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Probing the Need for Visual Context in 
Multimodal Machine Translation
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Multimodal Machine Translation (MMT)

● Better machine translation approaches by leveraging multiple modalities
● Dataset → Multi30K (Elliott et al., 2016)

○ Multilingual extension of Flickr30K (Young et al., 2014)

○ Images, English descriptions, French, German and Czech translations.
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● Language grounding

○ Sense disambiguation → “river bank” vs. “financial bank”

○ Grammatical gender disambiguation

○ Learning concepts 

Potential benefit



Example: grammatical gender
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A baseball player in a 
black shirt just tagged

a player in a white shirt.
Un joueur de baseball en 

maillot noir vient de toucher 
un joueur en maillot blanc.

Une joueuse de baseball en 
maillot noir vient de toucher 
une joueuse en maillot blanc.

Source Sentence (EN)

Candidate Translations (FR)

“Female” baseball 
player

“Male” baseball 
player

❌



Example: grammatical gender
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A baseball player in a 
black shirt just tagged

a player in a white shirt.
Un joueur de baseball en 

maillot noir vient de toucher 
un joueur en maillot blanc.

Une joueuse de baseball en 
maillot noir vient de toucher 
une joueuse en maillot blanc.

Source Sentence (EN)

Candidate Translations (FR)

“Female” baseball 
player

“Male” baseball 
player

Visual context disambiguates the gender

✔



Where are we?
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● Benefit of current approaches is not evident - WMT18 (Barrault et al., 2018):
○ Largest gain from external corpora, not from images (Grönroos et al., 2018)



Where are we?
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● Benefit of current approaches is 

not evident:
○ Adversarially attacking MMT 

marginally influences the scores 
(Elliott 2018)

METEOR (EN-DE) Congruent Incongruent

Dec-init 57.0 56.8

Trg-mul 57.3 57.3

Fusion-conv 55.0 53.3



Why don’t images help?
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● Pre-trained CNN features may not be good enough for MMT

○ ImageNet has very limited set of objects

●
● Current multimodal models may not be effective

●
● Multi30K dataset may be

○ Too simple; language is enough

○ Too small to generalise visual features
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This paper
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● We degrade source language 

○ Systematically mask source words at training and inference times

○
● Hypothesis 1: MMT models should perform better than text-only 

models if image is effectively taken into account

○ Image features 

○ Multimodal models 

●
● Hypothesis 2: More sophisticated MMT models should perform better 

than simpler MMT models



Types of degradation
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Source sentence “a lady in a blue dress singing”



Types of degradation (1)

Color Masking a lady in a [v] dress singing
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Source sentence “a lady in a blue dress singing”

● Very small-scale masking

○ 3.3% of source words are removed



Types of degradation (2)

Color Masking a lady in a [v] dress singing

Entity Masking a [v] in a blue [v] singing
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Source sentence “a lady in a blue dress singing”

● Uses Flickr30K entity annotations (Plummer et al., 2015)

○ 26% of source words are removed (3.4 blanks / sent)



Types of degradation (3)

Color Masking a lady in a [v] dress singing

Entity Masking a [v] in a blue [v] singing

Progressive Masking (k=4) a lady in a [v] [v] [v]

Progressive Masking (k=2) a lady [v] [v] [v] [v] [v]

Progressive Masking (k=0) [v] [v] [v] [v] [v] [v] [v]
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Source sentence “a lady in a blue dress singing”

● Removal of any words

○ 16 variants with

○ MMT task becomes multimodal sentence completion/captioning



Settings
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● 2-layer GRU-based encoder/decoder NMT 

○ 400D hidden units, 200D embeddings

○
● Visual features → ResNet-50 CNN pretrained on ImageNet

○ 2048D pooled vectoral representations

○ 2048x8x8 convolutional feature maps

○
● Multi30K dataset

○ Primary language pair: English → French



2048D
Pooled Features

Simple grounding
● Tied INITialization of encoders and decoders

(Calixto and Liu, 2017), (Caglayan et al., 2017)

MMT methods
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Source Word 
Encodings

8x8x2048 Spatial 
Features

Multimodal attention
● DIRECT fusion uses modality specific attention layers and concatenates their 

output (Caglayan et al., 2016),  (Calixto et al., 2016)

MMT methods
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Source Word 
Encodings

8x8x2048 Spatial 
Features

Multimodal attention
● HIERarchical fusion applies a third attention layer instead of concatenation

(Libovický and Helcl, 2017)

MMT methods
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● Mean and standard deviation (3 runs) of METEOR scores

● Statistical significance testing with MultEval (Clark et al., 2011)

Adversarial evaluation → Shuffled (incongruent) image features (Elliott 2018)

● Incongruent decoding: Incongruent features at inference time-only

● Blinding: Incongruent features at training and inference times

Evaluation
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Results
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Method
Baseline

METEOR

NMT 70.6 土 0.5

INIT 70.7 土 0.2

HIER 70.9 土 0.3

DIRECT 70.9 土 0.2

Upper bound - no masking
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● MMTs slightly better than NMT on average



Method
Baseline

METEOR
Masked

METEOR

NMT 70.6 土 0.5 68.4 土 0.1

INIT 70.7 土 0.2

HIER 70.9 土 0.3

DIRECT 70.9 土 0.2

Color masking
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● Masked NMT suffers a substantial 2.2 drop



Color masking
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● Masked NMT suffers a substantial 2.2 drop

● Masked MMT significantly better than masked NMT

Method
Baseline

METEOR
Masked

METEOR

NMT 70.6 土 0.5 68.4 土 0.1

INIT 70.7 土 0.2 68.9 土 0.1

HIER 70.9 土 0.3 69.0 土 0.3

DIRECT 70.9 土 0.2 68.8 土 0.3



Color masking
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Method
Baseline

METEOR
Masked

METEOR
Masked color 
Accuracy (%)

NMT 70.6 土 0.5 68.4 土 0.1 32.5

INIT 70.7 土 0.2 68.9 土 0.1 36.5

HIER 70.9 土 0.3 69.0 土 0.3 44.5

DIRECT 70.9 土 0.2 68.8 土 0.3 44.5

● Masked NMT suffers a substantial 2.2 drop 

● Masked MMT significantly better than masked NMT

● Accuracy in color translation much better in attentive MMT



Color masking
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Entity masking
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NMT suffers > 20 points 
drop



Entity masking
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NMT suffers > 20 points 
drop

Up to 4.2 METEOR 
recovered by MMT

+4.2+3.9+3.4



Entity masking
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NMT suffers > 20 points 
drop

Up to 4.2 METEOR 
recovered by MMT

Models are visually 
sensitive: Up to ~10 
METEOR drop with 

incongruent decoding

9.7 drop



Entity masking (all languages)
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MMT Gain over NMT

English → INIT HIER DIRECT Average

Czech 1.4 1.7 1.7 1.6

German 2.1 2.5 2.7 2.4

French 3.4 3.9 4.2 3.8

Average 2.3 2.7 2.9

All languages benefit 
from visual context

French benefits the 
most (less morphology)

Multimodal attention 
better than INIT, Direct 

fusion slightly better 
than hierarchical



Entity masking (attention)
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A typo in the source (song) - 
translated to “chanson”

Visual attention barely changes



Entity masking (attention)
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“mother”, “song” and “day” are 
masked

Textual attention is less confident, visual 
attention works!



Entity masking
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MMT is attentive, INC is 
incongruent decoding



Progressive masking
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As more information is removed, all 
MMT models leverage visual context, 

up to 7 METEOR points



Progressive masking

33

Attentive models perform
better than INIT



Progressive masking
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Upper bound: ~7 METEOR when all 
words are masked



Progressive masking
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Original k=12 k=4

NMT 70.6 63.9 28.6

● Compare two degraded variants to original Multi30K



Progressive masking
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Original k=12 k=4

NMT 70.6 63.9 28.6

DIRECT MMT + 0.3 + 0.6 + 3.7

● Compare two degraded variants to original Multi30K

● MMT improves over NMT as linguistic information (k) is removed



Progressive masking
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Original k=12 k=4

NMT 70.6 63.9 28.6

DIRECT MMT + 0.3 + 0.6 + 3.7

Incongruent Dec. - 0.7 - 1.4 - 6.4

● Compare two degraded variants to original Multi30K

● MMT improves over NMT as linguistic information (k) is removed

○ It also becomes sensitive to the visual incongruence

(Relative to DIRECT MMT)



Progressive masking
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Original k=12 k=4

NMT 70.6 63.9 28.6

DIRECT MMT + 0.3 + 0.6 + 3.7

Incongruent Dec. - 0.7 - 1.4 - 6.4

Blinding 70.6 64.1 28.4

● Compare two degraded variants to original Multi30K

● MMT improves over NMT as linguistic information (k) is removed

○ It also becomes sensitive to the visual incongruence

● MMT that never sees correct features converges to text-only NMT

○ MMT improvements are not random

(Relative to DIRECT MMT)



Progressive masking
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MMT is attentive, INC is 
incongruent decoding



Conclusion
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● Hypothesis 1: MMT models should perform better than text-only models 

if image is effectively taken into account

○ Visual info is taken into account if modalities are complementary 

rather than redundant
○ Incorrect visual info harms performance substantially more 

●
● Hypothesis 2: More sophisticated MMT models should perform better 

than simpler MMT models
○ Attentive MMT better than simple INIT grounding

○ Attentive MMT recovers more from impact of substantial masking



Future work
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● Grounding as a way to reduce biases and improve robustness to errors
●
● Better models to balance complementary and redundant information

●
● Multimodality to resolve unknown words

● O cachorro corre no campo cheio de 
florzinhas brancas.

● The dachshund is running in the fields full 
of little white flowers.

● O UNK corre no campo cheio de florzinhas 
brancas.



Thank you!
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