

Structural Support Vector Machines for Loglinear Approach in Statistical Machine Translation

Katsuhiko Hayashi[†], Taro Watanabe^{††}, Hajime Tsukada^{††}, Hideki Isozaki^{††} †Doshisha University ††NTT Communication Science Laboratories

NTT 🕐

Outline

- Introduction
- Proposed Method
- Experiments
- Related Work
- Conclusion and Future Work

Introduction

- Background
 - Minimum Error Rate Training (MERT) is widely used.
- Problem
 - MERT tends to overfit to development data.
- Approach
 - We propose a training method that incorporates regularizer into objective function inspired by Structural Support Vector Machines.

 Objective Function inspired by 1-slack Structural SVM Oracle Translation

Proposed Method (2/3)

NTT

• Och's Line Search Algorithm can be utilized for optimization.

Ргороsed Method (3/3)

- The slope and intercept for each line
 - We need to calculate the slope and intercept by using the following equation

$$\underset{\hat{\mathbf{e}}_{s}\in\mathbf{C}_{s}}{\operatorname{argmax}}\left\{\underbrace{\Delta(\mathbf{e}_{s}^{*},\mathbf{e}_{s})-\langle\mathbf{w},\delta\mathbf{h}_{s}\rangle}_{intercept}+\alpha\underbrace{\langle\mathbf{d},\delta\mathbf{h}_{s}\rangle}_{slope}\right\}$$

However, the slope and intercept calculated by this equation are very noisy because of sentence-wise BLEU scores.

Comparison to MERT

	Objective Function	Regularizer	Hyper Paramter	Optimization
MERT	Evaluation Metrics (BLEU)	×	×	Line Search Algorithm
Proposed Method	L2 Regularizer + Emprical Risk (incorpolated with BLEU loss)	0	0	Line Search Algorithm, SVM ^{struct}

Advantage

- Our proposed method is a natural extension to regularize MERT's objective function.
- It is easy to implement
 - We can use almost the same line search algorithm as used in MERT.

Experiments

- Goal
 - To investigate a validity of our proposed method, compared with MERT.
 - Compare generalization ability
 - In case of out-of-domain
 - With sparse data

Common Settings

- Decoder
- Moses (Koehn et al., 2007)
 - 14 real-valued features
- Translation Model
- GIZA++ (Och et al., 2003)
- Language Model
- SRILM (et al., 2002)

Data Set

- Europarl French-English WMT08-shared task
- Training data
 - 1.28M (Europarl)
- Development data
 - -2.0K (Europarl)
- Test data
 - In-domain test set 2.0k (Europarl)
 - out-of-domain test set 1.5k (News)

Hyper Parameters

• Two hyper parameters were tuned by Cross Validation Method.

 $\min_{\mathbf{w}, \boldsymbol{\varepsilon} > 0} \frac{\lambda}{2} \|\mathbf{w}\|^2 + \boldsymbol{\xi}$ s.t. $\forall (\hat{\mathbf{e}}_1, \cdots, \hat{\mathbf{e}}_S) \in \mathbf{C}^{\mathbf{S}} := \frac{1}{S} \sum_{s=1}^{S} \langle \mathbf{w}, \delta \mathbf{h}_s \rangle \ge \Delta(\{\hat{\mathbf{e}}_s^*, \hat{\mathbf{e}}_s\}_1^S) - \xi$ $\Delta(\{\hat{\mathbf{e}}_{s}^{*}, \hat{\mathbf{e}}_{s}\}_{1}^{S}) \neq Q \times \{ \mathbf{BLEU}(\{\mathbf{r}_{s}, \hat{\mathbf{e}}_{s}^{*}\}_{1}^{S}) - \mathbf{BLEU}(\{\mathbf{r}_{s}, \hat{\mathbf{e}}_{s}\}_{1}^{S}) \}$ λ emphasizes the convex regularizer. **Q** is a constant for scaling the BLEU scores.

Result

- In-Domain vs Out-of-Domain -

	In-Domain	Out-of-Domain
MERT	32.36	13.81
Smoothed- MERT (Och 03)	31.96	13.76
Proposed Method	32.42	14.13

об Development data

Data Sparseness

- We reduced development data (2.0K).
 - 400 sentences randomly selected from a full development data
 - Experiments were conducted 4 times
- We expected our proposed method to reduce overfitting problem.

Result - Data Sparsness -

The average BLEU scores on 4 times
experiments

	In-Domain
MERT	31.24
Smoothed MERT (Och, 03)	31.06 (-0.18)
Proposed Method	31.76 (+0.52)

NTT 🕐

Related Work

- Och (2003) tried to regularize MERT's objective function by using the same regularization as used in Speech Community.
- Cer (2008) proposed window smoothing method with line search algorithm.
- Watanabe (2006) applied Margin Infused Relaxed Algorithm to Statistical Machine Translation.

Conclusion

- We proposed a learning method for SMT by using a objective function inspired by Structural SVM.
- The objective function involves both documentwise BLEU and a regularizer.
- The proposed method (1-slack) outperforms MERT when the development data size is small.

Conclusion (2/2)

Future Work

- We will apply 1-slack SVM to the decoder which has a large number of features.
- In this case, SVM^{struct} may be a more appropriate optimization algorithm.

Thank you very much for your attention !!