Pre-training on high-resource speech recognition improves low-resource speech-to-text translation

the university of edinburgh informatics

Sameer Bansal Herman Kamper Karen Livescu Adam Lopez Sharon Goldwater

Current systems

English text:

?

Current systems

Spanish text: *ola mi nombre es hodor*

المسيبا الاستيسيا الاستقالات

Automatic Speech Recognition

English text:

Spanish Audio:

?

Current systems

~100 languages supported by Google Translate ...

Unwritten languages

Bantu language, Republic of Congo, ~160K speakers

~3000 languages with no writing system

Mboshi text:

not available

Automatic Speech

Recognition

Unwritten languages

paired with French translations (Godard et al. 2018)

~3000 languages with no writing system

Efforts to collect speech and translations using mobile apps

• Aikuma: Bird et al. 2014, LIG-Aikuma: Blachon et al. 2016

Haiti Earthquake, 2010

Survivors sent text messages to helpline

Moun kwense nan Sakre Kè nan Pòtoprens People trapped in Sacred Heart Church, PauP

- International rescue teams face language barrier
- No automated tools available
- Volunteers from global Haitian diaspora help create parallel text corpora in short time [Munro 2010]

Are we better prepared in 2019?

Voice messages

Can we build a speech-to-text translation (ST) system?

... given as training data:

- Tens of hours of speech paired with text translations
- No source text available

Spanish speech to English text

- telephone speech (unscripted)
- realistic noise conditions
- multiple speakers and dialects
- crowdsourced English text translations

Closer to real-world conditions

Spanish speech to English text

But ...

Goal: to improve translation performance

Goal: to improve translation performance

... without labeling more low-resource speech

Key idea: leverage monolingual data from a different high-resource language

... typically used to train ASR systems

Spanish textWeiss et al. 2017Spanish textAnastasopoulos and Chiang 2018(Spanish Audio)Bérard et al. 2019Sperber et al. 2019

~20 hours of Spanish-English

Why Spanish-English?

Why Spanish-English?

simulate low-resource settings and test our method

Why Spanish-English?

simulate low-resource settings and test our method

Later: results on truly low-resource language ----Mboshi to French

Method

Same model architecture for ASR and ST

*randomly initialized parameters

Pretrain on high-resource

300 hours of English audio and text

*train until convergence

Fine-tune on low-resource

20 hours Spanish-English

Fine-tune on low-resource

20 hours Spanish-English

Will this work?

Further analysis

Faster training time

Faster training time

Ablation: model parameters

Spanish to English, *N* = 20 hours

	BLEU
baseline	10.8
+English ASR	19.9
. .

Spanish to English, $N = 2$	20 hours	English	Spanish
	BLEU		
baseline	10.8	Encoder randon	Encoder
+English ASR	19.9	Attention	L Attention
+English ASR: decoder	10.5	Decoder	Decoder
		English text	English text

•

1.1

Spanish to English, N = 20 hours		English	Spanish	
		BLEU		
	baseline	10.8	Encoder	Encoder
	+English ASR	19.9	Attention random -	Attention
	+English ASR: decoder	10.5	Decoder	Decoder
	+English ASR: encoder	16.6	English text	English text

•

0

... transferring encoder only parameters works well!

... can pretrain on a language different from both source and target in ST pair

Pretraining on French

*only 20 hours of French ASR

Pretraining on French

French ASR helps Spanish-English ST

Takeaways

- Pretraining on a different language helps
- transfer all model parameters for best gains
- encoder parameters account for most of these

... useful when target vocabulary is different

... Mboshi-French ST

Mboshi-French ST

- ST data by Godard et al. 2018
 - **~4 hours** of speech, paired with French translations

- Mboshi
 - Bantu language, Republic of Congo
 - Unwritten
 - ~160K speakers

Mboshi-French: Results

Mboshi to French, *N* = 4 hours

	BLEU
baseline	?

Mboshi-French: Results

*outperformed by a naive baseline

Pretraining on French ASR

Mboshi to French, N = 4 hours		
	BLEU	
baseline	3.5	
+French ASR: all	?	

transfer all parameters

Pretraining on French ASR

French ASR helps Mboshi-French ST

Pretraining on French ASR

French ASR helps Mboshi-French ST

using encoder trained on a lot more data

Pretraining on French ASR: can transfer all parameters

... but only 20 hours of data

Pretraining on English ASR: trained on a lot more data (300 hours)

... but can only transfer encoder parameters

Pretraining on French ASR: can transfer all parameters

... but only 20 hours of data

Pretraining on English ASR: trained on a lot more data (300 hours)

... but can only transfer encoder parameters

... combine both?

Pretraining on French and English ASR

Pretraining on French and English ASR

Pretraining on French and English ASR

combining gives the best gains

BLEU score is still low ... but above naive baseline

Conclusions

- Pretraining on high-resource ASR improves low-resource ST
- Potentially useful for endangered and/or unwritten languages
- Bootstrap ST in time-critical scenarios
- Future work: experiments on more languages, multilingual training with joint vocabulary

Thanks

- Anonymous reviewers, Edinburgh NLP members
- Source code available at: <u>https://github.com/0xSameer/ast</u>

I am looking for full-time positions starting November 2019!

- <u>4th June, 3:30-5 pm</u> "Fluent Translations from Disfluent Speech in End-to-End Speech Translation", Salesky et al.
- <u>5th June, 10:30-10:48 am</u> "Neural Machine Translation of Text from Non-Native Speakers", Anastasopoulos et al.

Backup

Mboshi-French naive baseline

model	pretrain	BLEU	Pr.	Rec.
fr-top-8w	_	0	23.5	22.2
fr-top-10w	-	0	20.6	24.5
en-300h	-	0	0.2	5.7
fr-20h	-	0	4.1	3.2
mb-fr-4h	_	3.5	18.6	19.4
	fr-20h	5.9	23.6	20.9
	en-300h	5.3	23.5	22.6
	en + fr	7.1	26.7	23.1

Why does pretraining help?

- Speaker invariance
 - ASR data contains audio from 100s of speakers
- Learning to factor out background noise (?)

BLEU	Baseline	+English ASR
50 speakers	7.2	17.5 (+143 %)
136 speakers	10.8 (+ 50%)	19.9 (+14%)

Spanish-English ST

<i>N</i> hrs	2.5h	5h	10h	20h	50h	160h Weiss
baseli ne	2.1	1.8	2.1	10.8	22.7	47.3
+ASR	5.7	9.1	14.5	20.2	28.3	
	+3.6	+7.3	+12.4	+9.4	+5.5	

*results on Fisher test set ...

Spanish-English ST

Spanish to English, N = 20 hours				
	BLEU			
baseline	10.8			
+En ASR: 300h	16.6			
+Fr ASR:20h	12.5			
+En ASR: 20h	13.2			

... French ASR helps improve Spanish-English ST

Spanish-English ST

Neural model

Neural model

100s of hours of **monolingual** speech paired with text available

... typically used to train ASR systems

Gülçehre et al., 2015 Toshniwal et al., 2018

~20 hours of Spanish-English