UCI Investigating Robustness and Interpretability of Link
WLP Prediction via Adversarial Modifications

IJ Graph Embeddings for Link Prediction

n this work, we propose efficient adversarial modifications For target triple < 's,r,0 > and graph G, we identity: Robustness
for link prediction models to evaluate robustness, and study
interpretability and error correcting.

I Efficiently Identifying the Modification

I Robustness and Interpretability

* Removing / Adding : Find (s’,r’,0) such that score Does adding a fake link affect performance?
W(s, r,0) trained on G is maximally different from score

(s, r,0) trained after removing or adding (s’,r’,0) :

Yago3 Hits@1 (Adding a fake link) WordNet Hits@1 (Adding a fake link)
Completing Knowledge Graphs:
Predicting a missing link from
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" Existing models:

M Original M After Change M Original M After Change
= Embeds, r,and o A(V,loss(e)) = H,(loss)x(e —e)
= Maximize score Y(s, r, 0) for observed facts e, € = optimum embedding & H = Hessian Interpretability
= DistMult:  e.Re, > e=e — H,(loss) " 'xA(V,loss(e))

Which link, when removed, changes the prediction?

2. Too many links to search: Learn a continuous space of Find common patterns in removed link R (a, b)
links using an inverter, and use gradient descent.

= ConvE: f(vec(f([es; T, * w]))W)eo

" Embeddings are inscrutable... DistMult and ConvE:  isMarriedTo(a,c) A hasChild(c,b) = hasChild(a,b)

" Are these embeddings robust to small changes?
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= Can we explain why a fact/link was predicted? g \ - / g Only in DistMult: PlaysFor(a,c) A lsLocatedin(c,b) = wasBornin{a,b)*
N @ O S isAffiliatedTo(a,c) A isLocatedIn(c,b) = diedin(a,b)*
: Y : @ f(es,er) _)O_) Inverter @
I Ad versaria ‘ M Od |f| Cat|0 NS (CR ‘AG E) @) (Fixed) ||C)] | Network | (@ . hasAdvisor(a,c) A graduatedFrom(c,b) = graduatedFrom(a,b)
% @) O Only in ConvE: - anc) Al b} = inf o]
I'— T InTluences(a,c) A intfluences(c,b) = Influencesla,
" Completion Robustness and Interpretability via Adversarial O O
e o R
entified as rules by [Yang et. al. 2015]

Graph Edits (CRIAGE)
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Minimally change the graph so that target fact prediction

Error Correctin
changes the most after embeddings are relearned. &

Introduce errors and see if we can detect it.
Choose neighbor w/ least Yi(s, r,0) — (s, 1, 0) as incorrect.

Error Detection Accuracy (%)

I CRIAGE vs Influence Functions

" Influence Functions (IF)*:
Removing an existing link Adding a fake link = Similar motivation, but doesn’t exploit graph structure
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