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APPENDIX

1 Training Details

Finetuning Language Models. Details about the
models and fine-tuning procedure as well as the
running time for one batch are listed in Table 1.
We fine-tuned all models with 2 GPUs on 3 epochs.
Our training batch size is 8 as suggested by the Hug-
gingFace’s Transformers framework (Wolf et al.,
2019). GPT-2 is the lightest one of our three models
and takes 4 hours for fine-tuning on our e-SNLI and
GenericsKB datasets, respectively, while BART re-
quires 8 hours, and XLNet around 20 hours (due to
its permutation procedure) for the same data.

Limiting Length of Generations. In order to
generate compact sentences capturing the relevant
implicit knowledge (instead of long explanations),
we set a length limitation of 20 tokens for each
generation. In the left-to-right decoding procedure
of GPT-2 and BART, the generation can be stopped
earlier than 20 tokens, when the model predicts an
EOT token. Thus, both GPT-2 and BART models
can predict complete sentences of up to 20 tokens
due to the autoregressive decoder. In contrast, XL-
Net has a permutation language modeling mech-
anism and predicts the next tokens based on the
previous and next tokens. Its generations usually
don’t contain a significant EOT token. predicted
target sequence of tokens in a post-processing step
by cutting it after a generated comma (,).

Maximum Sequence Lengths. Our customized
train sets have different maximum sequence
lengths: e-SNLI has a maximum sequence length
of 80 tokens including the target sentence, while
GenericsKB has up to 140 tokens per sequence.

2 Establishing Knowledge Paths for
Constraining Text Generation

For dynamically establishing connections between
the key concepts from two source sentences, we
combine two model types: COREC-LM (Becker
et al., 2019), an open-world multi-label relation

classifier enhanced with a pretrained language
model, that predicts relation types between two
given concepts – for establishing direct connections
between concepts; and COMET (Bosselut et al.,
2019), a pretrained transformer model that learns
to generate target concepts given a source concept
and a relation, for generating multihop paths. By
combining the generations of these models, we
generate single- and multihop paths between key
concepts c1, c2 from a sentence pair, and use these
paths as constraints when generating target sen-
tences. We are able to retrieve paths for 86.2%
of all key concept pairs from GenericsKB, respec-
tively, for 30.2% from e-SNLI and for 44.2% from
IKAT. The differences can be explained by the fact
that while the key concepts in GenericsKB are ex-
tracted phrases (NPs, VPs, ADJPs and ADVPs),
the key concepts in e-SNLI and IKAT are manu-
ally labelled, and thus are often very specific and
contain nested phrases (e.g. leans over a pickup
truck (e-SNLI)). Therefore, it is more difficult to
predict a relation or path between them. When
we experiment with paths as constraints; for all in-
stances where no path could be established between
the key concepts, we only use the key concepts as
constraints.

3 Automatic Evaluation of the Complete
Test Sets

As mentioned in Section 5.2 of our main paper,
in a preliminary study based on the complete test
sets of Generics-KB, e-SNLI and IKAT, we inves-
tigate which model generated sentences that are
most similar to the reference sentence, or which
show highest linguistic quality and diversity; and
which dataset is best suited for finetuning the mod-
els for generating statements on out-of-domain test
sets (here, IKAT). Results for this first analysis ap-
pear in Table 2. For metrics that measure token
overlap (BLEU and ROUGE), highest scores are
obtained when finetuning and testing on e-SNLI,



Pretrained model ID Model details Parameters Time in s (seq
length = 80)

Time in s (seq
length = 140)

gpt2 12-layer, 768-hidden, 12-heads 117M 0.039 0.056
xlnet-large-case 24-layer, 1024-hidden, 16-heads 340M 0.166 0.297
facebook/bart-large-cnn 24-layer, 1024-hidden, 16-heads 406M 0.075 0.116

Table 1: Benchmarks of the used pre-trained models.

which can be traced back to frequently used linguis-
tic patterns (e.g., x implies y, or x is the same as
y) that occur in train and test sets of e-SNLI. The
reference-free metrics Distinct and GRUEN that
measure diversity and non-redundancy, therefore
yield higher scores when models are finetuned on
the more diverse GenericsKB data, for both in- and
out-of-domain testing. The AMR metric S2Match
gives higher scores on e-SNLI than GenericsKB
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GPT-2
G-KB G-KB 5.3 .2 .33 .88 .5 .95 .89 .79
e-SNLI e-SNLI 14.9 .46 .44 .89 .58 .91 .86 .52
IKAT G-KB 2.9 .19 .3 .88 .45 .96 .85 .78
IKAT e-SNLI 4.7 .26 .37 .89 .51 .88 .86 .64

XLNet
G-KB G-KB 6.6 .27 .36 .89 .53 .92 .87 .74
e-SNLI e-SNLI 10.7 .43 .38 .89 .59 .88 .85 .58
IKAT G-KB 4.2 .22 .34 .9 .48 .97 .88 .79
IKAT e-SNLI 10.5 .33 .42 .9 .56 .9 .85 .69

BART
G-KB G-KB 5.2 .27 .35 .89 .57 .86 .93 .75
e-SNLI e-SNLI 10.7 .44 .42 .89 .61 .81 .91 .59
IKAT G-KB 2.37 .22 .3 .88 .53 .88 .93 .80
IKAT e-SNLI 3.92 .29 .38 .9 .58 .87 .93 .71

Table 2: Automatic Similarity scores computed for the gen-
erations of all models, on the complete test sets. We compare
the impact of (i) model types and (ii) data used for finetun-
ing (train), in-domain (GenericsKB and e-SNLI) and out-of-
domain (IKAT).
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e-SNLI 7.36 0.37 0.36 0.88 0.54 0.77 0.89 0.59
e-SNLI+c 10.73 0.44 0.42 0.89 0.61 0.81 0.91 0.59
e-SNLI+p 11.71 0.44 0.43 0.89 0.62 0.84 0.92 0.59
G-KB 5.21 0.23 0.32 0.88 0.55 0.86 0.93 0.75
G-KB+c 5.2 0.27 0.35 0.89 0.57 0.86 0.93 0.75
G-KB+p 5.4 0.28 0.35 0.89 0.58 0.87 0.93 0.75
IKAT 2,74 0.19 0.29 0.87 0.43 0.86 0.92 0.67
IKAT+c 3.92 0.28 0.38 0.89 0.56 0.87 0.92 0.7
IKAT+p 4.84 0.3 0.4 0.9 0.57 0.9 0.93 0.72

Table 3: Automatic similarity scores for generations of best
performing model BART on the complete test sets, w/o con-
straints or with concepts/paths as constraints. Adding concepts
and paths improves scores in-domain (e-SNLI and Generics-
KB), and out-of-domain (IKAT finetuned on e-SLNI).

in in-domain testing, and finetuning on e-SNLI
yields higher S2Match scores for out-of-domain
testing on IKAT. This also aligns with the sen-
tence representation based metric SentenceBERT.
BertScore, finally, is not at all discriminative – it
yields uniformly high scores for each model and
configuration, ranging only between .88 and .9.

We also find that the scores differ considerably
for in-domain vs. out-of-domain testing: results
on IKAT are lower compared to testing on e-SNLI
or GenericsKB according to all reference-based
metrics, while we observe the opposite for the
reference-free metrics.

We next analyse on the complete test set which
types of constraints improve generation, focusing
on the BART model, which has shown to be best
for generating implicit knowledge statements in our
manual evaluation setup. The automatic evaluation
scores for the complete test sets are displayed in
Table 3 and confirm our findings from the subset
of the second annotation round, as presented in
Section 5.2 of our main paper.

4 Example Generations

In addition to the examples shown in our main
paper, in Fig. 1 we give some more example gen-
erations for the IKAT test set, for all three model
types, comparing finetuning on e-SNLI vs. Gener-
icsKB; and constraining with concepts vs. with
paths.



Figure 1: Example generations for IKAT, for all three models, finetuned on e-SNLI vs. GenericsKB, with concepts vs. paths as
constraints.
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