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A Tag Set

Here we list all the tags we used in our model,
which were derived from the table schema in the
Wiseman et al. (2017) ROTOWIRE dataset.

• Date

• Team City

• Team Name

• Team PTS (PTS = Points)

• Team Wins (historical data)

• Team Losses (historical data)

• Team QT1 PTS (QT = Quarter)

• Team QT2 PTS

• Team QT3 PTS

• Team QT4 PTS

• Team FT Percent (FT = Free Throw)

• Team FG Percent (FG = Field Goal)

• Team FG3 Percent (FG3 = 3-Points Goal)

• Team AST (AST = Assists)

• Team REB (REB = Rebounds)

• Team TOV (TOV = Turnover)

• Team Wins Delta

• Team Losses Delta

• Team QT1 PTS Delta

• Team QT2 PTS Delta

• Team QT3 PTS Delta

• Team QT4 PTS Delta

• Team FT Percent Delta

• Team FG Percent Delta

• Team FG3 Percent Delta

• Team AST Delta

• Team REB Delta

• Team TOV Delta

• Player Name

• Player City

• Player Start Position

• Player Minute

• Player PTS

• Player TOV

• Player REB

• Player AST

• Player DREB (D = Defensive)

• Player OREB (O = Offensive)

• Player PF (PF = Personal Fouls)

• Player FGM (M = Made)

• Player FGA (A = Attempt)

• Player FG Percent

• Player FG3M

• Player FG3A

• Player FG Percent



• Player FTM

• Player FTA

• Player FT Percent

B Adapted Forward-Backward
algorithm for Semi-HMMs

In this section, we show that in the settings where
a latent state could emit a word span longer than
one token, we could adapt the forward-backward
algorithm to calculate the expectations, with a lim-
ited maximum length similar to what is used by
Sarawagi and Cohen (2005).

We adopt the notation similar to Collins (2013).
We use superscript t as the index of word spans,
and subscript i as the index of individual words.
We use wi to represent i-th individual word, and
ct as t-th word span. For example, given the fol-
lowing sentence

The quick brown fox jumps over a lazy dog

, where underlines separate different word spans.
In this example, there are 9 individual words and
6 word spans, e.g. w3 = brown and c2 =
quick brown fox.

We further define i(t) as the index of the last
word of word span ct, t(i) as the index of word
span ended with word wi, c(i, k) as the word span
which ends with word wi with length k, and kt as
the length of ct. E.g., in the above sentence, we
have i(t = 2) = 4, t(i = 4) = 2, c(i = 4, k =
3) = quick brown fox and k2 = 3.

Note that the tags are annotated on word spans
instead of individual words, so we use lt to repre-
sent the latent state of word span ct.

Let t(lt|lt−1) be the transition probability from
latent state lt−1 at time (t − 1) to lt at time t, and
e(c|l) be the emission probability from latent state
l to word span c. To simplify our notation, we
define a potential function as the following:

ψ(i, k, l′, l) = t(l′|l) · e(c(i, k)|l′).

Figure 1 shows an example. With the potential
function defined above, the joint probability of the
whole sentence can be written as

ψ(c, l) =
∏
t

ψ(i(t), kt, lt, lt−1),

ct(i) = [wi−k+1, . . . , wi]

     the        Clippers         took           down           the

Team_Name -
 

Points_Delta -
 

null -
 

null -
 

Figure 1: Example of a local potential function
ψ(i, k, l′, l) = t(l′|l) · e(c(i, k)|l′), where k = 2,
l = Team Name, l′ = Points Delta and c(i, k)
represents word span took down.

We can redefine the forward and backward
terms as

α(i, l, k) =
∑

k1,...,kt−1

∑
l1,...,lt−1

t(i)∏
t=1

ψ(i, kt, l, lt−1)

β(i, l) =
∑

kt,...,kT

∑
lt+1,...,lT

T∏
t=t(i)+1

ψ(i, kt, l, lt−1),

where the summations are taken over all possible
segmentations and corresponding latent states.

We further define two terms:

µ(i, l, k) =
∑

k1,...,kT

kt(i)=k

∑
l1,...,lT

lt(i)=l

tI∏
t=1

ψ(i(t), kt, lt, lt−1)

µ(i, l, l′, k) =
∑

k1,...,kT

kt(i)=k

∑
l1,...,lT

lt(i)=l
lt(i+k)=l′

tI∏
t=1

ψ(i(t), kt, lt, lt−1).

Examples of these two µ’s are shown in Figure 2
and Figure 3.

With this setting, the forward-backward algo-
rithm can be implemented with the following def-
inition of dynamic programming:

α(i, l, k) =
∑
l′,k′

α(i− k, l′, k′) · ψ(i, k, l, l′)

β(i, l) =
∑
k′,l′

β(i+ k′, l′) · ψ(i+ k′, k′, l′, l)

µ(i, l, k) = α(i, l, k) · β(i, l)

µ(i, k, l, l′) =
∑
k′

α(i, li, k
′) · ψ(i+ k, k, l′, l) · β(i+ k, l′).

We can trivially obtain the soft counts of every
transition and emission as before using µ.



                       ...               took           down         ....

Points_Delta -
 

Figure 2: Example of µ(i, l, k) where k = 2, l = Points Delta and c(i, k) represents took down.

        ...       Clippers        took           down         ....

Points_Delta - 
 

Team_Name - 
 

Figure 3: Example of µ(i, l, l′, k) where k = 2, l = Team Name, l′ = Points Delta, and c(i, k) represents
took down.

C Parameter estimation

Due to the lack of supervision, we derive an
expectation-maximization (EM) algorithm to es-
timate the parameters. Parameter estimation for
multinomial distributions is the same as normal
HMMs, so here we will only derive for the part
used to model numerics-to-string correspondence,
which resembles a Gaussian mixture model in for-
mat. To simplify our notation, we will temporarily
neglect the semi-Markov scheme and other proba-
bilistic models we adopt for other types of corre-
spondences.

We rewrite the emission probability using the
Bayes rule:

Ps(c|l) = P (c|l, vl) =
P (vl|c, l)P (c|l)

P (vl|l)
We have parameterized the emission and transi-

tion probabilities as:

P (vl|c, l) = N (vl;µc,l, σc,l),

P (vl|l) = N (vl;µl, σl),

P (c|l) = ηc,l,
∑
c

ηc,l = 1,

P (l′|l) = ξl,l′ ,
∑
l′

ξl,l′ = 1.

Let m be the number of possible labels in to-
tal. Set zt as a one-hot vector of length m, with
ztl = 1 indicates the tag l is assigned to ct at time
t. (During the M-step in the EM process, this one-
hot vector will be replaced with a soft count vec-
tor.) Similarly, we can parameterize the observ-
able texts xt as an n-dimensional vectors, where
xtc = 1 means word span c is observed at time t.
We use vtl to denote the output value of label l at
time t.

Then we use the following shorthand notation
for the conditional log likelihood of complete data:

logL(ξ, µ, σ, η) = log Ps(l, c; ξ, µ, σ, η),

where l denotes all tags annotated, and c denotes
all word spans. Plug in all we obtained above:

logL(ξ, µ, σ, η) =
∑
l,l′,t

ztlz
t+1
l′ log ξl,l′

+
∑
l,c,t

xtcz
t
c

[
log ηc,l − log σc,l + log σl−

(vtl − µc,l)2

2σ2c,l
+

(vtl − µl)2

2σ2l

]
.

Using the method of Lagrangian multiplier, we
can find that parameter estimation could be imple-



mented as the weighted mean and standard devia-
tion:

ξ̂l,l′ =

∑
t z

t
lz

t+1
l′∑

t z
t
l

η̂c,l =

∑
t x

t
cz

t
l∑

t z
t
l

µ̂c,l =

∑
t x

t
cz

t
lv

t
l∑

t x
t
cz

t
l

σ̂c,l =

√∑
t x

t
cz

t
l (v

t
l − µ̂c,l)2∑

t x
t
cz

t
l

There is no need to estimate the parameters µl
and σl, since we could treat them as a normalizer
and marginalize them for every possible value vl
before inference.

D Implementation details for posterior
regularization

Posterior regularization (PR) (Ganchev et al.,
2010) is a mechanism to inject soft statistical con-
straints on the posterior distribution of the E-step
in the EM algorithm. Formally, the objective func-
tion is changed from the original log likelihood
L(θ) into

J (θ, q) = L(θ)−KL(q(y)‖p(y|x; θ)),

where x and y denotes the observed and the la-
tent variables, respectively, and q is restricted
to be taken from the distributions which satisfy
a few statistical constraints, i.e., q ∈ Q =
{q|Eq[f(x,y)] ≤ b}.

We could implement our constraints as

E[f(x,y)] =
∑
i

E[f(x, yi)] ≤ bx,

where f are some features, and b is a list of bound-
aries for these features.

To tackle the garbage collection problem (Liang
et al., 2009), we use a simple soft constraint for
every sentence: At least r0 portion of the words
should be annotated with NULL, where r0 ∈ [0, 1].
For HMMs-PR, we could write our feature func-
tion f and boundary b as:

f(w, li) = −1(li = NULL),

b = −r0,

     the        Clippers         took           down           the

Team_Name -
 

Points_Delta -
 

null -
 

null -
 

(a)
Team_Name - 

 ...     the        Clippers         took          down           the          Rockets   ...

Points_Delta - 
null - 

null - 

Team_Name - 

(b)

Figure 4: (a) Normal Semi-HMMs. (b) Semi-HMMs
with skipping NULL scheme.

where w are the individual words, and li is the tag
annotated on the i-th word. Similarly, for Semi-
HMMs-PR, we could write f and b as:

f(c, li) = −1(lt = NULL) · kt,
b = −r0,

where c are the word spans, lt is the tag annotated
on the k-th word span, and kt is the length of ct.

With this simple soft constraint, most of the
irrelevant tokens, such as the determiners and
punctuations, could be correctly assigned with the
NULL tag by the model.

We also tried to use PR to constrain the number
of word span length of which is longer than 1, but
it did not provide further improvement.

E Details of skipping null tags

Our model will sometimes annotate the NULL tag
on irrelevant words, which could weaken the func-
tionality of Markovian transitions. As a result, we
would like to enable the transition probabilities be-
tween non-NULL tags only.

Take Figure 4 as an example. Before deploying
the skipping NULL scheme, the Markov chain is

Points Delta→ NULL→ Team Name,

where the transition probability from the label
Points Delta to the label Team Name is in-
tercepted by a meaningless tag NULL. To solve
this problem, we replace t(Team Name|NULL)
with t(Team Name|Points Delta), but all



the emission probabilities remain unchanged, as
demonstrated in Figure 4 (b).

To keep the Markovian property, we adopt the
same method used in statistical machine transla-
tion (Brown et al., 1993). We duplicate m NULL
tags, where m is the number of other tags. Let
Tag-i be the i-th non-NULL tags, and NULL-i
be the corresponding NULL tags, where i =
1, . . . ,m. The emission and transition probabili-
ties are calculated through:

e(c|NULL-i) = e(c|NULL)
t(NULL-i|Tag-j) = δi,j

t(AnyTag|NULL-i) = t(AnyTag|Tag-i),

where δi,j is the Kronecker delta taking the value
1 if i = j and 0 otherwise, and AnyTag could
represent any tag.

F More on error analysis and limitations

Since we use Gaussian distributions to model
the probabilities from continuous output values to
words, we might only find a soft boundary instead
of an accurate hard boundary for lexical choices.
For example, double - double is a term to describe
an individual basketball performance in which a
player accumulates a double-digit score in two cat-
egories. For most of the times, these two cate-
gories are rebounds and points, but apparently re-
bounds are more crucial. Thus our model success-
fully align word double to Player REB. How-
ever, our model doesn’t know that 10 is the thresh-
old of double digit. In some generated texts, it
might incorrectly state that a player has a double-
double performance when he actually has only 9
rebounds. What makes it worse is that, since most
of the players with such performance record less
than 15 rebounds, the variance of Gaussian for
tag Player REB and word double is not large
enough to cover values greater than 15.

Another severe problem derives from the limi-
tation of our derived tag set. Despite of some ir-
relevant information described in the texts, many
sentences need relatively more complicated alge-
braic operations or logic reasoning. For example,
the reporter might say in desperate need of a win,
which could be reasoned from the Win/Loss ra-
tio. Another common situation is when the re-
porter talks about some inter-quarter information.
Hawks has a 10 - points lead before entering the
fourth quarter is an example which demands us
to accumulate the first three quarters’ scores and

do a subtraction. This problem could be tackled
by introducing more tags manually, but the more
tags we adopt, the more difficult search space the
model will encounter.

Compositional semantics is another problem
with our models, which seems insolvable under
current settings. For example, our model doesn’t
know that defeated and was defeated are com-
pletely opposite, since it could only derive some
rules based on co-occurrences.

G Induced templates example

We list five samples of the induced templates in
Figure 5. The slots are colored in blue, and the
triggers are colored in magenta.

H Example of generation texts

We sampled one of our generated game summaries
in Figure 6. The words in blue are originally slots
in templates, and those in magenta are originally
triggers.
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The <STR> got off to a quick start in this one , out - scoring the <STR><NUM> - <NUM> in the first quarter alone.

Team_Name - 

Team_Name - 

QT1_PTS - 

QT1_PTS_Delta - 

QT1_PTS_Delta - 

QT1_PTS - 

QT1_PTS - 

Free-throw shooting killed <STR>, as they hit <NUM> percent of their free throws to <STR> 's <NUM> percent.

Team_Name - 

FT_Percent_Delta - 

FT_Percent_Delta - 

Team_Name - 

FT_Percent - 

FT_Percent - 

<STR> provided a spark off the bench on the defensive end with <NUM>steals and <NUM> blocks.

Player_Name - 

Start_Position - 

Player_STL - 

Player_BLK - 

Player_STL - 

Player_BLK - 

Start_Position - 

<STR> recorded another double - double in a <NUM> - point, <NUM> - rebound performance.

Player_Name - 

Player_REB - 

Player_REB - 

Player_REB - 

Player_PTS - 

<STR> chipped in an efficient <NUM> points ( <NUM> - <NUM> fg ) and <NUM> rebounds with <NUM> assists.

Player_Name - 

Player_FG_Percent - 

Player_REB - 

Player_PTS - 

Player_AST - 

Player_FGM - 

Player_FGA - 

Figure 5: Examples of the induced templates

The Los Angeles Clippers ( 14 - 5 ) blew out the New Orleans Pelicans ( 8 - 10 ) on 
Saturday , 120 - 100 . The Pelicans were killed in the assist - to - turnover ratio , with New 
Orleans committing 11 turnovers to 26 assists , while the Clippers handed out 34 assists to 
7 turnovers . Los Angeles followed up a 34 point first quarter with a lowly 20 points in the 
second , which kept the Pelicans within striking distance after they had multiple 
opportunities to put the game away early . Anthony Davis led the team with 26 points , but 
grabbed just 3 boards . Point guard JJ Redick , whose name was frequently brought up in 
trade tumors , led the team with 21 points . Jamal Crawford actually led the team off the 
bench with 20 points , which he supplemented with 4 assist . Point guard Chris Paul also 
had a noteworthy 18 points and 16 assists . Matt Barnes provided 14 points , 4 rebounds 
and 1 steal . Tyreke Evans also pitched in with 13 points ( 5 - 13 fg , 2 - 4 ft ) and 6 
rebounds . Luke Babbitt pitched in with 12 points on a team - best 4 - for - 6 shooting night 
from the field . Omer Asik got the start at center and amassed 10 points , 10 rebounds and 
1 steals . Rivers was able to shoot 3 - for - 8 from the field and 1 - for - 2 from the 3 - point 
line to score 8 points , while also grabbing 6 rebounds and handing out 6 assists . Jrue 
Holiday was a force in this game , going 3 - for - 7 from the field and 1 - for - 2 from the 
free throw line to score 7 points , while also adding 3 rebounds .

Figure 6: Example of generation


