
1 Appendix

1.1 NNLM Training
We use the Penn Treebank corpus (Marcus et al.,
1993) to train a neural language model using these
embedding models. The data is split into train, val-
idation and test sets, with a vocabulary of 10000.
We process the text to only include words that oc-
cur within the lexicon of our pretrained embedding
models (≈ 7300 words), replacing the other words
with the 〈PAD〉 token. The model architecture and
training closely follow that of the medium-sized
LSTM model presented by Zaremba et al. (2014)
which we build using Tensorflow. The network con-
sists of two LSTM layers with hidden states of size
650, with a fully-connected softmax output and
word embedding look-up table input. The models
are trained using stochastic gradient descent with a
learning rate of 1.0 for 6 epochs, with the learning
rate decreasing at a rate of 1.2 for up to 39 epochs
of training. The LSTMs are initialized with a uni-
form random distribution between [−0.05, 0.05],
and are unrolled for 35 time steps, and train on
contiguous sequences of text, passing the hidden
state to the proceeding batch with the batch size
set to 20. A dropout rate of 0.5 was applied to
the embedding vector, and outputs of both LSTM
layers during training. As proposed previously by
Gulordava et al. (2018), we add a linear projection
layer between the final LSTM layer and the soft-
max output, which increases the dimensionality to
the appropriate length.

1.2 Bias Analysis
In this paper, we omitted the bias terms from the
output embedding layer as in previous work, which
occurs in many cases when training NNLMs with
tied embeddings. Since we are using the final layer
of the network to find some locally-optimal vectors
based on the output embeddings, we include the
bias terms when optimising for our AM vectors, as
they convey information about some prior knowl-
edge concerning the input. In the case of NNLMs,
it would make sense for these bias terms to capture
frequency patterns in the distribution of words. It
is well known that many types of semantic mod-
els learn word co-occurrence information and are
heavily affected by word frequency (Wartena, 2014;
Wendlandt et al., 2018).

To test our hypothesis, we measure the Pearson
correlation between the bias terms and the natural
log counts of the 20000 highest occurring words

Figure 1: Plot of bias terms against log of the counts for
each word in the vocabulary (the first 20000 words).

in the one billion word news dataset (Chelba et al.,
2013). We present our results in figure 1. There is
a strong linear correlation between the bias terms
and the log counts with most bias terms close to
zero. While these results make a strong case for the
relationship between word frequency and bias term,
it doesn’t fully explain all the information they cap-
ture during training. Generally, computing the bias
term isn’t as computationally intensive as the ac-
tual embeddings themself, though many leave this
bias vector out of their networks classification layer
when weight tying. Furthermore, while it proba-
bly doesn’t greatly affect the model, the weight
update to the input embeddings doesn’t apply to
the bias term during training. This may cause a
shift when computing the class posterior using the
output embedding and bias. Precomputing the bias
terms using a naive frequency-based approach with
a scaling factor could save time and improve results,
whilst being decoupled from the weight updates.
We leave this for future work, though we would
not expect a large change in performance between
trained bias and precomputed bias.

1.3 Bias Information in AM Embeddings
We also performed additional analyses to under-
stand why the AM embeddings outperform the out-
put embeddings of the J-LM model on so many of
these tasks. To test whether these locally-optimal
representations encode the bias information during
the training procedure, we use a linear regression
to predict the value of the bias term using the em-



Figure 2: Two-dimensional TSNE scatter plot with arrows between output embeddings (blue) and AM embeddings
(red).

Vocab Splits Train (90%) Test (10%)

Output Embeddings 0.290 0.301
AM Embeddings 0.257 0.195

Concatenated 0.218 0.182

Table 1: Mean squared error scores of linear regression
models trained to predict bias term for each embedding
model.

beddings as input. We split the 20000 words into
a training and testing set, which contain 90% of
the words and 10% of the words, respectively. We
train three regression models, one using the output
embeddings, one using the AM embeddings, and
one which concatenates both embeddings together.
If the bias is captured by the AM embeddings, then
we would expect them to be much better at pre-
dicting the bias than the original weight matrix,
which does not include the bias term. The results
are presented in Table 1. As we can see, the results
strongly indicate that these AM representations are
better at predicting the bias. This suggests that the
AM embeddings perturb the original embeddings
in some way that includes information from the
bias term, which we demonstrated in the previous
section relates to word frequency information.

1.4 Visualising the Distribution

For visual analysis, we use TSNE to reduce the di-
mensionality of both the output embeddings and the
AM embeddings down from 1024 to just 2 dimen-
sions. Here, TSNE is preferred as it preserves the
information about the geometric distance between
vectors. To aid interpretation of the visualisation,
we selected words that represent a set of distinct yet
semantically similar concepts. For our analysis, we

chose four-digit numbers greater than or equal to
1900, since these should correspond quite often to
years and thus have a strong semantic association.
The results are displayed in Figure 2, where arrows
connect the output embeddings in blue, and the
AM embeddings in red. We see that many of the
points become further spread out as a consequence
of training objective, but overall the clusters tend
to stay close together. Finding the optimal class
implies that the network must also minimise the
probability of incorrect classes, which requires the
vector representations to be more linearly separa-
ble. While our analysis provides ample evidence
as to why these AM embeddings perform well on
downstream prediction tasks and language mod-
elling, it doesn’t fully explain the performance on
intrinsic evaluation benchmarks.

References

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge,
Thorsten Brants, Phillipp Koehn, and Tony Robin-
son. 2013. One billion word benchmark for measur-
ing progress in statistical language modeling. arXiv
preprint arXiv:1312.3005.

Kristina Gulordava, Laura Aina, and Gemma Boleda.
2018. How to represent a word and predict it,
too: Improving tied architectures for language mod-
elling. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 2936–2941, Brussels, Belgium. Association
for Computational Linguistics.

Mitchell Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of English: The Penn Treebank.

Christian Wartena. 2014. On the effect of word fre-
quency on distributional similarity.

https://arxiv.org/abs/1312.3005
https://arxiv.org/abs/1312.3005
https://doi.org/10.18653/v1/D18-1323
https://doi.org/10.18653/v1/D18-1323
https://doi.org/10.18653/v1/D18-1323
https://repository.upenn.edu/cis_reports/237/
https://repository.upenn.edu/cis_reports/237/


Laura Wendlandt, Jonathan K Kummerfeld, and Rada
Mihalcea. 2018. Factors influencing the surpris-
ing instability of word embeddings. arXiv preprint
arXiv:1804.09692.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals.
2014. Recurrent neural network regularization.
arXiv preprint arXiv:1409.2329.

https://arxiv.org/abs/1409.2329

