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Outline

®" Tuning MT: when the system you have isn’t the system you need
= Neural MT tuning methods differ from those for Statistical MT

= Genre or Domain matters (a lot):
— In-genre test: BLEU = 25.6
— Out-of-genre test: BLEU = 7.5 (-18.1)

" You care about NMT tuning because...
— Tuned w/ monolingual data only: BLEU = 10.3 (+2.8)
— Trained on a small parallel set: BLEU = 13.5 (+6.0)
— Tuned (transfer learning): BLEU = 15.0 (+7.5) to 16.9 (+9.4)
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Tuning a system you have, to get the system you need
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Tuning a system you have, to get the system you need

Proceedings of AMTA 2016, vol. 2: MT Users' Track Austin, Oct 28 - Nov 1MIIRE



Tuning Machine Translation

In SMT, tuning involves learning a
weighted combination of scoring
features output by trained components:

translation tables, language models,
reordering models, ...

For example: Minimum Error Rate Training (MERT)
or Margin-infused Relaxed Algorithm (MIRA)
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Tuning Statistical Machine Translation
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Pair System untuned | MERT-tuned

fr-en | WMT-SMALL 28.0 29.2 (0.2)
WMT-LARGE 29.4 32.5(0.1)

de-en | WMT-SMALL 25.0 25.3(0.1)
WMT-LARGE 26.6 26.8 (0.2)
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Need for Domain Adaptation

Newswire source Semiconductor source
HBITBAEXAFEHELRH=R KiEH, FAELZNAMNARARKRIET BAPREX

NRSESFEEHEKEFREIEES REIEYEIRN N iEFRIR M.
A T{E.

Human translation

Currently, Japanese authorities have The effect of Pt doping on the stress in
three dispatched patrol boats to the nickel silicide film has been
coordinate with the South Koreans in characterized using an in-situ stress
searching for the victims in the area of measurement.
the incident. Quite poor on
Machine translation novel domains
Japan has dispatched three patrol Stress tests use online technology
boats to the area, in coordination with characterized by incorporation of Pt on
the South Koreans to search for the nickel silicide films nature of the stress

victims in the area of the incident work
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Need for Domain Adaptation

System Description
L Stand-alone product,
statistical
S Stand-alone product,
rule-based

G Web-based, statistical
MITRE Statistical

Score (BLEU)

Semi- Chem-
conductor bio
94 9.7
11.2 11.9
15.1 22.8*
16.1 17.9
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Neural MT

“With the exception of fr-es and
ru-en the neural system is always

comparable or better than the
phrase-based system.”

Is Neural Machine Translation Ready for Deployment? A Case Study on 30 Translation Directions
Marcin Junczys-Dowmunt, Tomasz Dwojak, Hieu Hoang
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Neural Machine Translation

f= (La, croissance, economique, s'est, ralentie, ces, dernieres, années, .)
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e = (Economic, growth, has, slowed, down, in, recent, years, .)
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Subtitle Corpus for Discourse

Pierre Lison and Jorg Tiedemann, 2016, OpenSubtitles2016: Extracting Large
Parallel Corpora from Movie and TV Subtitles. In Proceedings of the 10th
International Conference on Language Resources and Evaluation (LREC 2016).
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http://stp.lingfil.uu.se/~joerg/paper/opensubs2016.pdf

ar-en Training Curve
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= Trained on 21 million
conversational segments 1l |
from movie subtitles

— 256 million training steps
(sentences)

— 19 days on K40 GPU

=

Perplexity
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m WWWM’ ¥

0 50000 100000 150000 200000 250000 300000 350000 400000 450000

= NMT BLEU = 25.6 Batch number
— SMT BLEU = 25.3

= Serialized as 536 MB model
— Deployable to laptops
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“26 BLEU”

OpenSubtitles Reference NMT Output

people would think that he was the ..o people say he was a terrorist . right .
terrorist. right.

- there ' s a boy in the cage .
-there's a boy in the CaAQe.

we ' re just here to see our friend , sir .
we're just here to see our friend rigby, sir. .......

the glass is all around someone .
- glass is all over the floor. - somebody

Droke the STtere0n. ., like a . .

1SN AT 11 £ =Y o let' s go get ice cream .

let's get ice cream. -, he ' s out there asking for a consult .
he's down checking a buoy inthe e oh, god, please.

channel.

the black is a black .
oh, my god, please.

_ I came for your uncle ' s wedding .
cervical lymph node has black flecks. e

_ yeah , the doctors said i would remember more
you came for your uncle's wedding. ... every day .

yeah, and doctors say i should get more .........
and more each day.
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In a new domain

“tourism accounts
for almost N % of
the austrian gross

domestic product .”

“the industry are nearly N , of
the most common population

»

On Wikipedia:
BLEU =7.4

o MITRE
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Tuning NMT?

f=(La, croissance, economique, s'est, ralentie, ces, dernieres, annees, .)

u,

Ssample

word

e = (Economic, growth, has, slowed, down, in, recent, years, .)
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Transfer Learning

= Qur core strategy is to employ transfer learning between
deep neural networks pre-trained on massive datasets

= Knowledge gained in one context can
be re-used to solve different but
related problems

M

i)
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Wikipedia Adaptation Experiments

" Incremental training: we pick up where OpenSubtitles left off
— With tiny parallel tuning set (n=1024)
— With small parallel training set (n=32768)
— With full parallel training set (n=148136)
— With varying amounts of in-domain monolingual data
— With expanded vocabularies

= About 22 minutes per 100k training updates

Krzysztof Wotk and Krzysztof Marasek: Building
Subject-aligned Comparable Corpora and Mining
it for Truly Parallel Sentence Pairs., Procedia
Technology, 18, Elsevier, p.126-132, 2014
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BLEU

Incrementally Adapting OpenSubtitles to Wikipedia
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Incrementally Adapting OpenSubtitles to Wikipedia
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BLEU

Incrementally Adapting OpenSubtitles to Wikipedia
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BLEU

Incrementally Adapting OpenSubtitles to Wikipedia
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BLEU

Incrementally Adapting OpenSubtitles to Wikipedia

20
15
10 P’f ¥ an o By e e A R T AP AN T WA T
5
— tuning, n=1k
— monolingual English only, n=33k
tuning n=1k + monolingual n=147k
0
0 500000 1000000 1500000 2000000

Proceedings of AMTA 2016, vol. 2: MT Users' Track

# Tuning Updates ustin, ct 26-Nov 1,201 . 617



Side by Side

Reference: tourism accounts for almost N % of the austrian gross
domestic product .

Train from scratch, 33k: world is up for N % of the total reserves .

Untuned: the industry are nearly N, of the most common
population .

1k tuning: tourism costs nearly N ( of the most common population

33k tuning: tourism often manifests approximately N % of the gdp .

... ensembling?
Austin, Oct 28 - Nov 1MII‘RE
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Results

= Genre & domain matter (a lot)
— In-genre test: BLEU = 25.6
— Out-of-genre test: BLEU = 7.5 (-18.1)

= Incremental training helps
— Trained, parallel in-domain: BLEU = 13.5 (+6.0)
— Tuned, parallel in-domain: BLEU = 15.0 (+7.5) to 16.9 (+9.4)

= Monolingual data helps when parallel data is scarce
— Tuned, 33k monolingual in-domain: BLEU = 10.3 (+2.8)
— Tuned, 1k parallel in-domain: BLEU = 10.6 (+3.1)

= Expanding vocabulary doesn’t increase BLEU (yet)
Proceedings of AMTA 2016, vol. 2: MT Users' Track Austin, Oct 28 - Nov 1MIIIRE




Conclusions

= All parameters in a NMT system are tunable
— can create great diversity from one “well trained” seed system
— ... In minutes or hours, with little or no additional parallel data

= Government use cases poised to benefit most
— Collect many partially trained systems on the shelf?

= Still open question how to best create
systems optimized for tuning

= Sharing models? Share training
code too.
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Thank You

Guido Zarrella
jzarrella@mitre.org

@gzco
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