
A Appendix

A.1 Modified Cost in Levenshtein Distance Algorithm
We keep delete and insert cost as 1 as usual, but for substitutions, we use 1 + εd, where d is the absolute
difference between the number of characters of replaced and substituted word. We set ε to 0.001. Table 9
shows two minimum edit diffs if the substitution penalty has no such offset. In Diff-1, {.} substitutes
{,} and Then substitutes then, followed by insertion of {,}. In Diff-2, {.} is inserted after sat
followed by Then substituting {,} , followed by {,} substituting then . In absence of offset in sub-
stitution penalty, both the diffs have edit distance of 3. In presence of offset, Diff-1 has an edit-distance
of 3, while Diff-2 has an edit-distance of 3.006, this allows Diff-1 to be preferred over Diff-2. As we
observe, offset helps in selection of well aligned minimum edit diffs among multiple minimum edit diffs.

x [ He sat , then he ran ]
y [ He sat . Then , he ran ]
op-1 [ C C S(, , .) S(then , Then) I(,) , C C ]
Diff-1 [ He sat -, +. -then +Then +, he ran ]
op-2 [ C C I(.) S(, , Then) S(then , ,) , C C ]
Diff-2 [ He sat +. -, +Then -then +, he ran ]

Table 9: Two diffs having same edit distance in the absence of offset in substitution penalty

A.2 Suffix transformations

Transformation Example
ADDSUFFIX(s) play
 plays
ADDSUFFIX(d) argue
 argued
ADDSUFFIX(es) express
 expresses
ADDSUFFIX(ing) play
 playing
ADDSUFFIX(ed) play
 played
ADDSUFFIX(ly) nice
 nicely
ADDSUFFIX(er) play
 player
ADDSUFFIX(al) renew
 renewal
ADDSUFFIX(n) rise
 risen
ADDSUFFIX(y) health
 healthy
ADDSUFFIX(ation) inform
 information
CHANGE-e-TO-ing use
 using
CHANGE-d-TO-t spend
 spent
CHANGE-d-TO-s compared
 compares
CHANGE-s-TO-ing claims
 claiming
CHANGE-n-TO-ing deafen
 deafening
CHANGE-nce-TO-t insistence
 insistent
CHANGE-s-TO-ed visits
 visited
CHANGE-ing-TO-ed using
 used
CHANGE-ing-TO-ion creating
 creation
CHANGE-ing-TO-ation adoring
 adoration
CHANGE-t-TO-ce reluctant
 reluctance
CHANGE-y-TO-ic homeopathy
 homeopathic
CHANGE-t-TO-s meant
 means
CHANGE-e-TO-al arrive
 arrival
CHANGE-y-TO-ily angry
 angrily
CHANGE-y-TO-ied copy
 copied
CHANGE-y-TO-ical biology
 biological
CHANGE-y-TO-ies family
 families

Table 10: 29 suffix transformations and their corresponding inverse make total 58 suffix transformations.

A.3 Artificial Error Generation
Figure 4 shows the algorithm used to introduce artificial errors in clean dataset. Given a sen-
tence, first the number of errors in that sentence is determined by sampling from a multi-
noulli (over {0 . . . 4}). Similarly, an error is chosen independently from another multinoulli (over



Input: U: dataset of clean sentences
AppendError ← 0
V erbError ← 1
ReplaceError ← 2
DeleteError ← 3
for sentence in U do

errorCount← multinoulli(0.05, 0.07, 0.25, 0.35, 0.28)
for i ∈ 1 . . . errorCount do

errorType← multinoulli(0.30, 0.25, 0.25, 0.20)
introduce error of type errorType

return

Figure 4: Algorithm to introduce errors in clean dataset

{AppendError, V erbError,ReplaceError,DeleteError}). The distribution of the number of er-
rors in a sentence and probability of each kind of error was obtained based on the available parallel
corpus. For append, replace and delete errors, a position is randomly chosen for the error occurrence.
For append error the word in that position is dropped. For delete error a spurious word from a commonly
deleted words dictionary is added to that position. For replace error, both the actions are done. For a verb
error, a verb is chosen at random from the sentence and is replaced by a random verb form of the same
word. Commonly deleted words are also obtained from the parallel corpus.

A.4 Wall-clock Decoding Times

Average
sentence

length (words)
4.30 8.76 13.30 18.00 22.96 27.79 32.64 37.85 42.54 47.41 52.6 58.8

T2T-bs-4
(56.8)

53.5 75.5 99.7 121.1 158.5 185.5 214.0 214.5 270.1 271.4 287.8 343.1

T2T-bs-12
(N.A.)

134.2 179.1 236.0 279.9 365.6 424.3 488.5 481.3 592.6 599.7 640.2 767.2

PIE-BASE
(56.6)

5.0 5.5 5.6 5.8 5.8 6.1 6.5 6.8 7.1 7.2 7.1 7.4

PIE-LARGE
(59.7)

9.8 10.6 10.9 11.4 11.6 11.9 13.5 14.3 15.2 15.4 15.4 16.6

Table 11: Wall clock decoding time in milliseconds for various GEC models



A.5 Hyperparameters

Hyperparameters PIE-BASE GEC PIE-LARGE GEC
PIE OCR/SPELL

Correction
attention probs dropout prob 0.1 0.1 0.1

directionality bi-directional bi-directional bi-directinoal
hidden act gelu gelu gelu

hidden dropout prob 0.1 0.1 0.1
hidden size 768 1024 200

initializer range 0.02 0.02 0.02
intermediate size 3072 4096 400

max position embeddings 512 512 40
num attention heads 12 16 4
num hidden layers 12 24 4

type vocab size 2 2 2
vocab size 28996 28996 110/26

copy weight 0.4 0.4 1

Table 12: Hyperparameters used in PIE Model for GEC, OCR Correction and Spell Correction. In GEC, copy
weight of 0.4 is used (based on validation set) to scale down the loss corresponding to copy label for handling class
imbalance

Hyperparameters T2T GEC
T2T OCR
Correction

T2T Spell
Correction

T2T hparams set transformer clean big tpu transformer tiny transformer tiny
num encoder layers 6 2 2
num decoder layers 6 1 2

hidden size 1024 200 200
filter size 4096 400 400

Table 13: Hyperparameters used in T2T transformer models for GEC, OCR Correction and Spell Correction. ten-
sor2tensor (https://github.com/tensorflow/tensor2tensor) library was used for implementation

https://github.com/tensorflow/tensor2tensor

