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Current systems

?

Spanish Audio:

English text:
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Current systems

?

ola mi nombre es hodorSpanish text:
Automatic Speech 

Recognition
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Spanish Audio:

English text:



Current systems

hi my name is hodor

ola mi nombre es hodor
Automatic Speech 

Recognition

Machine 
Translation
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Spanish text:

Spanish Audio:

English text:



~100 languages supported by Google Translate ...
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Unwritten languages

not availableMboshi text:
Automatic Speech 

Recognition

~3000 languages with no writing system
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Mboshi:

Bantu language, Republic of Congo, ~160K speakers



Unwritten languages
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Efforts to collect speech and translations using mobile apps

○ Aikuma: Bird et al. 2014, LIG-Aikuma: Blachon et al. 2016

Mboshi:

paired with French translations (Godard et al. 2018)

~3000 languages with no writing system



Haiti Earthquake, 2010

Moun kwense nan 
Sakre Kè nan 
Pòtoprens

Survivors sent text messages to helpline

● International rescue teams face language barrier
● No automated tools available
● Volunteers from global Haitian diaspora help create 

parallel text corpora in short time
[Munro 2010]

People trapped in 
Sacred Heart 
Church, PauP
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Are we better prepared in 2019?

Moun kwense nan Sakre 
Kè nan Pòtoprens

People trapped in Sacred 
Heart Church, PauP

Voice messages
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paired with translations

(source audio)

● Tens of hours of speech paired with text 
translations

● No source text available

Can we build a speech-to-text translation (ST) system?

… given as training data:
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Neural models ...

Sequence-to-Sequence Weiss et al. (2017)

Directly translate speech
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hi my name is hodor

Spanish Audio:

English text:



English text

Encoder

Attention

Decoder
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Spanish Audio

● telephone speech (unscripted)
● realistic noise conditions
● multiple speakers and dialects
● crowdsourced English text translations

Spanish speech to English text

Closer to real-world conditions



Good performance if 

trained on 100+ hours
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Spanish speech to English text

Weiss et al.

*for comparison
text-to-text = 58



Poor performance in 

low-resource settings
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But ...

*for comparison
text-to-text = 58

Weiss et al.



Goal: to improve translation performance

15



Goal: to improve translation performance

… without labeling more low-resource speech
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100s of hours of monolingual speech paired with 
text available

… typically used to train ASR systems

English text

(English Audio)

French text

(French Audio)

Key idea: leverage monolingual data from a different 
high-resource language

17



100s of hours of monolingual speech paired with 
text available

… typically used to train ASR systems

English text

(English Audio)

French text

(French Audio)
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Sequence-to-Sequence English text

?

Spanish Audio

~20 hours of Spanish-English



100s of hours of monolingual speech paired with text available

… typically used to train ASR systems

Spanish text

(Spanish Audio)
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Weiss et al. 2017
Anastasopoulos and Chiang 2018

Bérard et al. 2018
Sperber et al. 2019

Sequence-to-Sequence English textSpanish Audio

~20 hours of Spanish-English



100s of hours of monolingual speech paired with 
text available

… typically used to train ASR systems

English text

(English Audio)

French text

(French Audio)
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Sequence-to-Sequence English text

?

Spanish Audio

~20 hours of Spanish-English



Why Spanish-English?
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Why Spanish-English?

simulate low-resource settings and test our method
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Why Spanish-English?

simulate low-resource settings and test our method

Later: results on truly low-resource language --- 
Mboshi to French
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Method

Encoder

Attention

Decoder

Audio
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Same model architecture for ASR and ST

*randomly initialized parameters

text



Pretrain on high-resource

Encoder

Attention

Decoder

English audio

English text
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300 hours of English audio and text

*train until convergence



Fine-tune on low-resource

Encoder

Attention

Decoder

Encoder

Attention

Decoder
transfer from English ASR
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20 hours Spanish-English

English audio

English text

Spanish audio

English text



Fine-tune on low-resource
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*train until convergence

Encoder

Attention

Decoder

Spanish audio

English text

20 hours Spanish-English



Will this work?

28



Spanish-English BLEU scores
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baseline

*for comparison
Weiss et al. = 47.3



Spanish-English BLEU scores

30

baseline

*for comparison
Weiss et al. = 47.3

pretraining



Spanish-English BLEU scores

31

baseline

*for comparison
Weiss et al. = 47.3

pretraining

● +9 BLEU



Spanish-English BLEU scores
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baseline

*for comparison
Weiss et al. = 47.3

pretraining

● better performance with 
half the data



Further analysis
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baseline

*for comparison
Weiss et al. = 47.3

pretraining

20 hours Spanish-English



Faster training time
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baseline

pretraining



baseline

pretraining

Faster training time
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2 hours

~20 hours

● potentially useful in time critical scenarios



Ablation: model parameters

Spanish to English, N = 20 hours

36

BLEU

baseline 10.8

+English ASR 19.9

English

English text

Encoder

Attention

Decoder

Spanish

English text

Encoder

Attention

Decoder



Ablation: model parameters

Spanish to English, N = 20 hours

BLEU

baseline 10.8

+English ASR 19.9

+English ASR: decoder 10.5
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English

English text

random
Encoder

Attention

Decoder

Spanish

English text

Encoder

Attention

Decoder



Ablation: model parameters

Spanish to English, N = 20 hours

BLEU

baseline 10.8

+English ASR 19.9

+English ASR: decoder 10.5

+English ASR: encoder 16.6
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English

English text

random

Encoder

Attention

Decoder

Spanish

English text

Encoder

Attention

Decoder



Ablation: model parameters

Spanish to English, N = 20 hours

BLEU

baseline 10.8

+English ASR 19.9

+English ASR: decoder 10.5

+English ASR: encoder 16.6
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… transferring encoder only parameters works well!

English

English text

random

Encoder

Attention

Decoder

Spanish

English text

Encoder

Attention

Decoder



Ablation: model parameters

EnglishSpanish to English, N = 20 hours

BLEU

baseline 10.8

+English ASR 19.9

+English ASR: decoder 10.5

+English ASR: encoder 16.6
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… can pretrain on a language different from 
both source and target in ST pair

English text

random

Encoder

Attention

Decoder

Spanish

English text

Encoder

Attention

Decoder



Pretraining on French

Spanish to English, N = 20 hours

BLEU

baseline 10.8

+English ASR 19.9

+English ASR: encoder 16.6

+French ASR: encoder ?
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*only 20 hours of French ASR

French

French text

random

Encoder

Attention

Decoder

Spanish

English text

Encoder

Attention

Decoder



Pretraining on French

French

French text

Spanish to English, N = 20 hours

BLEU

baseline 10.8

+English ASR 19.9

+English ASR: encoder 16.6

+French ASR: encoder 12.5
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random

French ASR helps Spanish-English ST

Encoder

Attention

Decoder

Spanish

English text

Encoder

Attention

Decoder



Takeaways

● Pretraining on a different language helps

● transfer all model parameters for best gains

● encoder parameters account for most of these

… useful when target vocabulary is different
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… Mboshi-French ST
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Mboshi-French ST

● ST data by Godard et al. 2018

○ ~4 hours of speech, paired with French translations

● Mboshi

○ Bantu language, Republic of Congo

○ Unwritten

○ ~160K speakers
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Mboshi-French: Results

Mboshi to French, N = 4 hours

BLEU

baseline ?
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Mboshi

Encoder

Attention

Decoder

French text



Mboshi-French: Results

Mboshi to French, N = 4 hours

BLEU

baseline 3.5
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*outperformed by a naive baseline

Mboshi

Encoder

Attention

Decoder

French text



Pretraining on French ASR

French MboshiMboshi to French, N = 4 hours

BLEU

baseline 3.5

+French ASR: all ?
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transfer all parameters

French text

Encoder

Attention

Decoder

French text

Encoder

Attention

Decoder



Pretraining on French ASR

Mboshi to French, N = 4 hours

BLEU

baseline 3.5

+French ASR: all 5.9
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French ASR helps Mboshi-French ST

French Mboshi

French text

Encoder

Attention

Decoder

French text

Encoder

Attention

Decoder



Pretraining on French ASR

Mboshi to French, N = 4 hours

BLEU

baseline 3.5

+French ASR: all 5.9
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French ASR helps Mboshi-French ST

French Mboshi

French text

Encoder

Attention

Decoder

French text

Encoder

Attention

Decoder



Pretraining on English ASR

Mboshi to French, N = 4 hours

BLEU

baseline 3.5

+French ASR: all 5.9

+English ASR: encoder ?
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using encoder trained on a lot more data

English

English text

random

Encoder

Attention

Decoder

Mboshi

French text

Encoder

Attention

Decoder



Pretraining on English ASR

Mboshi to French, N = 4 hours

BLEU

baseline 3.5

+French ASR: all 5.9

+English ASR: encoder 5.3
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English ASR helps Mboshi-French ST

English

English text

random

Encoder

Attention

Decoder

Mboshi

French text

Encoder

Attention

Decoder



Pretraining on French ASR: can transfer all parameters

… but only 20 hours of data

Pretraining on English ASR: trained on a lot more data (300 hours)

… but can only transfer encoder parameters
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… but only 20 hours of data

… but can only transfer encoder parameters

… combine both?
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Pretraining on French ASR: can transfer all parameters

Pretraining on English ASR: trained on a lot more data (300 hours)



Pretraining on French and English ASR

Encoder

Attention

Decoder

French

French text

English

Encoder

Attention

Decoder

English text

20 hours 300 hours
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Pretraining on French and English ASR

Encoder

Attention

Decoder

Mboshi

French text

Encoder

Attention

Decoder

French

French text

English

Encoder

Attention

Decoder

English text

20 hours 4 hours 300 hours
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Pretraining on French and English ASR

Encoder

Attention

Decoder

Mboshi

French text

Encoder

Attention

Decoder

French

French text

English

Encoder

Attention

Decoder

English text

20 hours 4 hours 300 hours
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Pretraining on English ASR

Encoder

Attention

Decoder

Mboshi

French text

Mboshi to French, N = 4 hours

BLEU

baseline 3.5

+French ASR: all 5.9

+English ASR: encoder 5.3

+English ASR: encoder
+French ASR: remaining

?
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From English ASR

From French ASR



Pretraining on English ASR

Mboshi to French, N = 4 hours

BLEU

baseline 3.5

+French ASR: all 5.9

+English ASR: encoder 5.3

+English ASR: encoder
+French ASR: remaining

7.1
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combining gives the best gains

From English ASR

From French ASR

Encoder

Attention

Decoder

Mboshi

French text



Pretraining on English ASR

Mboshi to French, N = 4 hours

BLEU

baseline 3.5

+French ASR: all 5.9

+English ASR: encoder 5.3

+English ASR: encoder
+French ASR: remaining

7.1
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BLEU score is still low … but above naive baseline

From English ASR

From French ASR

Encoder

Attention

Decoder

Mboshi

French text



Conclusions

● Pretraining on high-resource ASR improves low-resource ST

● Potentially useful for endangered and/or unwritten languages

● Bootstrap ST in time-critical scenarios

● Future work:  experiments on more languages, multilingual 

training with joint vocabulary
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● Anonymous reviewers, Edinburgh NLP members

● Source code available at: https://github.com/0xSameer/ast

I am looking for full-time positions starting November 2019!

Thanks
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● 4th June, 3:30-5 pm - “Fluent Translations from Disfluent 

Speech in End-to-End Speech Translation”, Salesky et al.

● 5th June, 10:30-10:48 am - “Neural Machine Translation of 

Text from Non-Native Speakers”, Anastasopoulos et al.

https://github.com/0xSameer/ast


Backup
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Mboshi-French naive baseline
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● Speaker invariance

○ ASR data contains audio from 100s of speakers

● Learning to factor out background noise (?)

Why does pretraining help?
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BLEU Baseline +English ASR

50 speakers 7.2 17.5 (+143 %)

136 speakers 10.8 (+ 50%) 19.9 (+14%)



Spanish-English ST

N hrs 2.5h 5h 10h 20h 50h 160h 
Weiss

baseli
ne

2.1 1.8 2.1 10.8 22.7 47.3

+ASR 5.7 9.1 14.5 20.2 28.3 ---

+3.6 +7.3 +12.4 +9.4 +5.5

*results on Fisher test set ...
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Spanish-English ST

BLEU

baseline 10.8

+En ASR: 300h 16.6

+Fr ASR:20h 12.5

+En ASR: 20h 13.2

Spanish to English, N = 20 hours

Encoder

Attention

Decoder

… French ASR helps improve Spanish-English ST
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Spanish

English text



Spanish-English ST
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Neural model

CNN 1

MFCCs
150 x 13

37 x 512

CNN 2

75 x 128

37 x 512

bi-LSTM 1

bi-LSTM 2

bi-LSTM 3

1.5 s

yo vive en bronx

Embedding

FF-Softmax

LSTM 1

LSTM 2

LSTM 3

i live in br_ _ on_ _ x EOS

GO i live in br_ _ on_ _ x

Attention
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Neural model

CNN

RNN Embedding

FF-Softmax

RNN

predicted text

Attention

Encoder Decoder

MFCCs

prediction history
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100s of hours of monolingual speech paired with text available

… typically used to train ASR systems

English text
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Gülçehre et al., 2015
Toshniwal et al., 2018

Sequence-to-Sequence English textSpanish Audio

~20 hours of Spanish-English


