
A Experimental Details

In this section, we show the details of the experi-
mental setting used in Section 4.

In this work, the BERT model, which is called
bert-base-cased in the Transformers library of Wolf
et al. (2019), was used. The hyperparameters were
selected based on the validation accuracy in prelim-
inary experiments. These hypterparameters were:
learning rate = 5e-5 (from [2e-5, 5e-5]), batch size
= 32, optimization epoch = 3 (from [3, 6, 10]),
which were chosen by grid search based on the
validation accuracy of SST-2. For the models using
the turn-over dropout, 10 epochs are used; while
even training of 3 epochs worked and achieved the
same accuracy, 10 epochs were a little more stable
for estimation.

For the learning curves in Figure 4.2, the model
is trained with 25,000 training instances for pre-
senting the curves with less noise.

For the dataset of Multi-Domain Sentiment
Dataset (Blitzer et al., 2007) can be downloaded
from http://www.cs.jhu.edu/˜mdredze/

datasets/sentiment/. We extracted the ‘elec-
tronics’ subset from their unprocessed dataset, and
tokenized the texts using Stanza (Qi et al., 2020)
to align the input format as the SST-2 is already
tokenized.

VGGNet19 was trained with the momentum
SGD method with momentum = 0.9 and weight
decay = 5e-4. Moreover, a decaying learning
rate by 0.1 was applied at the 150th and 225th
epochs from the initial rate = 0.1, without the data
augmentation of horizontal flip. The implemen-
tation was derived from https://github.com/

kuangliu/pytorch-cifar.

B Runtime Compared with Koh and
Liang (2017)

Han et al. (2020) reported that Koh and Liang
(2017)’s method for BERT on the Multi-Genre NLI
dataset (Williams et al., 2018) took 10 minutes to
estimate the influences of 10,000 training instances
on another single instance, using one NVIDIA
GeForce RTX 2080 Ti GPU. In our experiment, our
proposed method took 35 seconds (i.e., 17 times
faster) to estimate the same influences from the
same dataset on the same GPU in our environment
too. While some accidental implementations may
differ, both implementations of BERT are derived
from Wolf et al. (2019)’s one.

In addition to the efficiency indicated by the
big-O notation in Table 1, our method can also
process different training instances in a mini-batch
efficiently at once because it only uses forward
computations, unlike the others. This is another
advantage of our method in terms of efficiency.

C Hash-based Mask Composition

The volatile mask generation method (Section 3.3)
solved storage and memory issues in our experi-
ments. However, memory issues (i.e., high space
complexity) could occur even with the method, de-
pending on implementations and dataset sizes.

For example, as a typical efficient implementa-
tion, mask generation for all instances in a mini-
batch should be performed with a few operations.
We can implement it with the two operations; at
each layer during the forward computation, we (1)
generate all instance-specific masks from a random
seed and (2) extract a subset, which is required
for the current mini-batch, by indexing. In this
case, the first step temporally requires large mem-
ory space, which depends on the dataset size and
the layer’s dimension, while it volatilizes after the
second step. As a solution for mitigating memory
usage, we can use hash-based mask composition.
The basic idea is that we can generate different N
random masks from combinations of K (⌧ N )
random masks.

We first generate a codebook composed of
K binary random masks, each of which is
a d-dimensional dropout mask sampled from
Bernoulli(1� p1/k). We also prepare a hash func-
tion H : Z ! {1, ...,K}k, which deterministically
converts an instance z 2 Z to k integers so that we
can pick k rows of the codebook. Using the two
components, given an instance, we can determin-
istically obtain k primitive dropout masks, whose
elements’ ratio of 1 is 1� p1/k. Finally, perform-
ing cumulative product (or logical-AND) of the k
masks, we obtain a binary mask whose ratio of 1
is p in expectation. After scaling it with the factor
1
p , we can use it as a dropout mask. This proce-
dure can be implemented as fast batch processing
using typical array operations only. We can share
the codebook with different layers in a network
if using different hash functions so that different
layers use different dropout masks. Therefore, the
space complexity of this algorithm is only O(K�),
where � is the maximum dimension of a layer in a
network. And also, since the codebook can be used

http://www.cs.jhu.edu/~mdredze/datasets/sentiment/
http://www.cs.jhu.edu/~mdredze/datasets/sentiment/
https://github.com/kuangliu/pytorch-cifar
https://github.com/kuangliu/pytorch-cifar


Figure 6: Histogram of self-influence of BERT on SST-
2.

based on the volatile mask generation, it can avoid
saving this codebook, i.e., reducing the required
storage size to a minimum.

In summary, volatile mask generation reduces
storage space and long-term memory space, and
hash-based mask composition reduces both long
and short-term memory spaces, while both require
some computations for generation or composition.
The two techniques make instance-specific param-
eters applicable to large datasets.

D Self-influence of Training Instances

We have conducted a preliminary experiment to
analyze the estimated influences. A common be-
lief in supervised learning is that the model should
achieve lower loss on the training instances. For
validating it, for BERT on SST-2, we estimated
the influence of each training instance on a pre-
diction of the instance itself (self-influence) and
presented histograms in Figure 6. VGGNet also
showed a similar distribution. We can see that most
of the instances have positive (> 0) influence on
themselves. The results agree with the hypothesis
that most of the training instances have positive
influences on themselves.


