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Abstract

The statistical induction of context free grammars from bracketed cor-

pora with the Inside Outside Algorithm has often inspired researchers,
but the computational complexity has made it impossible to generate
a large scale grammar. The method we suggest achieves the same re-

sults as earlier research, but at a much smaller expense in computer
time. We explain the modifications needed to the algorithm, give re-
sults of experiments and compare these to results reported in other
literature.

1 Introduction

The availability of large treebanks creates the opportunity to model the struc-
tures humans recognize in sentences that appear in everyday natural language.
One well known method for modeling such structures is the Inside Outside Al-
gorithm, which was first described by Baker (1979).

The statistical induction of context free grammars has the attractiveness

that it does not require any presumptions about the grammar that is being
created, other than those that limit the size. However, the major problem

with this kind of modeling has always been the computational complexity; the
algorithm requires 0(n3 1w1 3 ) of training time per sentence w for a grammar
with n nonterminals, per iteration.

The algorithm has been used in two different ways, both of which reduce
the computational complexity. First, there is a line of research (Black, Garside,

and Leech, 1993; Hogenhout and Matsumoto, 1996) that concentrates on the
reestimation of hand written grammars. This has none or much less problems
with time complexity since the structure of the grammar is already decided and

usually generates a limited number of parses for a given sentence. However, it

completely loses the original attractiveness of modeling without presumptions.
A second line of research, which concentrates on inducting a new grammar

from scratch, is described in, amongst others, (Pereira and Schabes, 1992;
Schabes, Roth, and Osborne, 1993).

In these experiments the algorithm was applied to a treebank. The brackets
of the treebank were used to reduce the number of possible structures by
disallowing any structure that crosses some treebank bracket. This greatly
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reduces training time, and they were able to parse short sentences of the Wall
Street Journal corpus with 90.2% accuracy using a 15-nonterminal grammar.

The extension to the algorithm and the experiments we present aims at
improving the efficiency of induction of grammars from scratch. We have
been able to strongly reduce the time complexity of the training, and at the
same time achieved equivalent results when parsing short sentences of the Wall

Street Journal Corpus.
Instead of starting with a grammar consisting of all possible rules for a

given number of nonterminals, we start with a small number of nonterminals

and gradually increase this to the desired number. At the same time we remove
rules that have become obsolete so we can work with a much smaller grammar.

In this paper we describe the method in detail and report on the results

obtained in preliminary experiments.

2 Inducting Statistical Grammars

The Inside Outside Algorithm makes it possible to start with an unstructered

grammar. That means a number of nonterminals (n) and a number of parts
of speech (m) are chosen and all possible rules for these symbols are created.
Usually Chomsky Normal Form rules are used:

Xi XjXk	 (1 < i,j, k < n)

X2 –* t3 	 (1 < i < n; 1 < j < m)

where t stands for a part of speech. After training it is possible (but not
necessary) to discard those rules that obtained a very low probability.

We refer to (Baker, 1979; Lan and Young, 1990) for the details of the
Inside Outside Algorithm.

2.1 Induction from Bracketed Corpora

The experiments reported in (Pereira and Schabes, 1992) were limited in the

size of the training corpus (770 sentences) and in the number of nonterminals

(15). Apart from the limited size of the grammar and the training set, the

linguistical simplicity of the corpus that was used also gave reason for doubt.

Schabes, Roth, and Osborne (1993) report on an experiment using the
linguistically more complex Wall Street Journal Corpus. This proved that
more complex structures can be learned in the same way. Various sizes were
tried for the training set, but this had no significant affect on the performance.

In our experiments we used the same number of nonterminals, the same
corpus and about the same amount of training data, but we created the gram-
mar in much less time.

2.2 Enforcing Structure in the Grammar

We mention some experiments that aimed at reducing the computational com-
plexity of grammar induction. They are aimed at either giving structure to
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the grammar before parsing, reducing the number of rules in the grammar, or

reducing the number of rules involved in training.
Fujisaki et al. (1989) describe an experiment where training was only

used to find the parameters of a predefined subset of the rules. They trained
with an ambiguous corpus of slightly more than 4200 sentences, on average
about 11 words long. The resulting grammar was tested on 84 sentences, but

comparison with other experiments is rather difficult.
Sharman, Jelinek, and Mercer (1990) describe an experiment where the

grammar was in ID/LP format (Immediate Dominance and Linear Prece-

dence), and received initial probabilities from the counts in a treebank. In
this way, the grammar already had a strong shape before training started. In
contrast to (Fujisaki et al., 1989) they used a treebank to do the training and
they also used longer sentences. This grammar was tested on 42 sentences,

but here also it is very difficult to compare the results because of the different

test sets.
Another experiment with the Inside Outside Algorithm with restrictions

on the grammar is described by Briscoe and Waegner (1992). The restrictions

they place are similar to those in X theory. Every nonterminal has a number

of bars (zero, one or two), and is specified for noun and verb (e.g., a noun is
classified +noun and -verb, an adverb is classified +noun and +verb). Every

rule must be consistent with some constraints in order to be permitted. Most
importantly, the left side nonterminal must be matched by a right side non-
terminal that has the same specifications for noun and verb, and has the same
number of bars or one less. Briscoe and Waegner also give higher probabilities

to what they call explicit rules to give the grammar more structure. Unfortu-
nately, it is hard to evaluate this in terms of performance since they only give
results in terms of entropy.

3 The Details of Step-by-Step Induction

The Gradual Induction we describe is based on the intuition that a small

grammar can gradually be corrected and improved in order to make a bigger

one. Imagine a grammar with n nonterminals, which has been trained for a

certain number of iterations. We can take one nonterminal from this grammar,

removing all rules that contain the nonterminal, and replace it with two new
ones. In a sense we split up a nonterminal into two, thus creating a grammar
with n + 1 nonterminals.

More formally, we take the following steps.

1. Select a nonterminal Xq that is being used in the grammar

2. Remove all rules of the form Xq ---÷ XiXk, Xq --+ tj, Xi	 XqXk,
Xk XiXq, for every j, k.

3. Create all rules possible with the two nonterminals Xq and Xqi. In other
words, all rules of the form Xi –4 XjXk , where either i, j or k is Xq
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or ;J. This includes multiple occurrences, so for example Xq XqXq
and Xq ---+ XqiXq are also created.

4. Also create the rules Xq ti and Xqi —+ ti for every j < m.

5. Give these new rules randomized probabilities, so that their total prob-

ability mass equals that of the nonterminal Xq before it was removed

If no rules are deleted this can be used to create a grammar that is com-
pletely equal to the grammar that would be inducted directly from n 1

nonterminals. But we are more interested in the possibility of removing those
rules that received a very low probability, thereby keeping a small grammar
while the number of nonterminals increases.

The intuition behind this process is that when the number of nonterminals
is low (as it unvariably is) one nonterminal will take on various roles (repre-
sent various grammatical entities) and this will have a negative effect on the
grammar. Separating one nonterminal into two and randomizing the related

probabilities allows the algorithm to separate these roles while the rest of the

grammar does not undergo major changes.

Selection One question we left open is the selection of a nonterminal: one

needs some criterion to decide what nonterminal should be separated. In the
experiments we are reporting on, we chose the nonterminal with the highest
count as it is given by the Inside Outside Algorithm, in other words we used

the nonterminal with the highest frequency in the training corpus.
The motivation is that this nonterminal has the most data available for

training. Choosing another nonterminal may result in nonterminals that have
too little training data to give meaningful estimates to their rules. However,

there are other clues for choosing a nonterminal, and we almost never know if
this is the best choice.

What we do know is that in our experiments this always was the best choice
for the first separation. We also noticed that selecting a nonterminal with a

low count is not very productive. Nevertheless, our criterion for selecting a
nonterminal is not optimal.

Amount of Rules If no rules would be removed before separating a non-
terminal, the size of the grammar would simply be n3 . Our approach aims at
reducing this number. To keep things simple, we allow kn 2 rules where k is
what we call the tolerance factor. By setting k to some value we can decide

how many rules the grammar will contain.
The procedure is as follows:

1. Train the grammar for a certain number of iterations

2. Discard the rules of the form Xi --> XiXk with the lowest probabilities

until kn2 such rules remain

3. Separate one nonterminal, and repeat the process
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We been experimenting with various values of k. Most of these experiments
showed that the value of k does not have much influence on the results. When
n is between 7 and 9 there is some negative affect if k is smaller than 4, so
it was set at 4. When n became higher than 9 we discovered no significant
decrease in performance when k was as low as 1. Only k < 1 gave an inferior
performance.

4 The Experiment

For the experiment we used rules in Chomsky Normal Form. Given a number
of nonterminals n, an initial grammar is created consisting of the rules as
mentioned in section 2.

4.1 Pilot Experiment

We first conducted a pilot experiment to answer the following question: can
the entropy of the grammar be kept at the same level when a nonterminal is

separated in two, can it improve, or will it deteriorate? This experiment is
only meant to study the viability of the approach.

We compared three grammars:

• (a) a grammar with 7 nonterminals (regular procedure, no separations)

• (b) a grammar with 8 nonterminals (regular procedure, no separations)

• (c) a grammar with 7 nonterminals where one nonterminal was sepa-
rated, turning it into an 8 nonterminal grammar

Figure 1 shows the results in cross entropy of the three grammars. Gram-

mar b has more nonterminals than a, so it takes more time (this is not visible
in the figure) to train and achieves a lower cross entropy. During the first 30
iterations grammar a and c are equal, then c suddenly increases enormously

at the point where a nonterminal is separated.

This is caused by the los of information of the distribution of one non-
terminal. Since the two new nonterminals receive random distributions the
cross entropy of the grammar suddenly deteriorates. However, this soon im-
proves and the final entropy is actually lower than grammar b, which had 8
nonterminals from the beginning.

This shows that separating nonterminals can be a good idea. It does how-

ever not show that the entropy will always be lower than a grammar that was
trained with the same number of nonterminals from the start. In our experi-
ence it varies at separations, although it improves at most separations. But
that is a conjecture rather than a conclusion, since (due to time limitations)
we cannot train grammars with much more nonterminals for comparison.
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Figure 1: Entropy values for Pilot Experiment.

4.2 Experiment with 15 Nonterminals

We proceeded to perform an experiment with the Wall Street Journal tree-
bank. The value for m (number of parts of speech) was 31 (this is lower than
the 47 in the experiment from Schabes, Roth, and Osborne (1993) since some

similar low frequency parts of speech were merged.) The training set con-
sisted of 1000 sentences and tests were performed on 100 sentences that were
not used in training.

The experiment started with a 7-nonterminal grammar. This was trained

for 30 iterations. After this the nonterminal with the highest count was sepa-

rated into two and the resulting grammar was trained for 15 iterations. This
was repeated until the grammar had 15 nonterminals, every time training the

grammar for 15 iterations after separating a nonterminal into two.

At first, after training the grammar for 30 or 15 iterations and before
separating a nonterminal, the number of rules of the form Y Xj Xk was
reduced to 4n2 . (When the number of rules is not reduced there would be

n3 such rules.) When the number of nonterminals became 10, the number
of rules was further reduced to only n2 (before every separation). Since we
do one more deletion at the end, the final grammar had n2 rules of the form
Xi -4 Xj Xk

The rules that were removed, were simply those with the smallest prob-

ability (irrespective of the nonterminals they contained). Theoretically this
could result in nonterminals becoming obsolete when their rules are removed,
but we never encountered this problem.

The final 15 nonterminal grammar we inducted thus had 225 rules of the
type Xi Xi Xk . We also fixed the number of rules of the type Xi –+ ti , so
that it remained at 7 for every part of speech. The final number of rules was

therefore 225 + 7 * 31 = 442.
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5 Results

The result in entropy on test data and training data is indicated in figure 2.

The peaks in this figure represent the points where some nonterminal is sep-
arated into two. This includes randomizing the probabilities of the rules in-
volved and therefore leads to an upward jump in entropy. But after this severe

loss the entropy values become lower than they would have become with less
nonterminals almost every time. For example, the 7-nonterminal grammar did

not come under an entropy of 3, also not after a running much more iterations
than have been indicated here, whereas the final 15 nonterminal grammar

came at less then 2.5. This shows that our method gradually improves the
grammar, even though a large part of the grammar is discarded before every

separation.
Table 1 compares our results with those of the grammar inducted in (Sch-

abes, Roth, and Osborne, 1993), with a grammar that gives a right-branching
structure to everything except the final punctuation and a grammar directly
abstracted from the corpus. (These figures have been taken over from (Sch-
abes, Roth, and Osborne, 1993)).

Figure 3 shows the accuracies for the test set differentiated by length.
Please note that this is cumulative; for example 20 on the x-axis means
"shorter than 20 words." This shows that our inducted grammar scores equiv-
alent to the grammar inducted in (Schabes, Roth, and Osborne, 1993).
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Figure 2: Entropy values for training data and test data against number of

iterations.

6 Future Perspectives

After this experiment there are a number of questions left to be answered in
the future. First of all, we randomize the probabilities of the new nonterminals
after a separation. This temporarily causes an enormous increase in entropy
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Table 1: Comparison of Bracketing Accuracies
Length 0-10 0-15 10-19 20-30

Inducted gram. 92.0% 91.7% 83.8% 72.0%
Schabes et. al. 94.4% 90.2% 82.5% 71.5%
Right linear 76% 70% 63% 50%
Treebank gram. 46% 31% 25%   
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Figure 3: Bracket Accuracy against maximum sentence length.

which is only recovered after training for a few iterations. This is essentially
inefficient, since valuable information is being discarded.

An alternative would be to retain most of the original distribution, only
introducing a small amount of noise. For example, a new rule receives a prob-

ability of 0.8 times the old value, and 0.2 times a random number between

0 and 1. This will reduce the amount of information that is lost during a
separation.

One question that remains is the future of statistical grammar induction.
While this technique strongly speeds up the process, inducting a large scale
grammar is still far from possible. Also, broad coverage parsing is being done
with more success elsewhere, see for example (Coffins, 1996; Magerman, 1995).

We therefore see this experiment as an experiment in automatically dis-
covering grammatical structures. We also feel grammar induction can play
a role in discovering groups of brackets that have similar behavior. Another

application can be evaluating a fine grained tag set, since the success of the
grammar strongly depends on the word tags.

Although this proposal is limited to simple parts of speech, we feel that
for context free grammars to be more mature, they should use headwords,
either of categories as in (Hogenhout and Matsumoto, 1996), or of words on
the lexical level as in (Collins, 1996; Magerman, 1995).
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7 Conclusion

We have briefly discussed some of the existing literature on grammar induction

from bracketed corpora and presented an improvement to the Inside Outside
Algorithm that makes grammar induction possible in less time. We have
presented results of experiments that show this can be used without loss of
performance.

It is expected that these results can be improved on in the future, by
retaining part of the distribution of the nonterminal that is being separated.

We consider our results a success since we can have shown we construct a

grammar with a performance that is equivalent to earlier attempts, but at a
much lower cost in terms of computer time. It is not possible to give the time
gain exactly, but from the fact that the size our grammar grows with a speed
of 0(n2) will make this clear.

On the other hand, although this speeds up the process, the possibility of
learning a full fledged grammar in this way is still not within reach.
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