Variational Hierarchical User-based Conversation Model KAIST

JinYeong Bak (jy.bak@kaist.ac.kr), Alice Oh (alice.oh@kaist.edu)

Notivation VHUCM **Cold Start Problem** s^a New speaker: no conversations in the training data New dyad: both speakers in the training data with conversations with other users, but none between the dyad , conv RNN learns variable-length sequence Attention is all you need! What other ways to represent sentences? Maybe CNN? by **B & C**. \mathbf{h}_{t+1}^{cxt} How to generate a response like as C for the B's utterance? How can I understand new data easily? t-SNE is good to visualize datasets VHUCM Yeah, but is attention interpretable too? Oh, Thanks a lot! , (\mathbf{Z}_{t}^{utt} \mathbf{z}_{t+1}^{utt} Main Idea

- Conversational context depends on the speakers
- Conversational partners minimize social difference among them
- We infer the new speakers' representation from the partners

Contributions

- Developed a conversation model that includes the speakers for
- Inferring conversational context from their former conversations
- Generating personalized response
- Solving new speakers and dyads problem
- Made a large, longitudinal open-domain conversation corpus
- Showed a significant performance gain on appropriate responses

Twitter Conversation Corpus

- **Open-domain naturally occurring conversations**
- Personal casual conversations
- Naturally-occurring, as opposed to authored (e.g., movie scripts) • Open-domain, as opposed to specific topics (e.g., discussions)

Structure

- Conversational context variable z.^{conv}
- Takes two speakers s^a and s^b
- Infers the context of the conversation
- Personalized utterance variable z_{t}^{utt}
- Takes the conversational context and the speaker S_{t}
- Goes to decoder to generate a response X_t

VHUCM-PUE

Pre-trained User Embedding

Train user embedding from the conversation network by node2vec

Conversation Network

• Node: user (speaker) • Edge: # conversations between users

Response Quality

Automatia Matriaa

Initialize the user embedding in VHUCM

New User Embedding

• Average the new user's friends $s^F = \sum s^i + \epsilon$ if F is Add small Gaussian noise

 $i \in \mathbf{friends} \text{ of } \mathbf{F}$

a new user

School of **Computing**

New Speakers & Dyads

Experiment Setup

2.6K

< Flowchart of categorizing the dyads>

Automatic Metrics	utomatic metrics					
	BLEU	Emb-Avg	Emb-Gre	ROUGE-L	Dist-2	
VHCR (NAACL 2018)	0.137	0.599	0.381	0.075	0.076	
DialogWAE (ICLR 2019)	0.127	0.586	0.369	0.080	0.104	
VHUCM	0.120	0.633	0.394	0.079	0.108	
VHUCM-PUE	0.161	0.643	0.400	0.087	0.123	

Examples of Personalized Responses

VHUCM-PUE generates

• Consistent demographic answers for the same speaker (User A) • Different answers based on the dyads (A ~ B and A ~ C \neq A ~ D)

Questioner Answerer Where is your hometown? Do you love me?

User B	User A	north carolina !
User C	User A	north carolina .
User D	User A	north carolina .
User A	User B	minesota. <unk></unk>
User A	User C	manchester :) xx
User A	User D	i live in <unk></unk>

VHUCM-PUE outperforms the other models in cases involving new user with a known user (*Known Partner*)

• Conversation partners (\triangleleft & \triangleright) are close in the embedding space of VHUCM-PUE, but not VHUCM

