

Morphological Pre-processing for Turkish to English Statistical Machine Translation

Arianna Bisazza, Marcello Federico FBK - Ricerca Scientifica e Tecnologica, Trento, Italy

Tokyo, Dec 1-2, 2009

Bisazza, Federico

Outline

- Turkish & SMT
- Morphological Segmentation
 - Preprocessing chain
 - Segmentation rules
- Lexical Approximation
- Experiments
- Future Work & Conclusions

1

Outline

• Turkish & SMT

- Morphological Segmentation
 - Preprocessing chain
 - Segmentation rules
- Lexical Approximation
- Experiments
- Future Work & Conclusions

Several linguistic features of Turkish can negatively affect an SMT system:

Several linguistic features of Turkish can negatively affect an SMT system:

• Agglutination

 \rightarrow large vocabulary, built by a wide range of suffix combinations

oda	[room]	= 'room'
odam	[room-my]	= 'my room'
odam <mark>da</mark>	[room-my-in]	= 'in my room'
odamdaydı	[room-my-in-was]	= 'was in my room'
odamdaydı <mark>n</mark>	\imath [room-my-in-was-l]	= 'I was in my room'

Several linguistic features of Turkish can negatively affect an SMT system:

- Agglutination
 - \rightarrow large vocabulary, built by a wide range of suffix combinations

oda	[room]	= 'room'
odam	[room-my]	= 'my room'
odam <mark>da</mark>	[room-my-in]	= 'in my room'
odamda ydı	[room-my-in-was]	= 'was in my room'
odamdaydı <mark>m</mark>	\imath [room-my-in-was-l]	= 'I was in my room'

Some statistics on IWSLT09 training corpus :

	Tokens	Dict.size
TR	139,514	17,619
EN	182,627	8,345

OOV (devset2): 6.16%

Several linguistic features of Turkish can negatively affect an SMT system:

• Agglutination

 \rightarrow large vocabulary, built by a wide range of suffix combinations

Vowel harmony and other phoneme alternation phenomena
 → systematic stem and suffix *allomorphy*

Ex. the suffix -(I)m ='my':

Several linguistic features of Turkish can negatively affect an SMT system:

• Agglutination

 \rightarrow large vocabulary, built by a wide range of suffix combinations

Vowel harmony and other phoneme alternation phenomena
 → systematic stem and suffix *allomorphy*

Ex. the suffix -(I)m ='my':

$sa \varsigma + (I) m$	\rightarrow	saç <u>ım</u>	'my hair'
el+(I)m	\rightarrow	$el\underline{im}$	'my hand'
kol+(I)m	\rightarrow	kol <u>um</u>	'my arm'
$g\ddot{o}z + (I)m$	\rightarrow	göz <u>üm</u>	'my eye'
kafa + (I)m	\rightarrow	$kafa {f m}$	'my head'

If splitted from words, suffixes undergo data sparseness \rightarrow need to use a notation that factorizes

Several linguistic features of Turkish can negatively affect an SMT system:

• Agglutination

 \rightarrow large vocabulary, built by a wide range of suffix combinations

Vowel harmony and other phoneme alternation phenomena
 → systematic stem and suffix *allomorphy*

• Word order

 \rightarrow complex, long-span reorderings between TR and EN

Banyolu iki kişilik bir oda istiyorum. [bath-with] [two] [people-for] [a] [room] [want-I]

'I'd like a twin room with a bath please.'

Several linguistic features of Turkish can negatively affect an SMT system:

- Agglutination
 - \rightarrow large vocabulary, built by a wide range of suffix combinations
- Vowel harmony and other phoneme alternation phenomena
 → systematic stem and suffix *allomorphy*
- Word order
 - \rightarrow complex, long-span reorderings between TR and EN

Importance of specific linguistic preprocessing:

Several linguistic features of Turkish can negatively affect an SMT system:

- Agglutination
 - \rightarrow large vocabulary, built by a wide range of suffix combinations
- Vowel harmony and other phoneme alternation phenomena
 → systematic stem and suffix *allomorphy*
- Word order
 - \rightarrow complex, long-span reorderings between TR and EN

Importance of specific linguistic preprocessing:

 \rightarrow reduction of data sparseness (dict. size from 17.6K to 10.4K)

 \rightarrow decrease of OOV rate by more than half

 \rightarrow improvement of 5 points BLEU

Outline

• Turkish & SMT

• Morphological Segmentation

- Preprocessing chain
- Segmentation rules
- Lexical Approximation
- Experiments
- Future Work & Conclusions

Morphological Segmentation

Idea: selectively splitting or removing suffixes from the words

Morphological Segmentation

Idea: selectively splitting or removing suffixes from the words Already explored by:

- Habash & Sadat, 2006 [1] on an Arabic-English task
 - similar method: comparison of segmentation schemes
 - different language: Arabic affixation less rich
- Oflazer & Durgar El-Kahlout, 2007 [2] on an English-Turkish task
 - similar preprocessing chain
 - translating *into* a morphologically rich language

	Turkish source			
	Morph. analysis			
	(Oflazer, 1994)			
	Morph. disambiguation			
	(Sak & Saraçlar, 2007)			
	Suffix tags split/removal			
	(tested 11 schemes)			
	Lexical approximation			
\downarrow	Phrase-based SMT (Moses)			

1. Morphological analysis (Oflazer, 1994 [3])

'Are there any tours of famous stars' homes?' Ünlü yıldızların evine turlar var mi ? ev+Noun+A3sg+P2sg+Dat [to your house] ev+Noun+A3sg+P3sg+Dat [to his/her/its house] evin+Noun+A3sg+Pnon+Dat [to the kernel]

- 1. Morphological analysis
- 2. Morphological disambiguation in context (Sak & Saraçlar, 2007 [4])

'Are there any tours of famous stars' homes?' Ünlü yıldızların evine turlar var mi ? ev+Noun+A3sg+P2sg+Dat [to your house] -> ev+Noun+A3sg+P3sg+Dat [to his/her/its house] evin+Noun+A3sg+Pnon+Dat [to the kernel]

- 1. Morphological analysis
- 2. Morphological disambiguation in context (Sak & Saraçlar, 2007 [4])

'Are there any tours of famous stars' homes?' Unlü yıldızların evine turlar var mı?

ev+Noun+A3sg+P2sg+Dat [to your house]

-> ev+Noun+A3sg+P3sg+Dat [to his/her/its house] evin+Noun+A3sg+Pnon+Dat [to the kernel]

Note: some tags encode implicit features (i.e. with no surface form) We use feature tags to:

- \rightarrow abstract from suffix allomorphy
- \rightarrow deal with non-ambiguous symbols
- \rightarrow make more readable rules

- 1. Morphological analysis
- 2. Morphological disambiguation in context
- 3. Rules for splitting/removal of suffix tags
 - \bullet rules based on feature tags \rightarrow simple regular expressions
 - 11 segmentation schemes developed and tested
 - mainly focus on nominal, but also some verbal inflection

- 1. Morphological analysis
- 2. Morphological disambiguation in context
- 3. Rules for splitting/removal of suffix tags

Idea: Split off tags expected to have English counterpart, remove others. When decision is not straightforward \rightarrow experiment

Idea: Split off tags expected to have English counterpart, remove others. When decision is not straightforward \rightarrow experiment

Nominal case

- split off if expected to have an English counterpart:
 - dative $(oda/ya) \approx 'to'$ - ablative $(oda/dan) \approx$ 'from' - locative $(oda/da) \approx$ 'in'
 - instrumental $(oda/yla) \approx 'with/by'$
- removed otherwise:
 - nominative (oda-)
- doubtful cases:
 - accusative (oda/yi) (\approx 'the') \Rightarrow removed genitive (oda/nin) (\approx 'of/'s') \Rightarrow removed

Idea: Split off tags expected to have English counterpart, remove others. When decision is not straightforward \rightarrow experiment

- Nominal case
- Possessive
 - split off if expected to have an English counterpart:
 - 1st and 2nd sing. $(oda/m, oda/n) \approx 'my'$, 'your'
 - 1st, 2nd and 3rd plur. $(oda/miz, oda/niz, oda/lari) \approx$ 'our', 'your', 'their'
 - removed otherwise:
 - no_possessive (oda-)
 - doubtful cases:

- 3rd sing. (oda/si) (\approx 'his/her') \Rightarrow removed

Idea: Split off tags expected to have English counterpart, remove others. When decision is not straightforward \rightarrow experiment

- Nominal case
- Possessive
- Copula 'to be'
 - always split off. Example:
 - *oda temiz/dir* litt. [room clean-is] 'the room **is** clean'
 - *oda temiz/di* litt. [room clean-was]

'the room **us** clean' 'the room **was** clean'

Idea: Split off tags expected to have English counterpart, remove others. When decision is not straightforward \rightarrow experiment

- Nominal case
- Possessive
- Copula 'to be'
- Verb person
 - split off person suffixes from finite verb forms and copula. Example:
 - gidiyor/um litt. [go-l] 'l go'
 - *gidiyor*/*sun* litt. [go-you] 'you go'

Idea: Split off tags expected to have English counterpart, remove others. When decision is not straightforward \rightarrow experiment

- Nominal case
- Possessive
- Copula 'to be'
- Verb person

Example: 'I was in my room'

 $odamdaydim \rightarrow oda / m / da / ydi / m$ [room-my-in-was-I] [room] [my] [in] [was] [I]

25

Idea: Split off tags expected to have English counterpart, remove others. When decision is not straightforward \rightarrow experiment

- Nominal case
- Possessive
- Copula 'to be'
- Verb person

Example: 'I was in my room'

oda+Noun+A3s	g / +P1sg	/+Loc/	^DB+Verb+Zero+P	ast <mark>/</mark> +A1sg
\uparrow	\uparrow	\uparrow	\uparrow	\uparrow
lemma	poss.	case	copula	v.pers

Looking into the alignments

Before segmentation:

Kız arkadaşımlaydım [girl] [friend-my-with-was-I] I was with my girlfriend

Looking into the alignments

Before segmentation:

Kız arkadaşımlaydım [girl] [friend-my-with-was-I]

After segmentation:

Kız arkadaş/ım/ la/ ydı/ m [girl] [friend] [my] [with][was] [I] 28

Looking into the alignments

Before segmentation:

Kız arkadaşımlaydım [girl] [friend-my-with-was-I]

After segmentation:

Outline

- Turkish & SMT
- Morphological Segmentation
 - Preprocessing chain
 - Segmentation rules
- Lexical Approximation
- Experiments
- Future Work & Conclusions

Idea: replace OOV words in the test with morphologically similar words of training

Cf. previous IWSLT's works on Arabic:

- Mermer & al., 2007 [5]
- Shen & al., 2008 [6]

Idea: replace OOV words in the test with morphologically similar words of training

- Possible replacers \rightarrow known words sharing the same lemma
- Similarity function \rightarrow priority to words sharing more contiguous tags
- Deterministic choice of 1-best candidate

Idea: replace OOV words in the test with morphologically similar words of training

- Possible replacers \rightarrow known words sharing the same lemma
- Similarity function \rightarrow priority to words sharing more contiguous tags
- Deterministic choice of 1-best candidate

Word	Gloss	Preprocessed (MS11)	Score
çıkışlar	exits	çık+Verb+Pos^DB+Noun+Inf3+A3pl	
çıkış	exit	<pre>çık+Verb+Pos^DB+Noun+Inf3+A3sg</pre>	93
çıkma	going out	çık+Verb+Pos^DB+Noun+Inf2+A3sg	66
çıkacak	will go out	çık+Verb+Pos^DB+Noun+FutPart+A3sg	66
çıkan	who goes out	çık+Verb+Pos^DB+Adj+PresPart	44
çıkıyor	is going out	çık+Verb+Pos+Prog1	27
çıkmıyor	isn't going out	cik+Verb+Neg+Prog1	0
çıkarır	takes out	çık+Verb^DB+Verb+Caus+Pos+Aor	-15

Outline

- Turkish & SMT
- Morphological Segmentation
 - Preprocessing chain
 - Segmentation rules
- Lexical Approximation
- Experiments
- Future Work & Conclusions

		Training set		SMT (on devset2)			
	Preprocessing	Tokens Dict.		%00V	%BLEU	%WER	%PER
baselin	e	139,514	17,619	6.16	52.26	37.75	29.95
MS2	(case)	151,410	14,343	4.35	53.89	37.21	28.51
MS6	(case,poss)	156,390	12,009	3.49	54.10	37.29	28.19
MS7	(case,poss,cop)	157,927	11,519	3.18	55.05	37.73	27.67
MS11	(case,poss,cop,v.pers)	168,135	10,450	2.54	56.23	36.59	26.37

	Training set		SMT (on devset2)			
Preprocessing	Tokens	Dict.	%00V	%BLEU	%WER	%PER
baseline	139,514	17,619	6.16	52.26	37.75	29.95
MS2 (case)	151,410	14,343	4.35	53.89	37.21	28.51
MS6 (case,poss)	156,390	12,009	3.49	54.10	37.29	28.19
MS7 (case,poss,cop)	157,927	11,519	3.18	55.05	37.73	27.67
MS11 (case,poss,cop,v.pers)	168,135	10,450	2.54	56.23	36.59	26.37

- segmentation minimizes differences in word granularity between TR and EN
- reduces dictionary size and data sparseness

	Training set			SMT (on devset2)		
Preprocessing	Tokens	Dict.	%00V	%BLEU	%WER	%PER
baseline	139,514	17,619	6.16	52.26	37.75	29.95
MS2 (case)	151,410	14,343	4.35	53.89	37.21	28.51
MS6 (case,poss)	156,390	12,009	3.49	54.10	37.29	28.19
MS7 (case,poss,cop)	157,927	11,519	3.18	55.05	37.73	27.67
MS11 (case,poss,cop,v.pers)	168,135	10,450	2.54	56.23	36.59	26.37

- segmentation minimizes differences in word granularity between TR and EN
- reduces dictionary size and data sparseness
- important OOV decrease and consequent BLEU improvement

39

	Training set		SMT (on devset2)			
Preprocessing	Tokens	Dict.	%00V	%BLEU	%WER	%PER
baseline	139,514	17,619	6.16	52.26	37.75	29.95
MS2 (case)	151,410	14,343	4.35	53.89	37.21	28.51
MS6 (case,poss)	156,390	12,009	3.49	54.10	37.29	28.19
MS7 (case,poss,cop)	157,927	11,519	3.18	55.05	37.73	27.67
MS11 (case,poss,cop,v.pers)	168,135	10,450	2.54	56.23	36.59	26.37

- segmentation minimizes differences in word granularity between TR and EN
- reduces dictionary size and data sparseness
- important OOV decrease and consequent BLEU improvement
- WER figures not very significant, but PER constantly lowers \rightarrow positive effect on lexical choice rather than on reordering

Varying the distortion limit (DL):

Preprocess. DL %		%BLEU	Δ	%WER	%PER
baseline	6	52.26	1.3%	37.75	29.95
Daseime	∞	52.96	1.570	37.18	29.71
MS6	6	54.10	1.4%	37.29	28.19
10130	∞	54.87	1.4/0	36.69	28.35
MS11	6	56.23	3.0%	36.59	26.37
	∞	57.91	J.U /0	33.70	25.69

- because task is simple, unlimited distortion has reasonable decoding time
- the more segmented the text, the more improvement possible

Lexical approximation:

Preprocess.	DL	%BLEU		
MS11	∞	57.91		
MS11 &	∞	58.12		
lex.approx.	\mathcal{X}	50.12		

- work in progress
- \bullet promising results in particular setting \rightarrow room for improvement
- in final submission dropping OOV words gave better BLEU scores

42

Outline

- Turkish & SMT
- Morphological Segmentation
 - Preprocessing chain
 - Segmentation rules
- Lexical Approximation
- Experiments
- Future Work & Conclusions

Future Work & Conclusions

- refine segmentation schemes by better addressing verbal suffixation
- improve lexical approximation technique:
 - test different similarity functions
 - feed the decoder with multiple options of replacement
- repeat experiments on a more complex task

Future Work & Conclusions

- refine segmentation schemes by better addressing verbal suffixation
- improve lexical approximation technique:
 - test different similarity functions
 - feed the decoder with multiple options of replacement
- repeat experiments on a more complex task

- linguistic preprocessing crucial for morphologically rich language like Turkish
- split/removing suffixes from morph.analyzed text yields large improvements
- linguistic knowledge guides hypothesis formulation before empirical validation

Thanks for your attention!

Preprocessing scripts available at : http://hlt.fbk.eu/people/bisazza

Japon Büyükelçiliği ile irtibata geçmek istiyorum .
I'd like to contact the Japanese Embassy .
I'd like to contact with Japanese büyükelçiliği .
I'd like to contact with Japanese embassy .
Bu film rulolarını banyo ettirip basabilir miydiniz ?
Could you develop and print these rolls of film ?
Could you reissue ettirip rulolarını this film developed ?
Could you reissue roll of film developed ?
Onu bulmaktan ümidi hemen hemen kestim .
I've just about given up finding it.
bulmaktan ümidi cut it right away .
I cut almost hope from find it .
Şimdi kirazların çiçek açma mevsimi .
It's cherry blossom season .
kirazların buds mail seasons now .
cherry blossoms bloom season now .

References

- [1] N. Habash and F. Sadat, "Arabic Preprocessing Schemes for Statistical Machine Translation," in *Proc. of NAACL HLT*. New York City, USA: Association for Computational Linguistics, June 2006, pp. 49–52.
- [2] K. Oflazer and I. D. El-Kahlout, "Exploring Different Representational Units in English-to-Turkish Statistical Machine Translation," in *Proc. of Workshop on SMT*. Prague, Czech Republic: Association for Computational Linguistics, June 2007, pp. 25–32.
- [3] K. Oflazer, "Two-level Description of Turkish Morphology," *Literary and Linguistic Computing*, vol. 9, no. 2, pp. 137–148, 1994.
- [4] T. G. H. Sak and M. Saraclar, "Morphological Disambiguation of Turkish Text with Perceptron Algorithm," in *Proc.of CICLing*, 2007, pp. 107–118.
- [5] H. K. C. Mermer and M. U. Dogan, "The TUBITAK-UEKAE Statistical Machine Translation System for IWSLT 2007," in *Proc. of IWSLT*, Trento, Italy, 2007, pp. 176–179.
- [6] T. A. W. Shen, B. Delaney and R. Slyh, "The MIT-LL/AFRL IWSLT-2008 MT System," in Proc. of IWSLT, Hawaii, USA, 2008, pp. 69–76.