
Better Rewards Yield Better Summaries:
Learning to Summarise Without References

Supplementary Material

1 Reward Learning Architectures

CNN. The architecture of the CNN encoder is
visualised in Fig. 1 (taken from (Kim, 2014))
for two different filter widths (red=2, orange=3).
The feature maps are reduced with max-over-time
pooling to a fixed-size feature vector.

PMeans. For a sentence s with L words taken
from x or y, PMeans vectorise s as

φ(s; p) =

(
zp1 + · · ·+ zpL

L

)1/p

∈ Re, (1)

where zi is the word embedding of the ith word
in s and e is the dimension of the word embed-
dings. The addition, multiplication and exponen-
tiation operations are element-wise. p ∈ R ∪
{±∞} controls “weights” assigned to each ele-
ment: with p = 1, for instance, each word ele-
ment is weighted equally and φ(s; 1) is the stan-
dard average-pooling; with the increase of p, it as-
signs higher weights to the elements with higher
values. With p = +∞, PMeans is equivalent to
element-wise max-pooling.

BERT. The BERT encoder with sliding window
is shown in Fig. 2. The summary and docu-
ment are encoded independently. All tokens of
the same sliding window will be passed to BERT
that produces an embedding for each sliding win-
dow. Average-over-time pooling (element-wise)
reduces these embeddings to one embedding per
summary and document. The final embedding is
the concatenation of both.

MLP. The MLP at the bottom part of Fig. 2
has one fully-connected layer with ReLU activa-
tion and a single output with linear activation.
During training, dropout (Srivastava et al., 2014)
with 50% chance is applied at the input and hid-
den layer for regularisation. For CNN-RNN and

PMeans-RNN encoders, the hidden layer is of size
100. For BERT+MLP we use a hidden layer of
size 1024.

Additional Layer If PMeans and BERT sen-
tence embeddings are used for SimRed, an addi-
tional layer is put on top of the embeddings be-
cause PMeans has no trainable parameters and the
BERT model weights are kept fixed. For this pur-
pose we use a fully-connected layer with ReLU
activation, where the output dimension is equal to
the input dimension, shown in Fig. 3.

SimRed. Fig. 4 illustrates the SimRed architec-
ture and shows the Similarity and Redundancy
matrices.

2 Significance Tests

To proof that BERT+MLP+Pref outperforms other
learned metrics significantly, we use the double-
tailed t-test. Table 1 shows the p-values in com-
parison of BERT+MLP+Pref against our other ap-
proaches for Spearman’s ρ, Pearson’s r, G-Pre
and G-Rec on summary level. Table 2 shows the
p-values for BERT+MLP+Pref in comparison to
reward metrics that require reference summaries
(e.g. ROUGE and BLEU).

3 Reward/Metric Distribution

Fig. 5 and 6 illustrate the distributions of multiple
metrics and learned rewards for summaries with
different human ratings, respectively. An interest-
ing pattern we observe is that, for summaries with
the lowest human rating (-1), their metrics/rewards
are mostly uniformly distributed, regardless of the
type of metrics or rewards. This is because the
summaries in our training set are generated by
two state-of-the-art summarisation systems, hence
are mostly of relatively high quality. As such,
our reward learning models witness only few low-

wait
for
the

video
and
do
n't

rent
it

n x k representation of

sentence with static and

non-static channels

Convolutional layer with

multiple filter widths and

feature maps

Max-over-time

pooling

Fully connected layer

with dropout and

softmax output

Figure 1: Model architecture with two channels for an example sentence.

necessary) is represented as

x1:n = x1 ⊕ x2 ⊕ . . .⊕ xn, (1)

where ⊕ is the concatenation operator. In gen-
eral, let xi:i+j refer to the concatenation of words
xi,xi+1, . . . ,xi+j . A convolution operation in-
volves a filter w ∈ Rhk, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h−1 by

ci = f(w · xi:i+h−1 + b). (2)

Here b ∈ R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the
sentence {x1:h,x2:h+1, . . . ,xn−h+1:n} to produce
a feature map

c = [c1, c2, . . . , cn−h+1], (3)

with c ∈ Rn−h+1. We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one
feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m
filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z ◦ r) + b, (5)

where ◦ is the element-wise multiplication opera-
tor and r ∈ Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ŵ = pw, and
ŵ is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s
whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.

1747

Figure 1: CNN encoder architecture. Figure taken from (Kim, 2014).

Summary Document

Tokens

Sliding window embeddings
(1024 dimensions each)

Sliding window
(size 512, offset 128)

Average-over-time
pooling

BERT-Large-Cased

Averaged summary and
document embeddings
(1024 dimensions each)

MLP

Concatenation

Reward
(scalar)

Final embedding
(2048 dimensions)

BERT-Large-Cased

Fully-connected
feed-forward

Operation Type (dimension)

Figure 2: BERT with sliding window as independent encoder for a summary and its corresponding document.

Model Encoder Loss ρ r G-Pre G-Rec

MLP

CNN-RNN Regr. 5.61e-12 2.56e-09 3.97e-04 3.85e-04
CNN-RNN Pref. 3.13e-11 2.05e-07 1.09e-04 8.11e-05
PMeans-RNN Regr. 3.02e-11 3.93e-07 9.89e-04 1.03e-03
PMeans-RNN Pref. 5.33e-08 5.65e-06 6.67e-03 1.55e-02
BERT Regr. .468 .106 .551 .615

SimRed

CNN Regr. 4.07e-09 3.03e-07 2.30e-05 2.41e-05
CNN Pref. 4.83e-05 2.10e-05 3.41e-03 5.88e-03
PMean Regr. 7.41e-08 2.83e-05 1.32e-03 1.58e-03
PMean Pref. 1.33e-06 1.70e-04 .013 8.12e-03
BERT Regr. 5.33e-16 4.32e-09 1.30e-06 2.46e-07
BERT Pref. 2.61e-10 2.54e-06 4.24e-04 5.83e-04

Table 1: P-values of double-tailed t-test between BERT+MLP+Pref and our other approaches.

Metric ρ r G-Pre G-Rec

ROUGE-1 6.85e-17 .201 1.17e-14 3.81e-15
ROUGE-2 2.98e-20 .015 1.04e-13 8.35e-15
ROUGE-L 4.09e-19 .020 4.78e-14 6.53e-15
ROUGE-SU4 1.57e-18 .013 2.67e-13 4.95e-14
BLEU-1 1.64e-15 .160 2.49e-09 3.05e-16
BLEU-2 4.33e-17 .029 2.98e-09 4.23e-16
BLEU-3 5.75e-19 .009 3.53e-09 5.13e-16
BLEU-4 6.99e-19 .006 1.11e-08 2.16e-15
BLEU-5 1.47e-18 .004 5.53e-08 1.65e-14
METEOR 1.03e-14 .039 2.2e-14 7.22e-15
InferSent-Cosine 1.45e-11 .798 1.33e-12 6.76e-12
BERT-Cosine 2.16e-12 .769 8.61e-10 1.84e-09

Table 2: P-values of double-tailed t-test between BERT+MLP+Pref and metrics that use reference summaries.
The underlined values in the column for Pearson’s r are p > α = 0.05, hence a significant difference can not be
assumed in these cases.

PMeans/BERT embedding
+ ReLU layer

x1 x2 xn

x'1 x'2 x'n

x''1 x''2 x''n

max(xi, 0)

Figure 3: One fully-connected ReLU layer is put on
top of PMeans and BERT when used with the SimRed
model.

quality summaries during training, and thus can
hardly allocate low scores to the summaries with
low human ratings. This observation also shows
that it is important to have a wide diversity of sum-
maries in the training set.

4 NeuralTD

The original reinforcement learning algorithm
used in (Ryang and Abekawa, 2012) is the linear
temporal-difference algorithm (LinearTD). For a
draft summary s, V (s;w) = w · φ(s), where φ(s)
is vector representation for s. In NeuralTD, we
approximate the V -values with a neural network
illustrated in Fig. 7. It reads φ(s) as input, and
use two hidden ReLU layers after the input, and
finally output a single real value. The dimension
of the hidden layer is the half of the size of the

d1

s2
s3

summary
sentence

embeddings
(N x E)

s1

d2 d3 d4

article
sentence

embeddings
(M x E)T

cosine-
similarity

matrix
(N x M)

s1

s2
s3

s1

s2 s3

cosine-
similarity

matrix
(N x N)

Similarity Redundacy

cos(s3,d4)

Figure 4: SimRed cosine similarity matrices. E is the
dimension of the sentence embeddings.

input vector φ(s).
We test the performance of NeuralTD on the

same DUC datasets where LinearTD is tested in
(Ryang and Abekawa, 2012). We use the sum
of ROUGE-1 and ROUGE-2 as rewards to train
both LinearTD and NeuralTD. Because both algo-
rithms are stochastic, we repeat each algorithm by
10 times. The averaged results are reported in Ta-
ble 3. NeuralTD outperforms LinearTD in terms
of all ROUGE metrics we considered, and some of
the improvements are significant.

References
Yoon Kim. 2014. Convolutional neural networks for

sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2014, October 25-29,
2014, Doha, Qatar, A meeting of SIGDAT, a Special
Interest Group of the ACL, pages 1746–1751.

http://aclweb.org/anthology/D/D14/D14-1181.pdf
http://aclweb.org/anthology/D/D14/D14-1181.pdf

0.0

0.2

0.4

0.6

0.8

ROUGE-1-F

0.0

0.2

0.4

0.6

ROUGE-2-F

0.0

0.2

0.4

0.6

0.8

ROUGE-L-F

0.0

0.2

0.4

0.6

0.8 ROUGE-SU4-F

0.0

0.2

0.4

0.6

0.8
BLEU-1

0.0

0.2

0.4

0.6

BLEU-2

0.0

0.2

0.4

0.6

BLEU-3

0.0

0.1

0.2

0.3

0.4

0.5

0.6
BLEU-4

1 0 1
0.0

0.1

0.2

0.3

0.4

0.5
METEOR

1 0 1

0.5

0.6

0.7

0.8

0.9

1.0 InferSent-Cosine

1 0 1
0.5

0.6

0.7

0.8

0.9

1.0 BERT-Cosine

1 0 1

3.5

4.0

4.5

5.0
BERT+MLP+Pref

0.0 0.2 0.4 0.6 0.8 1.0
Human judgement (overall quality)

0.0

0.2

0.4

0.6

0.8

1.0
Au

to
m

at
ic

sc
or

e

Figure 5: Distributions of rewards/metrics for summaries with different human ratings. Among all presented, only
BERT+MLP+Pref (third row, rightmost sub-figure) does not use reference summaries.

Dataset RL R-1 R-2 R-L R-SU4

DUC’01 LinearTD .442 .161 .349 .172
NeuralTD .452∗ .169 .359∗ .177

DUC’02 LinearTD .475 .179 .374 .189
NeuralTD .483∗ .181 .379 .193

DUC’04 LinearTD .473 .174 .378 .192
NeuralTD .492∗ .189 .391∗ .203∗

Table 3: ROUGE Recall scores of NeuralTD and Lin-
earTD on three DUC datasets. All summaries gen-
erated by both systems meet the 100-word length re-
striction. Asterish indicates significant improvement
(p < 0.05, double-tailed t-test).

Seonggi Ryang and Takeshi Abekawa. 2012. Frame-
work of automatic text summarization using rein-
forcement learning. In Proceedings of the 2012
Joint Conference on Empirical Methods in Natu-
ral Language Processing and Computational Natu-
ral Language Learning, EMNLP-CoNLL 2012, July
12-14, 2012, Jeju Island, Korea, pages 256–265.

Nitish Srivastava, Geoffrey E. Hinton, Alex
Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov. 2014. Dropout: a simple way to prevent neural
networks from overfitting. Journal of Machine
Learning Research, 15(1):1929–1958.

http://www.aclweb.org/anthology/D12-1024
http://www.aclweb.org/anthology/D12-1024
http://www.aclweb.org/anthology/D12-1024
http://dl.acm.org/citation.cfm?id=2670313
http://dl.acm.org/citation.cfm?id=2670313

0.50

0.25

0.00

0.25

0.50

0.75

1.00
CNN-RNN+MLP+Regr

6

4

2

0

2

CNN-RNN+MLP+Pref

0.75

0.50

0.25

0.00

0.25

0.50

PMeans-RNN+MLP+Regr

2

1

0

1

PMeans-RNN+MLP+Pref

0.50
0.25
0.00
0.25
0.50
0.75
1.00

BERT+MLP+Regr

3.5

4.0

4.5

5.0
BERT+MLP+Pref

0.1
0.0
0.1
0.2
0.3
0.4
0.5

CNN+SimRed+Regr

1

0

1

2

3
CNN+SimRed+Pref

1 0 1

0.0

0.2

0.4

0.6

PMean+SimRed+Regr

1 0 1
0

1

2

3

4

5
PMean+SimRed+Pref

1 0 1

0.0

0.2

0.4

0.6

BERT+SimRed+Regr

1 0 1
0

1

2

3

4

BERT+SimRed+Pref

0.0 0.2 0.4 0.6 0.8 1.0
Human judgement (overall quality)

0.0

0.2

0.4

0.6

0.8

1.0
Au

to
m

at
ic

sc
or

e

Figure 6: Distributions of learned rewards for summaries with different human ratings.

+

 Hidden Layer
(ReLU)

Hidden Layer
(ReLU)

Output Layer
(Sum)

Fully
Connected

Fully
Connected

Fully
Connected

Figure 7: NeuralTD arthitecture.

