A Supplemental Material

A.1 An Implementation of CPL

CPL is a general framework whose components,
two agents, are all replaceable. In our experi-
ments, we modify MINERVA (Das et al., 2017)
to construct the reasoner, and modify PCNN-ATT
(Lin et al., 2016) to construct the fact extractor.
Here we briefly introduce a specific implementa-
tion of CPL based on PCNN-ATT and MINERVA
(see also Fig. 3 for illustration) in details.

Fact Extractor. PCNN-ATT is an effective Re-
lation Extraction approach containing mainly two
parts: the sentence encoder and the attention-
selector. The sentence encoder encodes each sen-
tence into a vector given the labeled entity pair
and their positions in the sentence. We organize
the sentences into sentence bags. The sentences
in the same bag share the same entity-pair label
(z, = (e®,€°)). For each sentence bag, we mod-
ify PCNN-ATT to produces a predictive probabil-
ity distribution over all relations in the vocabulary:
®(w) = Fpenn(xw). Suppose at time step ¢ dur-
ing the inference, the reasoner is at entity e/. We
need to suggest several edges pointing to differ-
ent entities from e’ to enrich the reasoner’s action
space. We use PCNN-ATT to make predictions on
several sentence bags whose labels all contain e
and get a distribution set: [®(wy), ..., P(wy)] =
Fpenn([Twrs oo Tug)),wie = (eh,rk,eb), k€
[1, K]. The distribution set can be seen as a score
set over different edges. We can define a stochastic
policy based on the scores by sampling the edges
according to the scores. In the original PCNN-
ATT setting, the score indicates the confidence of
linking e® and e, w.r.t. the respective predicted
relation. According to the previous reward def-
inition, we can construct the policy distributions
over all candidate edges based on these output
scores via softmax and provide the extractor with
the most relevant edges.

Graph Reasoner. To extend MINERVA as our
graph reasoner, we adopt random action drop-out
(random dropping KG-edges) to unite the KG-
edges and corpus-extracted edges into a joint ac-
tion space of fixed size. Specifically, for a query
triple (es, ¢, €q), it predicts e, through finding a
path from e to e, w.r.t. 4. At time step ¢, the ob-
served state s’ is (e®,74, €', h') as defined before.
The history information before ¢ is a sequence of
edges, which is encoded into a vector with LSTM :

ht = LSTM (ht_1, [r';€e']). The reasoner should
select one edge from the joint action space de-
fined above w.r.t. e!. The MINERVA model F},,ine
takes in the state embedding and output the soft-
max scores w.r.t. each action (out-edge). Then we
adopt adaptive sampling (discussed below) to se-
lect the action to proceed.

Training pipeline. A formal training algorithm is
given in Algorithm 1.

Algorithm 1 CPL(G, C, b, be, pi, €4, €m)

Require: Knowledge graph G, corpus C, # of
batches training the reasoner b,, # of batches
training the extractor b, hyper parameters for
learning p;, # of epochs applying adaptive
sampling e,, maximal epochs e,.

Ensure: CPL model

1: Initialize the reasoner and extractor.

2: Register Adam optimizer with p;.

3: fore=0: ¢,, do

4 for 0 to max-batches do

5 if e < e, then

6: Generate training sequences with
7

8

9

adaptive sampling.
elseGenerate training sequences with
: normal sampling.
10: end if

11: Store the training sequences into
12: replay memories.

13: Sample from the replay memory to
14: train the reasoner for b, batches.
15: Sample from the replay memory to
16: train the reasoner for b, batches.
17: end for

18: end for

A.2 Training techniques

we will introduce a few techniques we use to in-
crease training efficiency.

The lack of positive training samples is a com-
mon challenge for most RL algorithms. We use
two techniques to accumulate positive experiences
for the agents, model pre-training and adaptive
sampling.

i) Model Pre-training. To get proper initializa-
tion, we pre-train the fact extractor and reasoner.
In this way, at the beginning of the joint training,
we can expect the agents to generate plausible ex-
periences immediately.

ii) Adaptive Sampling. The policy learned by
the agents can be regarded as a distribution of



choosing certain actions given the states. Usually,
we sample the actions multiple times according to
the distribution to generate multiple experiences.
In the pre-training stage, the reasoner is unaware
of the facts in the texts. It tends to ignore the new
facts suggested by the extractor. To facilitate in-
teractions between two agents and encourage ex-
ploration, we reconstruct the distribution to en-
sure the extracted edges to be chosen with higher
probability. Specifically, at time step ¢, the action
space of the reasoner is the union of KG-edges
and extracted edges, i.e., A" = {(r,e)|(e!,r,e) €
KG}UA{(r,€e)|(et,r',€') € corpus C'}. The rea-
soner will score all the actions in Af, and we in-
crease the scores of extracted edges adaptively so
that they have higher priority over the KG-edges.
Whereas we cannot keep this priority all the time,
it twists the true data or pattern distribution. Hence
after a number of iterations, we stop the adaptive
sampling and use the immediate policy distribu-
tion for sampling.

To increase exploration efficiency, the fact ex-
tractor samples multiple edges given its learned
policy to add to the reasoner’s joint action space
(Fig. 3). We collect the experiences with above
techniques and store them into two replay memo-
ries (Mnih et al., 2013) for two agents separately.

A.3 Experiment Details
A.3.1 Datasets and Codes’

We study the datasets and find that the relation
distributions of the two datasets are very imbal-
anced. There are not enough reasoning paths for
some relation types. Moreover, some relations are
meaningless and of no reasoning value. We select
a subset of the relations for each dataset as the rea-
soning tasks. There are enough reasoning paths
for the path-based models to learn on these rela-
tions. They are also pretty informative and widely
concerned according to the opinions of the domain
experts we interviewed. The details are in Table 2.
Specifically, we first divide the dataset into train,
validation, and test sets in the proportion 8 : 1 : 1
randomly. Then we only keep the triples of the
concerned relations in the validation and test set.

SThe two datasets aforementioned in this pa-
per and data pre-processing codes are in the
supplementary ~ materials and also  available at
https://drive.google.com/file/d/
1hCyPBjywpMuShRJIJCPKRjc7n2vHpxfetg/view?
usp=sharing. The codes in the supplemental material is
our implementation of the CPL.

A.3.2 Training Setup

We list the parameter and experimental set-ups for
all the algorithms in this section. The parameters
not mentioned below have minor influences on the
performance, so we follow the default configura-
tions in their codes.

ComplEx, DistMult, & TransE We use the im-
plementation from OpenKE ©. We set the embed-
ding dimension as 100. We train each model for
600 iterations and 800 samples within each itera-
tion.

RotatE We use the implementation supplied by
its author 7. We set the embedding dimension as
100 (although the recommended value is 1000; we
set this to avoid biases and training hurdles). We
train each model for a total of 150k steps, with
batch size of 256.

ConvE We use the public code for evaluation®.
We set the embedding dimension as 200, training
for 50 epochs. We use the same negative sam-
pling ratio (i.e., 1:1) as what we use in the above
OpenKE models for FB60K; and 1:all negative
sampling for UMLS.

Rc-net We use the code provided by the authors
of paper (Xu et al., 2014). We use all the default
parameters except that we set the sample number
as 48. In this way, we ensure that the training sam-
ple quantity used in Rc-net is the same as others.

JointNRE We get the code from the authors
of paper (Han et al., 2018). We use the PCNN-
ATT as the sentence encoder and transE as the KG
embedding method, which is the best-performing
combination according to the authors. PCNN is
trained for 20 iterations, during which the KG
is trained by selecting 100 samples each batch,
reaching 7,500 iterations at the end of train-
ing. Since the pre-trained word vector is a 50-
dimension set, the embedding dimension is also
50.

LINE+TransE To train the word network and
entity dictionary, the window is set to 5. For the
embedding part, embedding dimension is set to
50; 100 samples are selected in each epoch, while
the number of epochs is stable at 1,000,000.

MINERVA We use the code ° for evaluation.
Since our Joint model approach requires MIN-
ERVA as a base model, we use the same em-

Shttps://github.com/thunlp/OpenKE

"https://github.com/DeepGraphLearning/KnowledgeGraphEmbedding

8https://github.com/TimDettmers/ConvE
“https://github.com/shehzaadzd/MINERVA



bedding sizes and hidden sizes on the MINERVA
training and our model training. To get our result
we trained it for 400 iterations at a batch size of 64
samples on FB60K. We set the iteration-number to
1000 and batch-size to 64 for UMLS.

To better reflect the models’ capabilities, all
models related to MINERVA are added reverse
edge triples. Considering the inevitable fluctua-
tions of this reinforcement learning model, we use
three random keys 55, 83 and 5583 to initiate train-
ing and reach an average result for the three runs.

Our model In total we train 400 iterations
for FB60K (considering time factors) and 1000
for UMLS; For first 200 iterations, we use BFS
to search positive paths with higher priority on
PCNN-ATT suggested edges. In each BFS iter-
ation, 100 samples are selected. The learning rate
is set to 0.001, and the batch size is 64, the same
as MINERVA.

A.4 Case Study

1. Two-step is the naive solution to OKGR. For
the two-step model, we filter the corpus-edges
with the output scores (in [0,1]) of PCNN-ATT.
0 means adding all the edges to the KG, while 1
means adding nothing. We find the best threshold
(producing the best reasoning model) for UMLS-
PubMed is 0.5 and 0 for FB60K-NYT10. Two-
step adds about 85,000 edges to UMLS and 90,000
to FB60K under the corresponding thresholds,
whereas CPL adds about 8,000 edges to UMLS
and 1,500 for FB60K.

The two-step model performance is inferior to
CPL and MINERVA on all the datasets (Table 3,
4). The reasons are that 1) most of the extracted
edges use in the two-step model are noises; 2)
adding so many edges significantly enlarges the
explore space for reasoning. Selecting the cor-
rect out-edge at each step becomes more difficult.
Lack sufficient positive experiences, with same it-
erations, the two-step model cannot learn the un-
derlying patterns well.

3. Figure 7 shows the inference cases randomly
sampled from the FB60OK-NYT10 dataset. We
select three relations and randomly sample several
query cases from the test set. We track down the
inference paths for each query case and mark the
edges suggested by the extractor. Further, we
track back to the raw text data to pick out the
sentences from which the extractor extract the
relevant facts. For example, for the query triple

(gorgonzola, /location/location/contains_inv,
m.Obzty), the concerned relation is “/lo-
cation/location/contains_inv”. A pos-
sible pattern to infer the relation is
“/location/location/contains_inv”’ A “/lo-
cation/location/contains” A “/loca-
tion/location/contains_inv” — “/loca-

tion/location/contains_inv”’.  The specific path
found by the reasoner is (gorgonzola, /lo-
cation/location/contains_inv, Italy) — (Italy,
/location/location/contains, san_siro) — (san_siro,
/location/location/contains_inv, m.0Obzty). Among
them, edge (Italy, /location/location/contains,
san_siro) is a new edge suggested by the extractor,
which is extracted from the sentence “the san_siro
is one of 25 stadiums in italy that the country s
security and sports officials condemned for not
having in place certain security measures aimed
at cutting down on fan violence .



+dnoi3 forjod
211gnd &  4nyny UBGIN Ue 1o} JAJUSD Y} Joj APNIS By} 3)04M OYM
¢ 53)Moq UeLjeuof pies  sysie pue sjeuoissajoud Sunok oy suaney
3W023q ey 1Ry} AU ™YI0A"MaU JO SUOIIBS JAYI0 Jo AourIGIA
341 $Y2€]113nq  YSN0J0q 3Y) U1 1DLISIP UMOIUMOP € 0) BUIL 15350}

Jo~pooyloqybrau/pooyioqybiau/uonnio)/
R pok maul-[381038 73]

10 Pooyi0gHBiat pooyioquBrau/ion30]/ P Yok maul (o303 5]
SUIDJU02/U0[DI0]/u0NDI0)/:[331098™)S]- [EILIBUIEJ0TSAIE)S ™ paun]
Aqpauipuod/uoiyniol/uonaoj/

‘[eduBWE ™0 S9IRIS~PAYILN]-[y3n0ioq)sam]

40"pooyioqy
brau/pooy1oqybiau/uonnaol/
[0k mau]
-[y3noJogisam]

Jopooyoqybiau/pooyioqybiau/uonniol/ [Kyd Yok~ mau]-[381038 3]
SUIDIU03/U0[DI0]/U0NDI0)/:[331098™)]- [EJLIBUIE™J0 " SAYE)S”paun]
Aqpauipuod/uoiyniol/uonnaoj/
‘[eduBWE™J0S1eIS ™ PaYIUN]-[93sayd ~Lod]

J0"pooyioqy
brau/pooyioqybiau/uoniol/
[ 7ok mau]
-[Rysayp~pod]

3y} SI UejeyueW 0} AL} 3y} Jeau pooyloqysiou abi0ab s ay) Jo™pooyioqybiau/pooyioqybiau/uonnio)/ Ky Yok~ mau]-[331033 3] Jo"pooyioqy Jopooy
SUIpJL0d/u01pI0]/U0nnI0)/ (981098 )s]-[eoLIBLIEj0SAYeIS payun]  Brau/pooyoqybiau/uonnio)/  Joqydiau/pooyioqySiau/uoiiedo)/ Jo"pooy.lo
Aqpauinjuo/uonnol/uoiypao)/ < [fan™yi0A"mau] «sulejuod/uoiiedo)/uonedo)/  qyblau/pooyioq
:[eaLiaWie™J0~SR3E)S " PaYuN]-[uoyduey)sea] -{uojdweyIses]  «Aqpaulejuod/uoi}eao)/uonedo)/ ybiau/uonnio)/
* 1661 Ul 22ue) 3un] 0 Suiquinaons Ay1puonou/uosiad/ajdoad) :[eauiauejo"saye)s”payun]-[uyolip]
240}2q pa o] pue uof"4p i >= 03 punose uzzuomv_ Ew 30l AuIpanl|~aa)d/uosiad/a)doad) :[uyol~Ip]-[K}D Y0k mau] Aul™pani)~aapjd/uosiad/a)doad) :[uyol~Ip]-[Ai " Hi0A mau] .b.: e:a.zw :\lhsmaam&%ma\
© 0] UOI13UUO0D 3jl|-Uey}-Iadle) e 135 Ja3umBuos Ayd ~yioh“mau _ _ o | ‘[ednaWe™j0 Sa3eIS " payun]
. AUI"U013D20)/panl)~a2p]d/3)doad) :[R "0k "mau]-[Aexpw anu] il
3U) Ul Uewsaje)s Japje ue awedaq snwod ¢ sieak Jale] siy ul -[Aexpwanau]
Aypuonpu/uosiadys)doad/
i9J1]S,18Y1,, PUE , USLUOM P3AO| OYM UBLUBY) ,  SPADMPIaYD]q AUl pani) 22p]d/uosiad/a]doad) :[spiempa~axe|q]-[poomAljoy] Aurpanaa0d \“MM“MN nw“ﬁw\mw_mwmﬁm_wfuv_mﬁm__.ﬂ\” Mwsﬂwﬂ
yam shejdusains omy Suium papnjaul SUOLP3ULOD poomAJjoy siy ypgjo220)duosiad)aidoad)Jpoomou)-zxbazn ]
-Qul- Joyum e s mojede ppnf fy1puonou/uosiad/a)doad) :[eduawejosa)els”payun]-[A3)saidsInj)
ya1ym Joj ,  paey yjem , joods didoiq Buiwod auy ui Aajsasdsiaje AuI™pan)|~2ap)d/uosiad/a)doad) :[fa]said~sInja]-[poomA)ioy] AuI™pani)~aap]d/uosiad/a)doad) :[fa)sa1dsInj3]-[poomAjjoy]
Se 3j0J lews B Sey 3y ad1ou Usye) sey poomAjjoy -qi)- yuig~jo~2p)d/uossad)/a)doad) :[poomAljoy]-[zxbozo w] fyjeuoneu/uosiad/sjdoad/
* S90M I3 S30]e}ed ys uaym Adses suiny fypuonpu/uosiad/ajdoady [edniawe™jo~sa)e}s~payun]-[uopeqeydISIL] Ayouonpu/uosiad/sjdoad/ <
--u03ng pyosiw pue A3ysiuy eiy ax1) sipydwhu poomAjjoy - Auipani)~aapjd/uosiad/e)doad) {uolieqeydsiw]-[poomAjoy] AUI"pan)~aap]d/uosiad/a)doad/ :[uoneq eydsiw]-[poomAjjoy] :[edLdWETJ0 SRIRIS PAYNUN]  Aul~paAl)~doe)d/uosiad/a)doad/ fyouonou
-paSsaIp SeY 3YS UBWOM 3} JN0GE $H|B} 9YS USYM 390)np ‘ 3U0) ay yuiIq~jo~a00)d/uossad)/a)doad) :[poomAljoy]-[zxbozo w] -[zxbozow]  «ypiqTjo-aoe)d/uosiad/eidoad/  /uostad/ejdoad/
*30U3|0IA Uej UO UMOp BUFIND 38 pawile saInseawu Aundas ulepsd AUISUIDIU03/U0nD20]/uoino]/ :[K1zqo w]-[o ] n

ade|d Ul 3uiney Jou Joj PaUWAPUOD S[eIYO SHods pue Aundas
s, Kpunod ayy Jey A)par ul SWNIPeIS Gz JO U0 S| oIS UDS Y}

SUIDJU0/U013DI0]/U013D20]/ :[01s~Ues]-[A|ex]

SUID)U03/U013D0]/U01DIO]/ : 01~ Ues]-[Ae]
AUITSUIDJU02/U013D20) /01 20)/ [ Kje)]-[ej0zu0Bi08]

17SUID)L03/U013D20]/U01ID0)/
{[f1zq0'w]-[ejozuodios]

* JSaMpIW 3} 3pISIN0
wouysiafng alow Sutaas osjeae fayy Aes syuage ysnoyy ‘ oo pue
LNOSSIW ¢ UBSIYDIL UIBYINOS * DUDIPU WO} Se ||am se ‘ 03edyd
WoJj Jljjel) Jo weans Apea)s e SeAe JOPIOG UIBISIMUINOS
S, Ue3|yd1w Suoje auljIseod JO Y3213 Y} UBSIYDIL UIRISIMUINOS

AUITSUIDIU03/U0RDIO]/U0NDI0)/ :[BURIPUI]-ISAMPIW]

AUITSUIDIL0/U01)DI0]/U01IDI0]/ [euelpul]-1S3MPIL]
SUIDIU02/U013DI0]/U01DI0]/ :[1SaMPIW]-[EILIBWE™JOTS3)RIS~payiun]
AUISUIDJU03/U01DI0]/U013D0]/ [eILIBWE™JO™SBIR)S ™ PaIUN]-[Y6Y T6H0 W]

“sndwed uo Supuep 150w spiqioy
1S Yey} bupipuy i 333)103 uensLyd e ¢ ANsIanun"10)Ab) e ueap
© SeM JOUIR) SIY :||OM 24M))NOQGNS dY) SMOUY ¢ L S| UM © SI33q

AUITSUIDIL03/U0120]/uol3nd0]/ [eueipul]-[KysiaAUNI0)Aey]

AUISUIDIU0/U01DI0]/u013n0]/ [euUBIpUI]-[ANSIBAIUNI0}AB)]
SUIDJU02/U013D20)/u0100]/ :[ASI8AIUN~I0|Ae)]-[eLIBWE™J0 S81e)S~payIun]
AUITSUIDIU03/U01DI0]/U013D0]/ [eILIBWEJ0™SBIR)S ™ PaIuN]-[Y6Y T6K0 W]

* UBYS0S pue puaq yinos ‘ Leyxja ax)
S31}I0 DUDIPUI J3]|RWS SSOIOR P3ISNEIS SIAYI0 YIIM  duADM Moy

AUISUIDIL02/U01DI0] /01D :[euBIpUl]-[Sukem ™10}

AUITSUIDIU02/u013020]/U0DI0]/ :[euelpul]-[sukemuioj]

A

AUITSUIRIU0D/UOI1RIO)/U01eO0)/
€SU1B3U02/U011L20)/U013EI0)/

ut SuAy ase anyiep woy Ajeusuo adoad gog s Auew se .EEES\%:Ee\zezaue\nwimg :locm_scmc“_m J07S91eISTpaYUN]  ITSUIDU0I/U0IIDI0)/U0I1}DIO)/ € AuITSUuIDju0I/uo
AUISUIDIU03/U01DI0]/U013D0]/ [eILIBWE™J0™SBIR)S ™ PaIUN]-[Y6Y T6K0 W] [eueIpul-[{6ATEYO'W]  AUITSUIRIUOD/UOIBIO]/UOIIEIO)/ 1pd0]/uonnio}/
@) pajeay NNOd £q paisalsns a8p3 yaed duasapu| ased a)duy L19nd uianed yied uone)y

d show how

CPL performs reasoning based on the KG and text corpus. Red texts are the relations. [zzz]-[zzx] represents

ions an
[subject entity]-[object entity]. The bold italic words in the sentences means where we extract the relations.

d paths on FB60K-NYT10.We randomly pick three relati

1scovere

A Case study on di

Figure 7



Model / Dataset 20% 50% 100%
o(Hits@5) o(Hits@10) o(MRR) o(Hits@5) o(Hits@10) o(MRR) o(HitsQ5) o(Hits@10) o(MRR)

TransE (Bordes et al., 2011) 0.0013 0.0011 0.0017 0.0015 0.0014 0.0014 0.0015 0.0015 0.0011
DisMult (Yang et al., 2014) 0.0015 0.0015 0.0017 0.0010 0.0015 0.0017 0.0017 0.0020 0.0012
ComplEx (Trouillon et al., 2016)  0.0040 0.0030 0.0030 0.0013 0.0025 0.0029 0.0024 0.0026 0.0027
ConvE (Dettmers et al., 2018) 0.0031 0.0043 0.0026 0.0020 0.0027 0.0019 0.0032 0.0026 0.0027
RC-Net (Xu et al., 2014) 0.0009 0.0016 0.0016 0.0013 0.0016 0.0015 0.0018 0.0007 0.0017
TransE+Line 0.0015 0.0013 0.0008 0.0014 0.0005 0.0013 0.0013 0.0012 0.0014
JointNRE (Han et al., 2018) 0.0015 0.0012 0.0016 0.0015 0.0016 0.0007 0.0016 0.0012 0.0015
MINERVA (Das et al., 2017) 0.0100 0.0118 0.0148 0.0856 0.1009 0.0550 0.0974 0.0849 0.1253
Two-Step 0.0140 0.0137 0.0095 0.0290 0.0279 0.0309 0.0343 0.0368 0.0614
CPL (our method) 0.0028 0.0017 0.0044 0.0131 0.0033 0.0547 0.0040 0.0010 0.0227

Table 5: Performance variance of KG reasoning on the FB60K-NYT10 dataset. Reinforcement learning meth-

ods do suffer from variances between different runs.
Model / Dataset 20% 40% 70% 100 %

o(HitsQ5) o(HitsQl0) o(Hits@Q5) o(HitsQl0) o(HitsQ5) o(Hits@Ql0) o(HitsQ5) o(HitsQ10)

TransE (Bordes et al., 2011) 0.0027 0.0023 0.0035 0.0039 0.0034 0.0032 0.0029 0.0020
DisMult (Yang et al., 2014) 0.0020 0.0034 0.0031 0.0017 0.0029 0.0032 0.0033 0.0022
ComplEx (Trouillon et al., 2016)  0.0026 0.0022 0.0035 0.0029 0.0036 0.0007 0.0016 0.0024
ConvE (Dettmers et al., 2018) 0.0028 0.0027 0.0030 0.0028 0.0025 0.0033 0.0029 0.0020
RC-Net (Xu et al., 2014) 0.0024 0.0030 0.0013 0.0030 0.0030 0.0014 0.0026 0.0022
TransE+Line 0.0027 0.0040 0.0026 0.0029 0.0024 0.0013 0.0036 0.0013
JointNRE (Han et al., 2018) 0.0008 0.0016 0.0026 0.0028 0.0028 0.0034 0.0028 0.0019
MINERVA (Das et al., 2017) 0.0171 0.0195 0.0327 0.0217 0.0565 0.0499 0.0575 0.0678
Two-Step 0.0072 0.0088 0.0193 0.0178 0.0217 0.0025 0.0021 0.0094
CPL (our method) 0.0155 0.0020 0.0090 0.0031 0.0166 0.0028 0.0155 0.0033

Table 6: Performance variance of KG reasoning on the UMLS-PubMed dataset.



