
Appendix A: Perfect Recovery Guarantee for the Problem (5)

The following theorem shows the perfect recovery guarantee for the problem (5). Appendix C provides
the proof for completeness.
Theorem 7.1. Let X⇤ 2 Rn⇥n

be a rank k matrix with a singular value decomposition X⇤ = U⌃V>
,

where U = (u1, . . . ,uk) 2 Rn⇥k
and V = (v1, . . . ,vk) 2 Rn⇥k

are the left and right singular vectors

of X⇤
, respectively. Similar to many related works of matrix completion, we assume that the following

two assumptions are satisfied:

1. The row and column spaces of X have coherence bounded above by a positive number µ0.

2. Max absolute value in matrix UV>
is bounded above by µ1

p
r/n for a positive number µ1.

Suppose that m1 entries of X⇤
are observed with their locations sampled uniformly at random, and

among the m1 observed entries, m2 randomly sampled entries are corrupted. Using the resulting par-

tially observed matrix as the input to the problem (5), then with a probability at least 1 � n
�3

, the

underlying matrix X⇤
can be perfectly recovered, given

1. µ(E)⇠(X)  1
4k+5 ,

2.
⇠(X)�(2k�1)µ(E)⇠2(X)
1�2(k+1)µ(E)⇠(X) < � <

1�(4k+5)µ(E)⇠(X)
(k+2)µ(E) ,

3. m1 �m2 � C[max(µ0, µ1)]4n log2 n,

where C is a positive constant; ⇠(�) and µ(�) denotes the low-rank and sparsity incoherence (Chan-

drasekaran et al., 2011).

Theorem 7.1 implies that even if some of the observed entries computed by (4) are incorrect, problem
(5) can still perfectly recover the underlying similarity matrix X⇤ if the number of observed correct entries
is at least O(n log2 n). For MATL with large n, this implies that only a tiny fraction of all task pairs is
needed to reliably infer similarities over all task pairs. Moreover, the completed similarity matrix X is
symmetric, due to symmetry of the input matrix Y. This enables analysis by similarity-based clustering
algorithms, such as spectral clustering.

Appendix B: Proof of Low-rankness of Matrix X

We first prove that the full similarity matrix X 2 Rn⇥n is of low-rank. To see this, let A = (a1, . . . ,ak)
be the underlying perfect clustering result, where k is the number of clusters and ai 2 {0, 1}n is the
membership vector for the i-th cluster. Given A, the similarity matrix X is computed as

X =
kX

i=1

aia
>
i =

kX

i=1

Bi

where Bi = aia>i is a rank one matrix. Using the fact that rank(X) 
Pk

i=1 rank(Bi) and rank(Bi) = 1,
we have rank(X)  k, i.e., the rank of the similarity matrix X is upper bounded by the number of clusters.
Since the number of clusters is usually small, the similarity matrix X should be of low rank.

Appendix C: Proof of Theorem 7.1

We then prove our main theorem. First, we define several notations that are used throughout the proof.
Let X = U⌃V> be the singular value decomposition of matrix X, where U = (u1, . . . ,uk) 2 Rn⇥k and
V = (v1, . . . ,vk) 2 Rn⇥k are the left and right singular vectors of matrix X, respectively. Similar to
many related works of matrix completion, we assume that the following two assumptions are satisfied:

1. A1: the row and column spaces of X have coherence bounded above by a positive number µ0, i.e.,p
n/rmaxi kPU(ei)k  µ0 and

p
n/rmaxi kPV(ei)k  µ0, where PU = UU>, PV = VV>, and

ei is the standard basis vector, and



2. A2: the matrix UV> has a maximum entry bounded by µ1
p
r/n in absolute value for a positive

number µ1.

Let T be the space spanned by the elements of the form uiy> and xv>
i , for 1  i  k, where x and y

are arbitrary n-dimensional vectors. Let T? be the orthogonal complement to the space T , and let PT be
the orthogonal projection onto the subspace T given by

PT (Z) = PUZ + ZPV � PUZPV.

The following proposition shows that for any matrix Z 2 T , it is a zero matrix if enough amount of its
entries are zero.

Proposition 1. Let ⌦ be a set of m entries sampled uniformly at random from [1, . . . , n] ⇥ [1, . . . , n],
and P⌦(Z) projects matrix Z onto the subset ⌦. If m > m0, where m0 = C

2
Rµ0rn� log n with � > 1

and CR being a positive constant, then for any Z 2 T with P⌦(Z) = 0, we have Z = 0 with probability

1� 3n��
.

Proof. According to the Theorem 3.2 in (Candès and Tao, 2010), for any Z 2 T , with a probability at
least 1� 2n2�2� , we have

kPT (Z)kF � �kZkF  n
2

m
kPT P⌦PT (Z)k2F = 0 (8)

where � = m0/m < 1. Since Z 2 T , we have PT (Z) = Z. Then from (8), we have kZkF  0 and thus
Z = 0.

In the following, we will develop a theorem for the dual certificate that guarantees the unique optimal
solution to the following optimization problem

min
X, E

kXk⇤ + �kEk1 (9)

s.t. P⌦(X + E) = P⌦(Y).

Theorem 1. Suppose we observe m1 entries of X with locations sampled uniformly at random, denoted

by ⌦. We further assume that m2 entries randomly sampled from m1 observed entries are corrupted,

denoted by �. Suppose that P⌦(Y) = P⌦(X+E) and the number of observed correct entries m1�m2 >

m0 = C
2
Rµ0rn� log n. Then, for any � > 1, with a probability at least 1 � 3n��

, the underlying true

matrices (X,E) is the unique optimizer of (9) if both assumptions A1 and A2 are satisfied and there

exists a dual Q 2 Rn⇥n
such that (a) Q = P⌦(Q), (b) PT (Q) = UV>

, (c) kPT>(Q)k < 1, (d)

P�(Q) = � sgn(E), and (e) kP�c(Q)k1 < �.

Proof. First, the existence of Q satisfying the conditions (a) to (e) ensures that (X,E) is an optimal
solution. We only need to show its uniqueness and we prove it by contradiction. Assume there exists
another optimal solution (X + NX,E + NE), where P⌦(NX + NE) = 0. Then we have

kX + NXk⇤ + �kE + NEk1 � kXk⇤ + �kEk1 + hQE,NEi+ hQX,NXi

where QE and QX satisfying P�(QE) = � sgn(E), kP�c(QE)k1  �, PT (QX) = UV> and
kPT?(QX)k  1. As a result, we have

�kE + NEk1 + kX + NXk⇤
� �kEk1 + kXk⇤ + hQ + P�c(QE)� P�c(Q),NEi+ hQ + PT?(QX)� PT?(Q),NXi
= �kEk1 + kXk⇤ + hQ,NE + NXi+ hP�c(QE)� P�c(Q),NEi+ hPT?(QX)� PT?(Q),NXi
= �kEk1 + kXk⇤ + hP�c(QE)� P�c(Q),P�c(NE)i+ hPT?(QX)� PT?(Q),PT?(NX)i



We then choose P�c(QE) and PT?(QX) to be such that hP�c(QE),P�c(NE)i = �kP�c(NE)k1 and
hPT?(QX),PT?(NX)i = kPT?(NX)k⇤. We thus have

�kE + NEk1 + kX + NXk⇤
� �kEk1 + kXk⇤ + (�� kP�c(Q)k1)kP�c(NE)k1 + (1� kPT?(Q)k)kPT?(NX)k⇤

Since (X + NX,E + NE) is also an optimal solution, we have kP⌦c(NE)k1 = kPT?(NX)k⇤, leading
to P⌦c(NE) = PT?(NX) = 0, or NX 2 T . Since P⌦(NX + NE) = 0, we have NX = NE + Z,
where P⌦(Z) = 0 and P⌦c(NE) = 0. Hence, P⌦c\⌦(NX) = 0, where |⌦c \ ⌦| = m1 � m2. Since
m1 �m2 > m0, according to Proposition 1, we have, with a probability 1 � 3n�� , NX = 0. Besides,
since P⌦(NX+NE) = P⌦(NE) = 0 and � ⇢ ⌦, we have P�(NE) = 0. Since NE = P�(NE)+P�c(NE),
we have NE = 0, which leads to the contradiction.

Given Theorem 1, we are now ready to prove Theorem 3.1.

Proof. The key to the proof is to construct the matrix Q that satisfies the conditions (a)-(e) specified in
Theorem 1. First, according to Theorem 1, when m1 �m2 > m0 = C

2
Rµ0rn� log n, with a probability

at least 1 � 3n�� , mapping PT P⌦PT (Z) : T 7! T is an one to one mapping and therefore its inverse
mapping, denoted by (PT P⌦PT )�1 is well defined. Similar to the proof of Theorem 2 in (Chandrasekaran
et al., 2011), we construct the dual certificate Q as follows

Q = � sgn(E) + ✏� + P�PT (PT P⌦PT )
�1(UV> + ✏T )

where ✏T 2 T and ✏� = P�(✏�). We further define

H = P⌦PT (PT P⌦PT )
�1(UV>)

F = P⌦PT (PT P⌦PT )
�1(✏T )

Evidently, we have P⌦(Q) = Q since � ⇢ ⌦, and therefore the condition (a) is satisfied. To satisfy the
conditions (b)-(e), we need

PT (Q) = UV> ! ✏T = �PT (� sgn(E) + ✏�) (10)
kPT?(Q)k < 1 ! µ(E) (�+ k✏�k1) + kPT?(H)k+ kPT?(F)k < 1 (11)

P�(Q) = � sgn(E) ! ✏� = �P�(H + F) (12)
|P�c(Q)|1 < � ! ⇠(X)(1 + k✏T k) < � (13)

Below, we will first show that there exist solutions ✏T 2 T and ✏� that satisfy conditions (10) and (12).
We will then bound k✏⌦k1, k✏T k, kPT?(H)k, and kPT?(F)k to show that with sufficiently small µ(E)
and ⇠(X), and appropriately chosen �, conditions (11) and (13) can be satisfied as well.

First, we show the existence of ✏� and ✏T that obey the relationships in (10) and (12). It is equivalent
to show that there exists ✏T that satisfies the following relation

✏T = �PT (� sgn(E)) + PT P�(H) + PT P�PT (PT P⌦PT )
�1(✏T )

or
PT P⌦\�PT (PT P⌦PT )

�1(✏T ) = �PT (� sgn(E)) + PT P�(H),

where ⌦ \� indicates the complement set of set � in ⌦ and |⌦ \�| denotes its cardinality. Similar to
the previous argument, when |⌦ \�| = m1 �m2 > m0, with a probability 1� 3n�� , PT P⌦\�PT (Z) :
T 7! T is an one to one mapping, and therefore (PT P⌦\�PT (Z))�1 is well defined. Using this result,
we have the following solution to the above equation

✏T = PT P⌦PT (PT P⌦\�PT )
�1 (�PT (� sgn(E)) + PT P�(H))



We now bound k✏T k and k✏�k1. Since k✏T k  k✏T kF , we bound k✏T kF instead. First, according to
Corollary 3.5 in (Candès and Tao, 2010), when � = 4, with a probability 1 � n

�3, for any Z 2 T , we
have ��PT?P⌦PT (PT P⌦PT )

�1(Z)
��
F
 kZkF .

Using this result, we have

k✏�k1  ⇠(X) (kHk+ kFk)
 ⇠(X) (1 + kPT?(H)kF + k✏T k+ kPT?(F)kF )
 ⇠(X) (2 + k✏T k+ k✏T kF )
 ⇠(X) [2 + (2k + 1)k✏T k]

In the last step, we use the fact that rank(✏T )  2k if ✏T 2 T . We then proceed to bound k✏T k as follows

k✏T k  µ(E) (�+ k✏�k1)

Combining the above two inequalities together, we have

k✏T k  ⇠(X)µ(E)(2k + 1)k✏T k+ 2⇠(X)µ(E) + �µ(E)
k✏�k1  ⇠(X) [2 + (2k + 1)µ(E)(�+ k✏�k1) ,

which lead to

k✏T k  �µ(E) + 2⇠(X)µ(E)
1� (2k + 1)⇠(X)µ(E)

k✏�k1  2⇠(X) + (2k + 1)�⇠(X)µ(E)
1� (2k + 1)⇠(X)µ(E)

Using the bound for k✏�k1 and k✏T k, we now check the condition (11)

1 > µ(E) (�+ |✏�|1) +
1

2
+

k

2
k✏T k

or
� <

1� ⇠(X)µ(E)(4k + 5)

µ(E)(k + 2)

For the condition (13), we have
� > ⇠(X) + ⇠(X)k✏T k

or

� >
⇠(X)� (2k � 1)⇠2(X)µ(E)
1� 2(k + 1)⇠(X)µ(E)

To ensure that there exists � � 0 satisfies the above two conditions, we have

1� 5(k + 1)⇠(X)µ(E) + (10k2 + 21k + 8)[⇠(X)µ(E)]2 > 0

and
1� ⇠(X)µ(E)(4k + 5) � 0

Since the first condition is guaranteed to be satisfied for k � 1, we have

⇠(X)µ(E)  1

4k + 5
.

Thus we finish the proof.

Appendix D: Data Statistics
We listed the detailed domains of the sentiment analysis tasks in Table 3. We removed the musi-

cal instruments and tools hardware domains from the original data because they have too few labeled
examples. The statistics for the 10 target tasks of intent classification in Table 4.



Domains #train #validation #test
apparel 7398 926 928

automotive 601 69 66
baby 3405 437 414

beauty 2305 280 299
books 19913 2436 2489

camera photo 5915 744 749
cell phones service 816 109 98

computer video games 2201 274 296
dvd 19961 2624 2412

electronics 18431 2304 2274
gourmet food 1227 182 166

grocery 2101 268 263
health personal care 5826 687 712

jewelry watches 1597 188 196
kitchen housewares 15888 1978 1990

magazines 3341 427 421
music 20103 2463 2510

office products 337 54 40
outdoor living 1321 143 135

software 1934 254 202
sports outdoors 4582 566 580

toys games 10634 1267 1246
video 19941 2519 2539

Table 3: Statistics of the Multi-Domain Sentiment Classification Data.

Dataset ID #labeled instances #labels
1 497 11
2 3071 14
3 305 21
4 122 7
5 110 11
6 126 12
7 218 45
8 297 10
9 424 4

10 110 17

Table 4: Statistics of the User Intent Classification Data.


