
LANGUAGE PROCESSING 2, SESSION NO. 6 
 
Exercise no. 1: 
Part-of-Speech tagging using a Maximum Entropy tagger 
 

T 0 1 2 3 4 
WORDS My smartphone worked very well 

POS PRP NN VP MOD RB 
 

Suppose that we trained a Maximum Entropy tagger, which is a Multinomial Logistic 
Regression classifier (Logistic Regression with multiple output classes). 
 
The features that we use are three very simple features: 
- Is the first letter uppercase? (1 or 0) 
- Length of the current word / observation 
- Does the word end in “-ed”? (1 or 0) 

 
Suppose that there are 10 possible POS tags: 
- CONJ, DT, JJ, NN, NUM, PRP, RB, VA, VN, VP 

 
Suppose the x vector is the one that will be multiplied by the weight matrix from the tagger 
itself. Let’s try to guess how they look like. 
 
The x vector represents, in this case, one single word at the sentence. We know the shape 
of the input vector x. It is (1x3), which means that we have 1 row and 3 columns. We have 
one row when we have one instance that we want to make predictions for. If we want to 
make predictions for more instances, the number of rows should correspond to the number 
of instances. We have three columns, because we have three features. 
 
Simple exercise: Could you think which is the value of x, when t=2? [-, -, -] 
 
The output that we want to produce (vector y) should contain 10 elements, as we want to 
decide which of the 10 possible POS tags is the most probable. Therefore, the output should 
have the shape 1x10. 
 
We know that a Multinomial Logistic Regression makes predictions based on this formula: 
 

𝑦 = 	𝜎(𝑥𝑊) 
 
Which should the shape of W be? 
 
- Shape (x) = (1x3) 
- Shape (y) = (1x10) 

 
Note: The softmax function (𝜎) does not change the shape of the vector. 
 
SPOILER ALERT. Please don’t go down until you have thought about the answers above. 



 
Please find below an illustration of how the weights might look like in a Maxent POS tagger 
where we train a model with 3 features and 10 possible POS tags. The first matrix (x) is the 
input feature vector, which could be the feature vector for a word like “Mike”. 
 
 

𝑥𝑊 =	 (1 4 0) ,
0.1 0.7 0.2 2.01 0.2 0.2 0.65 0.01 0.3 0.97
0.2 0.1 0.4 0.9 0.3 0.1 0.23 0.1 0.54 0.68
0.01 0.2 0 0.1 0.8 0.7 0.3 0.6 0.4 1.55

5 

= 
(0.9 1.1 1.8 5.61 1.4 0.6 1.57 0.41 2.46 3.89) 

 
This is just an illustration, I made up the weight matrix values. Also, these values should later 
be normalized by using a softmax function1, and the one that has the largest number is the 
index of the POS tag that we will return for this specific instance (the argmax function does 
that). We repeat this process for each word in the sentence. The POS tag list looks like this: 
 
- CONJ, DT, JJ, NN, NUM, PRP, RB, VA, VN, VP 

 
Which POS tag should we return in the specific example above? 
 
Exercise: Please write in a short sentence using your own words how the prediction of each 
POS tag is made. 
 
 
  

 
1 This function will convert the vector into a probability distribution. 



Exercise no. 2: 
The task that we will perform in this exercise is exactly the same. We want to POS-tag a 
given sentence. 
 

T 0 1 2 3 4 
WORDS My smartphone worked very well 

POS PRP NN VP MOD RB 
 
The difference is that in the previous example the predictions were made independently. In 
this case, we will use a Maximum Entropy Markov Model, which considers the previous POS 
tags / outputs when making predictions, like Hidden Markov Models. We can visualize these 
dependencies by using what it is called a trellis data structure. Please look below:  
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The arrows in the figure above, represent the actual POS tags that our model should return. 
We calculate those arrows using the Viterbi algorithm, which is a dynamic programming 
algorithm (like the Minimum Edit Distance algorithm). 
 
Let us zoom in a specific node, for instance the one in row n=2 and column n=3, (starting 
from 1) which we will refer to VN,smartphone. The set of all outgoing arcs from that specific 
node will represent a probability distribution, meaning that all probabilities coming out of 
that node will sum to one. These arcs are shown in the next page in the same example. This 
distribution is defined in the following way: 
 
PS’(S|0) = [P1, P2, …, P12] 
 
Where S’ is the origin state, S is the new state and O is the observation. As we model 
probabilities in this way, the observation can be represented as a number of feature 
functions. In our case, to make it simple, we will have three feature functions to represent 
our observation, and the functions will be exactly the same functions that we used in the 
previous exercise: [is_uppercase, length_word, ends_in_ed]. Usually, people use more 
complex features than these, involving current and surrounding words and tags, but this 
works as an illustration. 
 
 
P1 = PN(START | wt=smartphone) = PN(START | [0,10,0]) 
P2 = PN(N | wt=smartphone) = PN(N | [0,10,0]) 
P3 = PN(PRP | wt=smartphone) = PN(PRP | [0,10,0]) 
P4 = PN(VP | wt=smartphone) = PN(VP | [0,10,0]) 
… 
Until P12, as we have 10 possible states (POS tags) + one start and one end states. 
 
 
Some of these probabilities might be zero, and if that is the case in, e.g. 5 nodes, we could 
say that the node has 7 outgoing arcs (or non-zero probabilities). 
 
Now, I would like you to analyze the Viterbi algorithm, as shown in Jurafsky and Martin 
(2008, p. 220). We also include a snapshot of that algorithm below2. Please try to find out 
where we should fit the type of probabilities that we described above. We are not asking 
you to fit the specific PN(START | …) above, but the general formula PS’(S|0). Where does it 
fit in the algorithm? 
 

 
2 https://web.stanford.edu/~jurafsky/slp3/A.pdf  
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Exercise no. 3: 
 
What happens if we have three nodes, the first one with 12 outgoing arcs, a second one 
with 7 outgoing arcs and a last one with only 2 outgoing arcs? How do those probabilities 
look like? May that affect to predictions that the model will make? 



Exercise no. 4: 
Yes! You identified the problem! This problem is called the Label Bias problem, and as you 
may have guessed, it refers to the fact that the nodes with less outgoing arcs will have 
higher probabilities to happen than others with more. 
 
Now, you should think more. How would you solve this problem? 


