T T T

A

11

I

33,
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4.3.B — Getting more signal: Semi-supervised learning

Can be used to make model
predictions more consistent
using unlabelled data

A Perturbation can be noise,
masking (
), data augmentation,
e.g. back-translation (

)

Y
_ / T

Y

e @000 @9

I—)

L1 1 1 I e

00 ©9--©@9
A A A A

Ao ©o--o0
L

I

1
i

T

L,

E

@ @o--@® @9

T T T T

A

11

/

XL
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4.3.C — Getting more signal: Ensembling

Reaching the state-of-the-art by ensembling independently fine-tuned models

d Ensembling models
Combining the predictions of models fine-tuned with various hyper-parameters

1 Knowledge distillation
Distill an ensemble of fine-tuned models in a single smaller model
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4.3.C — Getting more signal: Ensembling

Combining the predictions of models
fine-tuned with various hyper-parameters.

Qlc|z) = anT([Ql,Qz,Q?’])

Q' (c| =)

Model fine-tuned...

—_
—_—

[ ondifferent tasks

[ on different dataset-splits

3 with different parameters
(dropout, initializations...)

A from variant of pre-trained
models (e.g. cased/uncased)

—

=

-8

£

o
© md @

8
o |
E
g

8 8
8 8

— H

—_
—_—

M00 (0909

O
[

S pd €

)
I
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4.3.C — Getting more signal: Distilling

Distilling ensembles of large models back in a single model ars
1 knowledge distillation: train 1 A2 A3 /
Qc| ) = avg([Q", Q% Q"))
a student model on soft
targets produced by the
teacher (the ensemble)

~ 370l | X) log(P (¢ | X))

a Fgelative probabilities of the
teacher labels contain
information about how the
teacher generalizes

D | b
:

)

h
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Hands-on #6:
Using multi-task learning
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Hands-on: Multi-task learning

class TransformerWithClfHeadAndLMHead (nn.Module):

Multitasking with a classification loss + def _init_(self, config, fine tuning contig):

super()._ init ()
self.config = fine_tuning config

Ianguage ”IOdellng IOSS self.transformer = Transformer(config.embed dim, config.hidden_dim, config.num embeddings,
config.num max positions, config.num heads, config.num layers,
config.dropout, causal=not config.mlm)

Create tWO heads: self.lm head = nn.Linear(config.embed dim, config.num embeddings, bias=False)

. self.classification_head = nn.Linear(config.embed dim, fine_ tuning config.num classes)
- language modeling head
— classification head

self.apply(self.init weights)
self.tie_weights()

def tie_weights(self):
self.lm head.weight = self.transformer.tokens_embeddings.weight

def init weights(self, module):

Total |OSS iS a weighted sum Of if isinstance(module, (nn.Linear, nn.Embedding, nn.LayerNorm)):

module.weight.data.normal_(mean=0.0, std=self.config.initializer_ range)

— I d |' I d if isinstance(module, (nn.Linear, nn.LayerNorm)) and module.bias is not None:
anguage |||0 e Ing OSS an module.bias.data.zero_()
—_— ClaSSiﬂcation IOSS def forward(self, x, clf_tokens_mask, lm_labels=None, clf_labels=None, padding mask=None):
""" x and clf_tokens_mask have shape [seq length, batch] padding_mask has shape [batch, seq length]
hidden_states = self.transformer(x, padding mask)

won

def update(engine, batch):
adaptation_model.train()
batch, labels = (t.to(adapt args.device) foy/t in batch)
inputs = batch.transpose(0, 1).contiguous # to shape [seq length, batch]

1m_logits = self.lm_head(hidden_states)
clf_tokens_states = (hidden_states * clf_tokens_mask.unsqueeze(-1).float()).sum(dim=0)
clf_logits = self.classification_head(clf_tokens_states)

loss = []
if clf_labels is not None:
loss_fct = nn.CrossEntropylLoss(ignore_index=-1)
loss.append(loss_fct(clf logits.view(-1, clf logits.size(-1)), clf_labels.view(-1)))

_+ losses = adaptation_model(inputs,
clf_tokens_mask=(inputs == tokenizer.vocab['[CLS]']),
clf labels=labels,
1m_labels=inputs,
padding_mask=(batch == tokenizer.vocab['[PAD]']))

if 1m_labels is not None:

shift_logits = 1lm logits[:-1] if self.transformer.causal else lm logits
shift_labels = lm labels[1l:] if self.transformer.causal else 1lm_labels
loss_fct = nn.CrossEntropylLoss(ignore_index=-1)

clf loss, 1lm_loss = losses
loss = (adapt_args.clf_ loss_coef * clf_loss
+ adapt_args.lm loss_coef * Im loss) / adapt_args.gradient_accumulation_steps

loss.append(loss_fct(shift_logits.view(-1, shift logits.size(-1)), shift_labels.view(-1)))
loss.backward()
torch.nn.utils.clip grad norm_ (adaptation model.parameters(), adapt_args.max norm) if len(loss):
if engine.state.iteration % adapt_args.gradient_accumulation steps == 0: return (lm_logits, clf_ logits), loss
optimizer.step()
optimizer.zero_grad() return lm_logits, clf logits

return loss.item()
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Hands-on: Multi-task learning

We use a coefficient of 1.0 for the classification loss and 0.5 for the language modeling loss and
fine-tune a little longer (6 epochs instead of 3 epochs, the validation loss was still decreasing).

[ ] trainer.run(train_loader, max_epochs=adapt_args.n_epochs)

> Epoch[1/6] [307/307] 100% |, o<s=1.07e+00 [01:21<00:00]
Validation Epoch: 1 Error rate: 9.35779816513761
Epoch [2/6] [3077307] 100% | . |oss-7.08e-01 [01:21<00:00]
Validation Epoch: 2 Error rate: 7.522935779816509
Epoch [3/6] [307/307] 100%| . |o<s=5.46¢-01 [01:22<00:00]
Validation Epoch: 3 Error rate: 5.688073394495408
Epoch [4/6] [307/307] 100% | oss=4.66e-01 [01:21<00:00]
Validation Epoch: 4 Error rate: 5.321100917431187 Multi-taSking helped us
Epoch [5/6] [307/307] 100% N (oss=4.22¢-01 [01:21<00:00] improve over Singl e-task
Validation Epoch: 5 Error rate: 5.688073394495408 .
Epoch [6/6] [307/307] 100% |, |o<s=3.98e-01 [01:21<00:00] fuII-mOdeI ﬂne-tunlng!

Validation Epoch: 6 Error rate: 5.321100917431187
<ignite.engine.engine.State at 0x7ff4c9357e80>

° evaluator.run(test_loader) 5
print(f"Test Results - Error rate: {10Q* = evaluator.state.metrics[ 'accuracy']):.3f}"_u

[> Test Results Error rate: 3.400
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5. Downstream applications
Hands-on examples

¥
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5. Downstream applications - Hands-on examples

In this section we will explore downstream applications and practical
considerations along two orthogonal directions:

A. What are the various applications of transfer learning in NLP
Document/sequence classification, Token-level classification, Structured
prediction and Language generation

B. How to leverage several frameworks & libraries for practical applications
Tensorflow, PyTorch, Keras and third-party libraries like fast.ai, HuggingFace...
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Frameworks & libraries: practical considerations

[ Pretraining large-scale models is costly

Consumption CO2ze (Ibs)

Use open-source models Air travel, 1 passenger, NY<>SF 1984

Share your pretrained models Human life, avg, 1 year 11,023

American life, avg, 1 year 36,156

[ Sharing/accessing pretrained models Car, avg incl. fuel, 1 lifetime 126,000
A Hubs: Tensorflow Hub, PyTorch Hub o

QO Author released checkpoints: ex BERT, GPT... ;‘g?T‘Z“;IgL ;“;(‘)‘(‘g‘ftla — -

A Third-party libraries: AllenNLP, fast.ai, HuggingFace il g &experiiimiﬁon 33,486

A Design considerations Transformer (large) 121

w/ neural architecture search 394,863

d  Hubsl/libraries:
A Simple to use but can be difficult to modify model internal architecture

4 Author released checkpoints:
4 More difficult to use but you have full control over the model internals
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5. Downstream applications - Hands-on examples

Sequence and document level classification _L
Hands-on: Document level classification (fast.ai) =

Token level classification
Hands-on: Question answering (Google BERT & Tensorflow/TF Hub)

Al

Language generation D
Hands-on: Dialog Generation (OpenAl GPT & HuggingFace/PyTorch Hub) &

190
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5.A - Sequence & document level classification [=

Transfer learning for document classification using the fast.ai library.

A Target task:

IMDB: a binary sentiment classification dataset containing 25k highly polar
movie reviews for training, 25k for testing and additional unlabeled data.

N has in particular:

A a pre-trained English model available for download
A a standardized data block API
A easy access to standard datasets like IMDB

1 Fast.aiis based on PyTorch
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https://www.fast.ai/

5.A — Document level classification using fast.ai

fast.ai gives access to many high-level API out-of-the-box

° path = untar_data(URLs.IMDB_SAMPLE)

for vision, text, tabular data and collaborative filtering. .
df.head()
The library is designed for speed of experimentation, e.g. by e pech: /root/.fastai/dara/indy senrie N
importing all necessary modules at once in interactive o recat o , :
. . . negative Un-bleeping-believable! Meg Ryan doesn't even ... False
CompUtIng enVIronmentSl |Ike 1 positive  This is a extremely well-made film. The acting... False
2 negative  Every once in a long while a movie will come a... False
° from fastai.text import * # Quick access to NLP functionality 3 positive Name just says it all. | watched this movie wi... False
4 negative This movie succeeds at being one of the most u... False

Fast.ai then comprises all the high level modules needed to
quickly Setup a transfer |earning experiment. ° data_lm = TextLMDataBunch.from csv(path, 'texts.csv')

data_clas = TextClasDataBunch.from csv(path, 'texts.csv',
Load IMDB dataset & inspect it.

DataBunch for the language model and the classifier | [ N ——

learn.unfreeze()
learn.fit_one_cycle(4, slice(le-2), moms=moms)
learn.save_encoder('enc')

Load an AWD-LSTM (Merity et al., 2017) pretrained on
WikiText-103 & fine-tune it on IMDB using the language ——# = et trainioss validioss accuracy tine
modeling IOSS 0 4.723435 3.968737 0.283498 00:15

1 4.416326 3.874095 0.286878 00:15

2 4.148463 3.836543 0.290434 00:16

3 3.951989 3.828021 0.291311 00:16

vocab=data_lm.train_ds.vocab, bs=42)
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5.A — Document level classification using fast.ai [

Once we have a fine-tune language model e N e
(AWD-LSTM), we can create a text classifier by adding learn. £it_one_cycle(4, moms=moms)
a classification head with: o . . .

epoch train_loss valid_loss accuracy time

— A layer to concatenate the final outputs of the RNN
with the maximum and average of all the intermediate
outputs (along the sequence length)

— Two blocks of nn.BatchNorm1d = nn.Dropout =
nn.Linear » nn.RelLU with a hidden dimension of 50.

0 0.663383 0.682115 0.572139 00:10
1 0.623683 0.609520 0.651741 00:10
2 0.597989 0.582999 0.666667 00:10

3 0.580533 0.555404 0.666667 00:09

Now we fine-tune in two steps: © lcern.unfreeze()

learn.fit one_cycle(8, slice(le-5,1le-3), moms=moms)
1. train the classification head only while keeping
the language model frozen, and

[ epoch train_loss valid_loss accuracy time

0 0.555569 0.557091 0.681592 00:20

. . 1 0.566048 0.541689 0.721393 00:21
2. fine-tune the whole architecture. >

2 0.554564 0.543157 0.736318 00:20

3 0.556879 0.526971 0.756219 00:20

Colab: http://tiny.cc/NAACLTransferFastAiColab e

5 0.541698 0.514611 0.756219 00:19

6 0.535575 0.514330 0.756219 00:19

7 0.529567 0.515582  0.746269 00:19 193
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5.B — Token level classification: BERT & Tensorflow

Transfer learning for token level classification: Google’s BERT in TensorFlow.

‘I
gl

1 Target task:
SQUAD: a question answering dataset.

[ Inthis example we will directly use a Tensorflow checkpoint
d  Example:
A We use the usual Tensorflow workflow: create model graph comprising
the core model and the added/modified elements
A Take care of variable assignments when loading the checkpoint
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5.B — SQUAD with BERT & Tensorflow

Let's adapt BERT to the target task.
Keep our core model unchanged.

Replace the pre-training head
(language modeling) with a
classification head:

a linear projection layer to
estimate 2 probabilities for
each token:

— being the start of an answer
— being the end of an answer.

Start/End Span
2+

BERT

HNE

| E[SEPI

——

[cLs] T:’k .. T":k [SEP] T;’k . Tl‘;k

Question Paragraph

N

° def create model(bert config, is_training, input_ids, input mask, segment_ids,
use_one_hot_embeddings):

W 1 niw

model = modeling.BertModel (
config=bert config,
is_training=is_training,
input_ ids=input_ ids,
input_mask=input_mask,
token_type_ids=segment_ids,
use_one_hot_embeddings=use_one_hot_embeddings)

final hidden = model.get_ sequence_output()

final hidden_shape = modeling.get_shape_ list(final_hidden, expected_rank=3)
batch_size final hidden_shape[0]
seq_length final hidden_shape[1]
hidden_size = final hidden_shape[2]

output_weights = tf.get_variable(
"cls/squad/output_weights", hidden_size],
initializer=tf.truncated_no initializer(stddev=0.02))

output_bias = tf.get variable

"cls/squad/output_bias", initializer=tf.zeros_initializer())

final hidden matrix = tf.reshape(final_hidden,
[batch_size * seqg_length, hidden_size])

logits = tf.matmul(final hidden matrix, output weights, transpose b=True)
logits = tf.nn.bias_add(logits, output_bias)
logits = tf.reshape(logits, [batch_size, seq length, 2])

Llogits = tf.transpose(logits, [2, 0, 1])

unstacked_logits = tf.unstack(logits, axis=0)
(start_logits, end_logits) = (unstacked_logits[0], unstacked_logits[1l])

return (start logits, end logits)



5.B — SQUAD with BERT & Tensorflow

° def get_ assignment map_from checkpoint(tvars, init checkpoint): H
"""Compute the union of the current variables and checkpoint variables."""
assignment_map = {}

Load our pretrained checkpoint initialized_variable names = {}

name_to_variable = collections.OrderedDict()
for var in tvars:
name = var.name
m = re.match(""(.*):\\d+$", name)
if m is not None:
name = m.group(l)
name_to_variable[name] = var

TO |Oad our CheCpr"Tt, we jUSt init_vars = tf.train.list variables(init_checkpoint)
need tO Setup an ;ssignment_map = collections.OrderedDict()

. or x in init vars:
assignement_map from the (name, var) = (x[0], x[1])

if name not in name_to_variable:

variables of the checkpoint to continue

assignment_map[name] = name

the model variable, keeping only Ll Sl =
. . initialized variable_names[name + ":0"] = 1
the variables in the model.

return (assignment map, initialized_variable_names)

° (start_logits, end logits) = create_model( E
bert_config=bert config,
is_training=is_training,

And we can use Rt
. . . . gment_ids=segment_ids,
tf.train.init_from_ckeckpoint

use_one_hot_embeddings=use_one_hot_embeddings)

tvars = tf.trainable_variables()

(assignment_map,
initialized_variable names) = get_assignment_map_from checkpoint(tvars, init_checkpoint)

tf.train.init from checkpoint(init_checkpoint, assignment_map)
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5.B — SQUAD with BERT & Tensorflow

‘I
gl

TenSOI'F|0W-Hub ° def create_model(bert config, is_training, input_ids, input_mask, segment_ids,
useTorlxe_ht_)t_embeddixl}t';l? )i

Working dlrectly Wlth TensorFlow """Creates a classification model.

requires to have access to—and e entlpuart el

include in your code- the full iy B e

code of the pretrained model. e

use_one_hot_embeddings=use_one_hot_ embeddings)

TensorFlow Hub is a library
for sharing machine learning

models as self-contained o . .
pleces Of TensorFloW graph ° ['pip install "tensorflow_hub==0.4.0

' ] j import t £low_hub as hub
with their weights and assets. mport tensorflow_hub as

final hidden = model.get sequence_output()

def create model(is_predicting, input_ids, input mask, segment *

MOdU|eS are aUtomatlcally """Creates a chl::I%Ja'.‘::t?.()); model."""
downloaded and cached when ST ——ry N
instantiated. BERT_MODEL_HUB,

trainable=True)
bert_inputs = dict(
input_ids=input_ids,

H H \ inpu k=inpu k,
Each time a module mis cglled s e
e.g. y = m(x), it adds operations s et
to the current TensorFlow graph O e )

to compute y from x.

# Use "pooled output" for classification tasks on an entire sentence.
# Use "sequence outputs" for token-level output.
final_hidden = bert outputs|["sequence_outputs"] 197
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5.B — SQUAD with BERT & Tensorflow

Tensorflow Hub host a nice selection of pretrained models for NLP

@ @& https://tfhub.dev oo w
= TensorFlow Hub Q
Text Text embedding
Embedding .
universal-sentence-encoder sy coogle
Image text-embedding DAN  English
Encoder of greater-than-word length text trained on a variety of data.

Classification
Feature Vector

Generator

Other el mo By Google
text-embedding 1 Billion Word Benchmark ~ ELMo  English
Embeddings from a language model trained on the 1 Billion Word Benchmark.

Video

Wikipedia and BooksCorpus ~ Transformer  English
i Encoder ions from Transformers (BERT).

° bert_uncased_L-12_H-768_A-12 sy coogle

Tensorflow Hub can also used with Keras exactly how we saw in the BERT example

The main limitations of Hubs are:
[ No access to the source code of the model (black-box)
O Not possible to modify the internals of the model (e.g. to add Adapters)

198



5.C — Language Generation: OpenAl GPT & PyTorch o

[
Transfer learning for language generation: OpenAl GPT and HuggingFace library.

A Target task:

ConvAl2 — The 2nd Conversational Intelligence Challenge for training and
evaluating models for non-goal-oriented dialogue systemes, i.e. chit-chat

A HuggingFace library of pretrained models

A arepository of large scale pre-trained models with BERT, GPT, GPT-2, Transformer-XL
A provide an easy way to download, instantiate and train pre-trained models in PyTorch

A HuggingFace's models are now also accessible using PyTorch Hub
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5.C — Chit-chat with OpenAl GPT & PyTorch

Knowledge Base Receive an utterance from the user
¢» Iam good thank you , how are you.
Persona
g I am an artist
o Ihave four children
> I recently got a cat
. . I enjoy walking for exercise
A dlalog generatlon taSk. I love watching Game of Thrones Dialog
9 Agent
> .
2§ OH
2 £ @ Hello ! How are you today ? '

Generate a reply
@ Great, thanks ! My children and I were just about to watch Game of Thrones.

Language generation tasks are close to the language modeling pre-training objective, but:
A Language modeling pre-training involves a single input: a sequence of words.

0
A knowledge base: persona sentences,

[ history of the dialog: at least the last utterance from the user,
A tokens of the output sequence that have already been generated.

How should we adapt the model?

In a dialog setting: several type of contexts are provided to generate an output sequence:
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5.C — Chit-chat with OpenAl GPT & PyTorch g:’

Several options: /—\

d  Duplicate the model to initialize an encoder-decoder structure L —— (b) Multi-input model
e.g. Lample & Conneau, 2019 LCurrent][Dialog J Persona ‘cUrrenﬂ[oialog J{F’ersona
- - - prefix history facts prefix history facts
[  Use a single model with concatenated inputs ]
see e.g. Wolf et al., 2019, Khandelwal et al. 2019 | FOPTFS— —
G s Tanstomer TR (
A T L e T LT Decoder Decoder
- J
| 1 I I
Wordembeddings [T IITITITTITTT T TIT I I T IITITIITIIT1] (
Position embeddings [T T T IEEEd Linear Linear

Segment embeddings

o ot o i RGBSR BRBR 1 )7

Persona History Reply
Concatenate the various context separated by delimiters and add position and segment embeddings
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https://arxiv.org/abs/1901.07291
http://arxiv.org/abs/1901.08149
http://arxiv.org/abs/1905.08836

Let’'s import pretrained versions of OpenAl —»

° from pytorch_pretrained bert import OpenAIGPTLMHeadModel, OpenAIGPTTokenizer :

model = OpenAIGPTLMHeadModel.from pretrained('openai-gpt')

GPT -to kenlzer and mOdel. tokenizer = OpenAIGPTTokenizer.from pretrained('openai-gpt')

° # We use 5 special tokens: <bos>, <eos>, <speakerl>, <speaker2>, <pad> 5

And add a feW neW ‘tokens to the Vocabulary —_ # to indicate start/end of the input sequence, tokens from user/bot and padding

SPECIAL_TOKENS = ["<bos>", "<eos>", "<speakerl>", "<speaker2>", "<pad>"]

# Add these special tokens to the vocabulary and the embeddings of the model:
tokenizer.set_special_ tokens(SPECIAL TOKENS)

£ itertools import chai .
SOIALEELE00 8 IROLEICHA LD model.set_num_special_ tokens (len(SPECIAL_TOKENS))

# Let's define our contexts and special tokens
persona_string = ["i like football", "i am from NYC"]

A sk e el T e i SR < Now most of the work is about preparing the

reply_string = "great !"

bos, eos, speakerl, speaker2 = "<bos>", "<eos>", "<speakerl>", "<speaker2>" |npUtS for the mOdel.

persona [tokenizer.tokenilze(s) for s in persona_string]
history [tokenizer.tokenize(s) for s in history_ string]

reply = tokenizer.tokenize(reply_string) We organize the contexts in segments

def build inputs(persona, history, reply):
# Build our sequence by adding delimiters and concatenating
sequence [[bos] + list(chain(*persona))] + history + [reply + [eos]]

sequence = [sequence[0]] + [ [speaker? if (len(sequence)-1) @ 2 else speakerl) + = 4— Add delimiter at the extremities of the segments

# Build our word, segments and position inputs from the sequence
words = list(chain(*sequence)) # word tokens

segments = [speaker2 if i % 2 else speakerl # segment tokens g AN build our Word, position and Segment inputs

for i, s in enumerate(sequence) for _ in s]
position = list(range(len(words))) # position tokens
return words, segments, position, sequence for the mOdel

words, segments, position, sequence = build inputs(persona, history, reply)

Then train our model using the pretraining
# Tokenize words and segments embeddings: . . N
Notcs = tokariar ciiver sokens to e uoram) language modeling objective.

segments = tokenizer.convert_ tokens_to_ids(segments)
1m_targets = ([-1] * sum(len(s) for s in sequence[:-1])) \
+ [-1] + tokenizer.convert_tokens_to_ids(sequence[-1][1:])
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5.C — Chit-chat with OpenAl GPT & PyTorch g‘:’

PyTorch Hub

Last Friday, the PyTorch team soft-launched a beta version of PyTorch Hub. Let's have a quick look.
[ PyTorch Hub is based on GitHub repositories

O A model is shared by adding a hubconf.py script to the root of a GitHub repository

[ Both model definitions and pre-trained weights can be shared

[ More details: https://pytorch.org/hub and https://pytorch.org/docs/stable/hub.html

In our case, to use torch.hub instead of pytorch-pretrained-bert, we can simply call torch.hub.load
with the path to pytorch-pretrained-bert GitHub repository:

° import torch

tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'openAIGPTTokenizer', 'openai-gpt')
model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'openAIGPTLMHeadModel', 'openai-gpt')

PyTorch Hub will fetch the model from the master branch on GitHub. This means that you don't
need to package your model (pip) & users will always access the most recent version (master).
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6. Open problems and future directions

Image credit: Yazmin Alanis



6. Open problems and future directions *

*

p —

Shortcomings of pretrained language models ——
Pretraining tasks

Tasks and task similarity

Continual learning and meta-learning

Bias
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Shortcomings of pretrained language models

Recap: LM can be seen as a general pretraining task; with enough data,
compute, and capacity a LM can learn a lot.

In practice, many things that are less represented in text are harder to learn
Pretrained language models are bad at

(A fine-grained linguistic tasks ( )

O common sense (when you actually make it difficult; ); natural language
generation (maintaining long-term dependencies, relations, coherence, etc.)

[ tend to overfit to surface form information when fine-tuned; ‘rapid surface learners’
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Shortcomings of pretrained language models

Large, pretrained language models can be difficult to optimize.

[ Fine-tuning is often unstable and has a high variance, particularly if the target
datasets are very small

J note that large (24-layer) version of BERT is
particularly prone to degenerate performance; multiple random restarts are
sometimes necessary as also investigated in detail in ( )
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Shortcomings of pretrained language models

Current pretrained language models are very large.

[ Do we really need all these parameters?

d Recent work shows that only a few of the attention heads in BERT are
required ( ).

d More work needed to understand model parameters.

A Pruning and distillation are two ways to deal with this.

O See also: the lottery ticket hypothesis ( )
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Pretraining tasks

Shortcomings of the language modeling objective:

3

Not appropriate for all models
[d  If we condition on more inputs, need to pretrain those parts
O  E.g. the decoder in sequence-to-sequence learning ( )

Left-to-right bias not always be best

O Objectives that take into account more context (such as masking) seem useful (less
sample-efficient)
O Possible to combine different LM variants ( )

Weak signal for semantics and long-term context vs. strong signal for syntax

and short-term word co-occurrences
A Need incentives that promote encoding what we care about, e.g. semantics
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Pretraining tasks

More diverse self-supervised objectives

G
(R

A Taking inspiration from computer vision

[ Self-supervision in language mostly i
based on word co-occurrence (Ando and L i 1i__1
Zhang, 2005) Sampling a patch and a neighbour and

predicting their spatial configuration

(Doersch et al., ICCV 2015)

-~

A Supervision on different levels of
meaning
A Discourse, document, sentence, etc.
A Using other signals, e.g. meta-data

A Emphasizing different qualities of

language ,
Image colorization (Zhang et al.,

ECCV 2016) 211
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Pretraining tasks

Specialized pretraining tasks that teach what our model is missing

A Develop specialized pretraining tasks that explicitly learn such relationships

O Word-pair relations that capture background knowledge ( )
O Span-level representations ( )
O Different pretrained word embeddings are helpful ( )

A Other pretraining tasks could explicitly learn reasoning or understanding
[ Arithmetic, temporal, causal, etc.; discourse, narrative, conversation, etc.

d Pretrained representations could be connected in a sparse and modular way
O Based on linguistic substructures ( ) or experts (

)
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Pretraining tasks

Need for grounded representations

[ Limits of distributional hypothesis—difficult to learn certain types of

information from raw text

O Human reporting bias: not stating the obvious ( )
[ Common sense isn't written down

A Facts about named entities

d  No grounding to other modalities

A Possible solutions:
O Incorporate other structured knowledge (e.g. knowledge bases like ERNIE, )
O Multimodal learning (e.g. with visual representations like VideoBERT, )
O Interactive/human-in-the-loop approaches (e.g. dialog, )
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Tasks and task similarity

Many tasks can be expressed as variants of language modeling

3

3

Language itself can directly be used to specify tasks, inputs, and outputs, e.g.
by framing as QA ( )
Dialog-based learning without supervision by forward prediction (
)
NLP tasks formulated as cloze prediction objective (Children Book Test,
LAMBADA, Winograd, ...)
Triggering task behaviors via prompts e.g. TL; DR;, translation prompt
( ); enables zero-shot adaptation
Questioning the notion of a “task” in NLP
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Tasks and task similarity

Intuitive similarity of pretraining and target tasks (NLI, classification)
correlates with better downstream performance

Do not have a clear understanding of when and how two tasks are similar and
relate to each other

One way to gain more understanding: Large-scale empirical studies of
transfer such as Taskonomy ( )

Should be helpful for designing better and specialized pretraining tasks
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Continual and meta-learning

Current transfer learning performs adaptation once.

Ultimately, we'd like to have models that continue to retain and accumulate
knowledge across many tasks ( ).

No distinction between pretraining and adaptation; just one stream of tasks.
Main challenge towards this: Catastrophic forgetting.

Different approaches from the literature:
[ Memory, regularization, task-specific weights, etc.

216


https://arxiv.org/abs/1901.11373

Continual and meta-learning

Objective of transfer learning: Learn a representation that is general and
useful for many tasks.

Objective does not incentivize ease of adaptation (often unstable); does not
learn how to adapt it.

Meta-learning combined with transfer learning could make this more
feasible.

However, most existing approaches are restricted to the few-shot setting and
only learn a few steps of adaptation.
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Bias

Bias has been shown to be pervasive in word embeddings and neural models
in general

Large pretrained models necessarily have their own sets of biases

There is a blurry boundary between common-sense and bias

We need ways to remove such biases during adaptation

A small fine-tuned model should be harder to misuse
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Conclusion

Themes: words-in-context, LM pretraining, deep models
Pretraining gives better sample-efficiency, can be scaled up
Predictive of certain features—depends how you look at it
Performance trade-offs, from top-to-bottom

Transfer learning is simple to implement, practically useful

Still many shortcomings and open problems
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Questions?

J  Twitter: #NAACLTransfer

A Whova: “Questions for the tutorial on
Transfer Learning in NLP” topic

A Slides:
d Colab:
d Code:
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Extra slides
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Why transfer learning in NLP? (Empirically)

Question Answering on SQUAD2.0

90

80

EM

70 o

60

Dec 14 Jun 15 Dec 15 Jun 16 Dec 16 Jun 17 Dec 17 Jun 18 Dec 18 Jun

Other methods -e- State-of-the-art methods

https://paperswithcode.com/sota/question-answering-on-squad20 222



https://paperswithcode.com/sota/question-answering-on-squad20

GLUE* performance over time
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Wang et al., 2019):
includes 11 diverse
NLP tasks 223



https://w4ngatang.github.io/static/papers/superglue.pdf

Pretrained Language Models: More Parameters

100 B #of params
== GLUE score

ULMFIT ELMo BERT BERT GPT-2
Base Large
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More word vectors

_ _— — —slowest
041 ’_’,,,4—"’ 4
L Sower - _ — —-shortest
03f .7 2 N ~‘shorter |
il short< . |
GLoVe: very large scale (840B tokens), '
co-occurrence based. Learns linear o1} 1
relationships (SOTA word analogy) ) s
. - 7 stronger T T =~ = - — — ~strongest h
(Pennington et al., 2014) Y widest
-0.1 strong Ioud}g/_/_ s b
L cle&irei e — clearest
AT ol TS ey softest
e s:flteaj //:/:/ daikeF ~ = - - - - __ __ — darkest i
dark -
-0.3 L I L L 1 1 I I 1
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
. query tiling tech-rich english-born  micromanaging  eateries dendritic
fastText: Incorporates - ; " - -
. . tile tech-dominated  british-born ~ micromanage  restaurants dendrite
subword information fastText flooring tech-heavy polish-born  micromanaged eaterie dendrites
(Bojanowski et al., 2017) bookcases technology-heavy most-capped defang restaurants  epithelial

skipgram built-ins .ixic ex-scotland internalise delis p53 225



https://nlp.stanford.edu/projects/glove/
https://arxiv.org/abs/1607.04606

Semi-supervised Sequence Modeling with Cross-View Training

Learning on a Labeled Example

Method CCG Chunk NER FGN POS | Dep. Parse | Translate
- Acc. F1 F1 F1  Acc. |UAS LAS |BLEU
i . . : rimary
Shelvesim | BILSIM Prediction —> Pe Shortcut LSTM (Wu et al., 2017) 95.1 97.53
Washington. Encoder Module 4 ID-CNN-CRF (Strubell et al., 2017) 907 86.8
IMT' (Hashimoto et al., 2017) 95.8 97.55|94.7 929
. TaglL.M* (Peters et al., 2017) 96.4 919
SR SR R o ELMo* (Peters et al., 2018) 922
Biaffine (Dozat and Manning, 2017) 95.7 94.1
? Stack Pointer (Ma et al., 2018) 959 94.2
Learning on an Unlabeled Example . -
Prediction Modules Stanford (Luong and Manning, 2015) 233
— J » Google (Luong et al., 2017) 26.1
0 -
"They traveled to BIiLSTM L Josses supervised 949 951 912 875 97.60(951 93.3|289
Washington by plane"” Encoder Po* ‘: ] Virtual Adversarial Training* 95.1 951 91.8 879 97.64(954 93.7 |-
»2 g i : Word Dropout* 952 958 92.1 88.1 97.66|95.6 93.8 [29.3
é ELMo (our implementation)* 958 96.5 922 885 97.72|96.2 94.4 (293
p / 0 + Multi-tas A 5 . « . i 8 |-
2* ; ELMo + Multi-task* 95.9 96.8 923 884 97.79|96.4 94.8
i CVT* 957 96.6 923 88.7 97.70|959 94.1 |29.6
1 Py CVT + Multi-task** T B N e ers -
"""""" CVT + Multi-task + Large** 96.1 97.0 -

Inputs Seen by Auxiliary Prediction Modules

Auxiliary 1:  They traveled to

Auxiliary 2:  They traveled to Washington SOTA sequence mOde“ng reSUItS

(Clark et al. EMNLP 2018)
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Auxiliary 3: Washington by plane

Auxiliary 4: by plane



https://arxiv.org/abs/1809.08370

Contextual String Embeddings

Pretrain bidirec.tional character level model, extract SOTA CoNLL 2003 NER results
embeddings from first/last character

[ B-PER | [ E-PER | | o | | o]

v : % Task PROPOSED  Previous best
o—Fo——INSEOUCHCON SUEIIE INION U 2 NER English ~ 93.09+0.12  92.2240.1
(Peters et al., 2018)
NER German 88.3210.2 78.76
chorgc rWashington I‘was I.bom (Lample et al., 20 16)
( X N X ) r}W r—)H Chunking 96.72+0.05 96.37+0.05
AAAAAAAAAAAAA A (Peters et al., 2017)
Character Language Model PoS tagging 97.85+0.01 97.64
i e R R (Choi, 2016)

i 7Y
S

Gielo r‘g\el \Wialslhi‘n‘g tlo!nl \w\a.s 1b\o‘r‘n

(Akbik et al., COLING 2018) (see also Akbik et al., NAACL 2019)
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https://alanakbik.github.io/papers/coling2018.pdf
http://alanakbik.github.io/papers/naacl2019_embeddings.pdf

Cloze-driven Pretraining of Self-attention Networks

[ . - )
_ 7'.“'JA L ) \ >R J
A / A A \ A
(— h 4 R N

Pretraining

True/False

SOTA NER and PTB
constituency parsing,
~3.3% less than
BERT-large for GLUE

Fine-tuning

Baevski et al. (2019)
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https://arxiv.org/abs/1903.07785

UniLM - Dong et al., 2019

s, S,
el Transformer
] Allow to attend OO0
[ Prevent from attending s, OO0
OO
o D:D U Transformer

wﬁﬁmmumm

; SOS| | S EOS| | S, ||EOS
[_h?1_] [_hf_I [_ht?’_] u]f‘_] hs -\d\(e(‘z“o“ S,&S,: attend to all tokens | 1 | | .1 | | I | I |2 ” N |
3 I """""""""" ° Segment 1 Segment 2

Transformer Block L I

I I
I 1
I 1
; ! [ Transformer
, ! ([ HEEMNE —_—
: T : Left-to-Right LM [J ] B B B o ¢ 4
: I Transformer Block 2 | : O0dO0mm “‘ i’ |
: I 1 ; ouous [ Transformer ]
I Transformer Block 1 I 1 oodo
. T e 0 S,: attend to left context ISOSI | S I I S I I S ||EOS|
Token Embedding #O"Se : y '
Position Embedding QLM Sy S, Segment 1
Segment Embedding O DE. | [ T ansfonner ]
s {000M M -
|X1||X2||X3||X4||X5| OO EE
oOooOom 4

Unified LM with Ooooo Transformer ]
Shared Parameters S,: attend to S, tokens
S,: attend to left context

sos| | s, | [Eos| s, | [Eos]

Self-attention Masks Segment 1 Segment 2

Model is jointly pretrained on
three variants of LM
(bidirectional, left-to-right,
seg-to-seq)

SOTA on three natural
language generation tasks
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Masked Sequence to Sequence Pretraining (MASS)

Pretrain encoder-decoder

EVEVENEY

Encoder ]—> Attention 4{ Decoder
A A A A A A A A A A

[;;][;;][‘_][_][_][_][Xyl[xs] [ 7 _][i]

(Song et al., ICML 283®)



https://arxiv.org/abs/1905.02450

What matters: Pretraining Objective, Encoder

Probing tasks for sentential features:

3

3
3
3

Bag-of-Vectors is surprisingly good at capturing sentence-level proper-
ties, thanks to redundancies in natural linguistic input.
BiLSTM-based models are better than CNN-based models at capturing
interesting linguistic knowledge, with same objective

Objective matters - training on NLI is bad. Most tasks are structured so
a seq 2 tree objective works best.

Supervised objectives for sentence embeddings do better than
unsupervised, like SkipThought (Kiros et al.)

231



An inspiration from Computer Vision

.
%

\\§§

.

Edges (layer conv2d0) Textures (layer mixed3a)

G e

From lower to higher layers, information goes from general to task-specific.

. 232
Image credit: Distill


https://distill.pub/2017/feature-visualization/

Other methods for analysis

d  Textual omission and multi-modal: Kadaretal., 16

(1 Adversarial Approaches
0 Adversary: input which differs from original just enough to

change the desired prediction

A SQuAD: Jia & Liang, 2017 .
@ NLI: Glockner et al., 2018; Minervini & Riedel, 2018 AdvethadrlaI
(@ Machine Translation: Belinkov & Bisk, 2018 IS

O Requires identification (manual or automatic) of inputs to
modify.
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https://arxiv.org/pdf/1602.08952.pdf
https://arxiv.org/abs/1808.08609

Analysis

What to analyze?

d Embeddings

3 Word types and tokens
A Sentence
A Document

A Network Activations
O RNNs

A CNNs
A Feed-forward nets

Jd Layers
A Pretraining Objectives

. Inputs and Outputs

H
3
N
3

L

What to look for?

Surface-level features
Lexical features

d E.g. POStags
Morphology
Syntactic Structure

d  Word-level
d  Sentence-level

Semantic Structure
d  E.g.Roles, Coreference

Belinkov et al. (2019)—More details in Table 1 234



https://www.mitpressjournals.org/doi/full/10.1162/tacl_a_00254
https://boknilev.github.io/nlp-analysis-methods/table1.html

Analysis: Methods

d  Visualization:
d  2-D plots

O  Attention mechanisms Visualization

A  Network activations

Jd  Model Probes:
[  Surface-level features

O  Syntactic features Model Probes

d  Semantic features

A Model Alterations:
O  Network Erasure Model

3  Perturbations Altel"atiOnS

* Not hard and fast categories



Analysis / Evaluation : Adversarial Methods

On 31 December 1687 the first organized group of Huguenots set sail from the
Netherlands to the Dutch East India Company post at the Cape of Good Hope. The
largest portion of the Huguenots to settle in the Cape arrived between 1688 and 1689
in seven ships as part of the organised migration, but quite a few arrived as late as
(1700 )thereafter the numbers declined and only small groups arrived at a time.

The number of old Acadian colonists declined after the year 1*3.

The number of new Huguenot colonists declined after what year?

How does this say what's in a representation?
[d  Roundabout: what's wrong with a representation...

Credits: Jia & Liang (2017) and Percy Liang. Al Frontiers. 2018
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Probes are simple linear / neural layers

Predicted Labels

(e.g., POS tags) NNP

Probing Model

——————————————————————————————————————

Contextual Word
Representations

Pretrained Contextualizer

f f f f

Input Tokens Ms. Haag plays Elianti

Liu et al.,, NAACL 2019 237



What is still left unanswered?

d Interpretability is difficult Lipton et al. 2016
A Many variables make synthesis challenging

SentLen

WordContent 0.6
[  Choice of model architecture, pretraining TraeDenth o
objective determines informativeness of TopConst
0.2
representations BShift
Tense 0.0
SubjNum [_02
Interpretability is important, but not enough FiEm Y
. SOMO
on Its own. CoordInv . -0.6
§ & @ “gov%éﬂ”c)éﬁ/\&’ \“@(;\dj:\‘“&‘;\& 4\65
Interpretability + transferability to Conneau et al., 2018

downstream tasks is key - that’s next!
Transferability to downstream tasks


https://arxiv.org/pdf/1606.03490.pdf
https://arxiv.org/abs/1805.01070

