

A Novel Statistical Pre-Processing Model for a Rule-Based Machine Translation System

Yanli Sun, Sharon O'Brien, Minako O'Hagan

School of Applied Language and Intercultural Studies, Dublin City University

Fred Hollowood

Research and Deployment (SES), Symantec Corporation Ireland

Introduction

- Pre-processing in general:
 - It is the first step in the translation process
 - It prepares the input for effective analysis and transfer for an MT system
 - such as: tokenisation, segmentation, dictionary customisation, Controlled Language (CL) rules, etc.
- Challenges of current pre-processing methods
 - CL (O'Brien, 2003; O'Brien and Roturier, 2007)
 - Rules are manually crafted
 - Hard for writers to implement
 - Source re-construction (Xia and MacCord, 2004; Crego and Marino, 2007; Babych et al., 2009)
 - Focus on SMT systems
 - Sometimes still need to craft rules manually
 - Limited number of rules

symantec.

A pre-processing method for RBMT system

- What do we need:
 - Source texts which can be, on the one hand as similar to the Chinese structure as possible, while at the same time, analyzable by the RBMT system
- What do we do:
 - Employ an SMT to transform the English sentence into Chinese friendly (or an RBMT system friendly) structure automatically and comprehensively without human intervention or manually crafted rules

Methodology

Experiments

- Experimental set-up
 - MT system: Systran (RBMT) and Moses (SMT)
 - Automatic Evaluation Metrics: GTM, BLEU and TER
 - Training Corpora: Four

The test set and the first corpus belong to a security corpus. The Chinese references were extracted from an in-house TM.

First type Corpus	#Sentence	#English words	#Chinese words
In_Domain	5439	77268	85501
Test Set	944	14839	16100

Second type Corpora	#sentence	#English words	#Chinese words
Mix_Tiny	5439	55846	69410
Mix_Small	9934	106457	119480
Mix_Large	269913	2787175	3382309
Development Set	903	10677	10764

To scale up the project. The whole mix-corpus TM was employed. A development corpus and three other corpora were randomly selected from the TM along with their corresponding references.

Results - Scores

	GTM	BLEU	TER
Baseline	0.6565	0.2490	0.5249
Mix_Tiny	0.6553	0.2229	0.5499
Mix_Small	0.6567	0.2303	0.5436
Mix_Large	0.6836	0.2746	0.5058
In_Domain	0.6751	0.2646	0.5261

	GTM	BLEU	TER
Baseline	0.6565	0.2490	0.5249
Mix_Tiny	0.6553	0.2229	0.5499
Mix_Small	0.6567	0.2303	0.5436
Mix_Large	0.6836	0.2746	0.5058
In_Domain	0.6751	0.2646	0.5261

	GTM	BLEU	TER
Baseline	0.6565	0.2490	0.5249
Mix_Tiny	0.6553	0.2229	0.5499
Mix_Small	0.6567	0.2303	0.5436
Mix_Large	0.6836	0.2746	0.5058
In_Domain	0.6751	0.2646	0.5261

Results - Scores

	GTM	BLEU	TER		
Baseline	0.6565	0.2490	0.5249		
Mix_Tiny	0.6553	0.2229	0.5499		
Mix_Small	0.6567	0.2303	0.5436		
Mix_Large 0.6836** 0.2746** 0.5058**					
In_Domain 0.6751** 0.2646* 0.5261					
**p<0.001; *p<0.1					

- The biggest corpus produced the best translation according to the scores;
- In-domain corpus is better than mix-domain corpus unless the mixdomain corpus is greatly larger than the in-domain corpus

• Baseline vs. Mix_Large (the biggest corpus), an example:

The most frequent changes made by the pre-processing model

Category (# occurred)	Example	Freque	ency
	the		248
	will		46
Insertion (1158)	,		41
	"		39
	to		36
Deletion (992)	the		102
	of		85
	а		65
	that		59
	you		49
	а	the	166
	can	may	150
Substitution (5307)	computer	machine	64
	that	which	58
	click	clicks	49
antec			

- 99.8% (942 out of 944) of sentences were modified
 - All the modified English sentences could be divided into three groups:

	Percentage
Correct grammar and clear meaning	25.64
Minor error and clear meaning	25.74
Incorrect grammar and fuzzy meaning	48.31

- 99.8% (942 out of 944) of sentences were modified
 - All the modified English sentences could be divided into three groups:

	Percentage	
Correct grammar and clear meaning	25.64	20% sentences in this group changed meaning
Minor error and clear meaning	25.74	
Incorrect grammar and fuzzy meaning	48.31	

- 99.8% (942 out of 944) of sentences were modified
 - All the modified English sentences could be divided into three groups:

	Percentage	
Correct grammar and clear meaning	25.64	20% sentences in this group changed meaning
Minor error and clear meaning	25.74	
Incorrect grammar and fuzzy meaning	48.31	

- 99.8% (942 out of 944) of sentences were modified
 - All the modified English sentences could be divided into three groups:

	Percentage	
Correct grammar and clear meaning	25.64	20% sentences in this group changed meaning
Minor error and clear meaning	25.74	
Incorrect grammar and fuzzy meaning	48.31	

Question: Which group of sentences produce most of the improvements?

ge English

Pilot Human Evaluation

- 3 students on 100 sentences
- Compare the translations of sentences within each group to the baseline translation
- Calculate the improvements and degradations ratios

	Improvements / Degradations
Correct grammar and clear meaning	0.6970
Minor error and clear meaning	0.7941
Incorrect grammar and fuzzy meaning	0.5517

No significant difference between baseline and pre-processed translation

- Automatic pre-processing for RBMT system can be conducted using an SMT system
- An increase of about 10% automatic scores were reported
- In-domain corpus performs better than the same sized or slightly bigger mix-domain corpora but not as good as huge corpus
- Degradations were generated by the SMT system

- How to improve the performance of the model
 - Regulate the SMT system to only pre-process sentences meeting certain criteria?
 - Regulate the RBMT system to translate only grammatical or ungrammatical sentences?
 - Use cleaned and balanced corpora?

Questions? Suggestions?

Thanks!

Rationale

Result – Linguistic Analysis

- 99.8% (942 out of 944) of sentences were modified
 - All the modified English sentences could be divided into three groups:
 - 1. Correct English grammar and clear meaning (25.64%)
 - Keep the original meaning (80%), e.g.
 - Source: You know that the <u>process</u> is safe to run in your <u>environment</u>.

Pre-processed: You know that the <u>procedure</u> is safe to run in your <u>conditions</u>.

- Changed meaning (20%), e.g.
- Source: You configure Auto-Protect settings <u>as part of</u> an Antivirus and Antispyware <u>Policy</u>.
- Pre-processed: You configure <u>the</u> auto-Protect settings <u>in</u> antivirus and antispyware <u>tactic</u>.

- 2. Minor English grammar error and understandable meaning (25.74%):
 - All sentences keep the original meaning
 - Source: Auto-Protect <u>then</u> scans <u>the</u> files if you request them from the remote <u>computer again</u>.
 - Pre-processed: <u>The</u> auto-protect <u>will</u> <u>scan</u> <u>this</u> file, if your request them from the remote <u>machine once more</u>.
- 3. Incorrect English grammar and hard to comprehend (48.31%)
 - Source: After Policy name, type the name of the policy (it shows New Host Integrity Policy by default).
 - Pre-processed: After policy name, the type policy name (displays "new Host Integrity Policy" default).

