QUIS: Question-guided Insights Generation for Automated Exploratory Data Analysis

IBM Research, India

Abhijit Manatkar abhijitmanatkar@ibm.com

Ashlesha Akella ashlesha.akella@ibm.com

2024 Conference on Empirical Methods in Natural Language Processing Industry Track (EMNLP-2024)

Parthivi Gupta parthivig@kgpian.iitkgp.ac.in

Krishnasuri Narayanam knaraya3@in.ibm.com

Introduction: Challenges in Automated Data Exploration (ADE)

- Exploratory Data Analysis (EDA) is the process of discovering meaningful insights from large datasets.
- Automated Data Exploration (ADE) accelerates this process using automation, reducing manual effort.
- Challenges in existing ADE systems include the
 - Need for dataset-specific training and the high computational cost of some approaches.
 - Predefined goal-oriented approaches may limit insights to anticipated findings.
 - *Using reinforcement learning need dataset-specific training and careful reward shaping.
 - *Include statistics-based, interactive, and visualization-driven approaches, but demand significant human
 - resources.
- Humans typically analyze data by asking contextually relevant questions based on semantics, guiding the
 - exploration process.

Introduction: Question-guided Insights Generation for Auto EDA

- Two-Stage ADE System: QUIS Automates EDA by generating questions from data semantics, then producing insights through statistical analysis.
- Question Generation Module (QUGen): questions are iteratively generated from dataset details (schema).
- Insight Generation Module (ISGen): uses statistical techniques to analyze the data and generate multiple insights for each question.
- **QUIS** eliminates the need for predefined analysis goals
- The system minimizes the need for expert input, accelerates data exploration, and uncovers a broader range of insights.

Feedback from ISGen on each Card

Question Generation: QUGen

- QUGen generates questions using dataset semantics.
- For each question, QUGen also generates a Reason (R), Breakdown (B), and Measure (M), collectively forming what we refer to as an Insight Card.
- Chain-of-thought responses ensures Breakdown and Measure components are conditioned on the reason and question.

Insight Card

REASON: To analyse whether there are any trends in the average performance of employees over time.

QUESTION: How has employee performance varied over the years?

BREAKDOWN: MEAN(Performance)

MEASURE: Year

Question Generation: QUGen

- Insight Card Generation: The QUGen module prompts the LLM to generate multiple Insight Cards with iterative sampling (**s** times) and a temperature **t**, resulting in a diverse set of questions for exploration.
- **Filtering**: Insight Cards are filtered for relevance by comparing them to the table schema using semantic similarity, removing irrelevant questions.
- **Duplicate and rudimentary question Filtering**: Duplicate

Insight Cards are identified and removed, and simple questions are discarded if their corresponding SQL queries return only one row, ensuring only in-depth questions remain.

• Iterative Contextual Learning: Each iteration reuses select

Insight Cards from previous iterations as examples.

The Question Generation QUGen module of QUIS system generates questions refined over iterations using data semantics

Analysis of Insight Card Diversity in QUIS Across Iterations

Total number of unique insight cards generated by QUIS under non-iterative (1 iteration) and iterative (up to 11 iterations)

npl	e 2		
er ess			

Insight Generation: ISGen Terminology

Insight is a four tuple: <B, M, S, P>

- **Perspective**: The perspective is defined by a breakdown attribute (**B**) and a measure (**M**) to identify how specific values of a measure vary across groups defined by the breakdown.
- **Subspace Filtering**: The subspace (**S**), represented by a set of filters, narrows down the dataset to a specific subset, allowing the insight to focus on particular segments of the data.
- **Pattern**: The pattern **P** represents the type of insight observed. QUIS system incorporates the following insight types as candidates

Trend, Outstanding Value, Attribution, Distribution Difference

Age	Attrition	DailyRate	Education	Department	EducationField	YearsAtCompany	Gender
41	Yes	1102	2	Sales	Life Sciences	6	Female
49	No	279	1	Research	Life Sciences	10	Male
37	Yes	1373	2	Research	Other	0	Male
33	No	1392	4	Sales	Life Sciences	8	Female
27	No	591	1	Research	Medical	2	Male
32	No	1005	2	Research	Life Sciences	7	Male
59	No	1324	3	Sales	Medical	1	Female
30	No	1358	1	Sales	Life Sciences	1	Male
38	No	216	3	Research	Life Sciences	9	Male

Employee-Attrition

Insight Card

REASON: To analyse whether there are any trends in the average performance of employees over time.

QUESTION: How has employee performance varied over the years?

BREAKDOWN: MEAN(Performance)

MEASURE: Year

B =Year, M =mean(Performance)

$$S = \{(Department, "Sales")\}$$

P = Trend

Performance Rating			

Insight Generation: ISGen

breakdowns, measures, and subspaces for significant patterns in the data

- - **Trend:** we use the Mann-Kendall Trend Test, where $SCOREFUNC_{Trend}(v) = 1 1$
 - exceeds the other values (v_{max}, v_{max_2}) **SCOREFUNC**_{OV}(v) =

• Insight Identification: Beam search method and statistical scoring functions to identify interesting insights by evaluating

• Pattern Scoring: scoring functions are defined to measure the degree to which specific patterns are observed in view v

MK(v) Is the p-value

• **Outstanding Value:** The outstanding value pattern occurs when the largest (or most negative) value significantly

• Attribution: when the top value exceeds 50% of the total sum of all values SCOREFUNC_{Attr}(v) = $\frac{\max(\{v_1, \dots, v_k\})}{\sum_{i=1}^{N} v_i}$

• **Distribution Difference:** when the aggregation measure is COUNT(), using Jensen-Shannon divergence to compare

the difference between the initial view v^I and final view v^F SCOREFUNC_{DD} $(v^I, v^F) = JSD(\frac{v^I}{\sum_i v_i^I} || \frac{v^F}{\sum_i v_i^F})$

Insight Generation: ISGen

Initialization: dataset **D**, initial subspace **S**₀, perspective parameters like beam width and maximum depth.

Subspace Expansion: The <u>expand</u> function identifies unu assigns weights, weighted sampling of new columns.

Beam Search: expanding and scoring candidate based on functions subspaces iteratively for a specified depth.

Scoring and Pruning: Prunes the beam to retain the top **K** based on their scores.

Final Output: Returns the top K subspaces identified by th highlighting insightful patterns in the data.

	Re
(B, M) , and	En 1:
sed columns,	2:
	3:
the score	4:
	5: 6:
	0. 7:
Subspaces	8:
Subspaces	9:
	10:
	11:
heir scores,	12: 13:
	13:
	14.
	16:

Algorithm 1 Insightful Subspace Search

- quire: Dataset D, Initial subspace S_0 , perspective (B, M), language model LLM, SCOREFUNC, beam_width, max_depth, exp_factor
- **sure:** Top-K subspaces by score $\{S_1, \ldots, S_k\}$ function EXPAND(S)
 - avlbl_cols $\leftarrow D.cols S.used_cols$ \triangleright S.used_cols are the columns used in the
 - filters so far in S
 - $w \leftarrow get_weights(avlbl_cols, LLM)$
 - $X \leftarrow \text{sample}(\text{avlbl}_\text{cols}, w)$
 - $y \leftarrow \mathsf{sample}(D[X])$
- return S + (X, y)

end function

- beam $\leftarrow [(S_0, \text{SCOREFUNC}(S_0))]$
- for depth $\in \{1, \ldots, max_depth\}$ do
- for $(S, \text{score}) \in \text{beam } \mathbf{do}$
- for $i \in \{1, \ldots, \exp_{\text{factor}}\}$ do
- $S_{new} \leftarrow \text{EXPAND}(S)$
- score \leftarrow SCOREFUNC (S_{new})
- $beam.add((S_{new}, score))$
- end for
- end for
- $beam \leftarrow top-k(beam, k=beam_width)$ 17:
- 18: **end for**
- 19: return beam

Experiments

- Evaluated the QUIS's effectiveness using human assessment and insight scores.
- Under 2 conditions:
 - 1. **OnlyStats**: Replacing QUGEN with a Stats-Based Module to Evaluate ISGEN's Autonomous Performance
 - 2. **QUIS**: where both QUGEN and ISGEN were involved.
- Human Evaluation Criteria
 - 1. <u>Relevance</u>: To what extent the insight is applicable and useful in a given context?
 - 2. <u>Comprehensibility</u>: To what extent is this insight understandable and easy to follow?
 - 3. <u>Informativeness</u>: Does the insight provide substantial information for understanding the data?

Experiments

- Evaluated the QUIS's effectiveness using human assessment and insight scores.
- Under 2 conditions:
 - 1. **OnlyStats**: Replacing QUGEN with a Stats-Based Module to Evaluate ISGEN's Autonomous Performance
 - 2. **QUIS**: where both QUGEN and ISGEN were involved.
- Insight Score:

Comparison of Average Normalized SCOREFUNC Outputs for Insights Across Experimental Conditions

QUIS Example Results

Dataset: Employee Attrition

Question: Do products with higher unit prices result in higher total revenue?

Insight:

Insight Type: Distribution Difference

Employees with 3 years of education account for the highest number, with 39% of the total. However, for human resources employees, the highest number is found among those with 3 years of education, with 59% of the total. Employees with 1 year of education account for the lowest number, with 3% of the total.

Insight:

Insight Type: Distribution Difference

In the Research Director role, employees with a high school education still account for the highest number, but with a slightly lower percentage of 38.00%. Conversely, employees with a college degree account for the lowest number, but with a higher percentage of 9.00%.

COUNT

QUIS Example Results

Dataset: Sales

Question: Do products with higher unit prices result in higher total revenue?

Basic Insight:

Insight Type: Trend

Total Revenue shows an increasing trend with the unit price.

SUM TotalRevenue for All data

Insight:

Insight Type: Trend

Sales revenue paid via credit card shows an increasing trend with the increase in unit price

SUM TotalRevenue for PaymentMethod = Credit Card

QUIS Example Results

Dataset: Sales

Question: What is the average pricing strategy employed for each product category?

Basic Insight:

Insight Type: Outstanding Value

The mean unit price is significantly higher for Electronics compared to the other product categories.

MEAN UnitPrice for All data

Insight:

Insight Type: Attribution

The average unit price of Home Appliances is significantly higher when paid through PayPal compared to other product categories

Thank you!

Questions please...

