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Abstract

This paper describes the unsupervised
neural machine translation system of
Tokyo Metropolitan University for the
WAT 2018 translation task, focusing on
Chinese—Japanese translation. Neural
machine translation (NMT) has recently
achieved impressive performance on some
language pairs, although the lack of large
parallel corpora poses a major practical
problem for its training. In this work,
only monolingual data are used to train
the NMT system through an unsupervised
approach. This system creates synthetic
parallel data through back-translation and
leverages language models trained on both
source and target domains. To enhance
the shared information in the bilingual
word embeddings further, a decomposed
ideograph and stroke dataset for ASPEC
Chinese—Japanese Language pairs was also
created. BLEU scores of 32.99 for ZH-
JA and 26.39 for JA-ZH translation were
recorded, respectively (both using stroke
data). !

1 Introduction

Neural machine translation (NMT) (Bahdanau
et al., 2014; Cho et al., 2014; Sutskever et al.,
2014) systems have achieved great success in re-
cent years and outperform traditional statisti-
cal machine translation (SMT) (Sennrich et al.,

'Our team ID for the submission to this shared
task (Nakazawa et al., 2018) is TMU.

981

komachi@tmu.ac. jp

2016a; Wu et al., 2016; Zhou et al., 2016) sys-
tems. Nevertheless, one of its major challenges
has been that it is necessary for NMT models
to be trained using large parallel data, meaning
that they can fail when the training data is not
big enough (Koehn and Knowles, 2017; Isabelle
et al., 2017). Unfortunately, the lack of large
parallel corpora is a practical problem for the
vast majority of language pairs, and these are of-
ten non-existent for low-resource languages. On
the other hand, monolingual data is much eas-
ier to find; many languages with limited parallel
data still possess significant amounts of mono-
lingual data.

Lample et al. (2018) have proposed an

unsupervised NMT model that is effec-
tive on similar language pairs, such as
English-French and English-German. In

this work, Chinese—Japanese language pair is
used because they also share a lot of charac-
ters which can be used to replace the need
for bilingual dictionaries. New sub-character
datasets were also created to enhance the
shared information. The byte-pair encodings
(BPE) (Sennrich et al., 2016c) vocabularies
were shared between the two related languages
by jointly trained both monolingual corpora.
FastText (Bojanowski et al., 2017) was then
used to generate cross-lingual embeddings.
Following this, two encoder—decoder language
models were trained on noisy data on either
monolingual corpora, respectively. For the
translation models, back-translation (Sennrich
et al., 2016b) was used to handle both direc-
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tions in tandem, from source to target and from
target to source (the former generates data
to train the later and vice versa). The goal
of this back-translation model is to generate
a source sentence for each target sentence in
the monolingual corpus. The loss is computed
based on monolingual data in four-ways: the
source and target language models, and the
source and target back-translation models.
Finally, the model was tested on the translation
models only.

The main findings of this paper are summa-
rized as follows:

e The effectiveness of unsupervised NMT is
quite promising in Chinese-Japanese lan-
guage pairs, even if the shared tokens are
not as high as 95% (Lample et al., 2018).

Enhancing the shared information between
language pairs will further promote the per-
formance of unsupervised NMT.

2 Data Preparation

Chinese and Japanese are two logographic lan-
guages that utilize structuralized strokes to
form ideographs and structuralized ideographs
to form characters (Japanese also has Kanas
that function as phonetic letters). According to
UNICODE 10.0 standard, there are 36 strokes
(“—7, « | 7« ) 7“7 etc.) composing hun-
dreds of ideographs 2, and further composing
90,0004+ of different characters. Table 1 shows
examples of Chinese characters and how strokes
and ideographs compose different characters.

ASPEC-JC (Japanese Chinese language
pairs) parallel corpora (Nakazawa et al., 2016)
were used in the experiments. There are 672,315
sentences in training set, and 2,090 and 2,107
sentences in the development and test sets, re-
spectively. Note that although this corpus is
bilingual, it was used monolingually in the mod-
els for this task. Ideally, a larger monolingual
dataset (such as Wikipedia) should be used to
obtain better performance.

2The number depends on how to define ideographs
(usually around 500+); sometimes there are standalone
ideographs that can be regard as characters as well.
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Character Semantic Phonetic Pinyin
ideograph ideograph

U run ) horse h chi
it pool K(7) water th chi
fiti impose 5 direction i) sh1
it loosen 5 bow it} chi
it land T soil t di
IX drive I horse X qi

Table 1: Examples of Chinese characters (Pinyin
is the official Romanization of Chinese characters
according to its pronunciation.). Note that some-
times a ideograph can also be a character itself (like
“h™): some ideographs denote the semantic meaning
of the character (semantic ideographs); some denote
the pronunciation (phonetic ideographs). Both se-
mantic ideographs and phonetic ideographs can be
shared across different characters for similar func-
tions, such that “4th” and “3X” both with “=” have
related meanings, while characters with “th” usually
pronounce similarly.

Because neither Chinese nor Japanese have
natural word boundaries, MeCab (Kudo et al.,
2004) was used to pre-tokenize Japanese with
the IPADic dictionary, and Jieba to pre-tokenize
Chinese with its default dictionary. Then,
a BPE sub-word model was trained on con-
catenated Chinese and Japanese monolingual
data with a vocabulary size of 30,000 using
fastBPE 3, in order to reduce the vocabulary size
and eliminate the presence of unknown words
(OOV).

Further, unsupervised NMT models rely heav-
ily on shared information between the source
and target data. Therefore, to enhance this in-
formation, new ideographs and stroke datasets
were created. As opposed to Zhang and Ko-
machi (2018), who utilized three corpora for
different language pairs, namely, ASPEC-JC
(Japanese Chinese), ASPEC-JE (Japanese En-
glish) and Casia2015 4 (Chinese English) to
create decomposed datasets, only ASPEC-JC
was chosen in this work in order to focus on
the shared information between Chinese and
Japanese characters. Another difference is that
CHISE was used instead of CNS11643 charset

Shttps://github.com/glample/fastBPE
‘http://nlp.nju.edu.cn/cumt-wmt/
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LANGUAGE

JA-character
JA-ideograph

JA-stroke

ZH-character
ZH-ideograph

ZH-stroke

EN landscape

Table 2: Examples of decomposition of a Japanese

word “J& %" and Chinese word “ X", both meaning

“landscape” in English.

for the decomposition information. The CHISE
Project ® provides decomposition mappings for
Unicode CJK characters using 12 Ideographic
Description Characters, 394 ideographs, and 19
special symbols for “unclear” ideographs. This
mapping can help create new datasets. For ideo-
graph datasets, the CHISE mappings were used
directly; for stroke dataset, the ideographs and
special symbols were manually transcribed to
stroke sequences in the CHISE format, and then
recursively decomposed characters into strokes.
The examples are in Table 2. Similarly, BPE
sub-word models were trained by and applied
to these stroke and ideograph datasets with a
vocabulary size of 30,000.

3 Architecture Description

Three key principles underpin the approach to
unsupervised neural machine translation used in
this model. The design is largely based on Lam-
ple et al. (2018)’s implementation of unsuper-
vised NMT systems.

3.1 Shared BPE Embeddings

Instead of initializing and mapping the bilingual
word embeddings based on a bilingual seed dic-
tionary and two monolingual embeddings for un-
supervised NMT models (Artetxe et al., 2018),

Shttp://www.chise.org/
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a bilingual embedding is directly trained in two
steps: first, the data is segmented using relevant
BPE models trained on concatenated monolin-
gual data of character-, ideograph- and stroke-
level corpora; second, relying on the shared in-
formation between these corpora, word embed-
dings are trained directly using fastText (Bo-
janowski et al., 2017). This method is used
not only because finding a readily available sub-
word level bilingual embedding is almost impos-
sible, but also because it is found to be effi-
cient enough to encode the shared information
directly into one space.

3.2 Encoder—Decoder Language Models

Artetxe et al. (2018) designed a shared encoder
for both source and target languages, while
Lample et al. (2018) used two different encoders
for different languages, where the weights were
only shared in last layers. Here, the latter de-
sign is followed. Two encoder-decoder models
are used as the language models of the source
and target languages. The encoders will en-
code monolingual sentences into latent repre-
sentations for respective decoders, and the de-
coders learn to decode the same sentences based
on these latent representations. Random blank-
outs are added to the input sentences as noise
to improve the quality of the language model
training.

3.3 Back-Translation

The original idea of back-translation (Sennrich
et al., 2016b) was to enhance the training
of a single NMT model (source-target) us-
ing the output of another readily available
NMT model (target—source). The difference be-
tween the back-translation in the present sys-
tem and the original one is that two back-
translation models are trained together with the
two encoder—decoder language models. There is
no readily available model, but all models in the
architecture learn to encode and generate from
scratch.

Specifically, for one translation direction, the
forward NMT model translates the source sen-
tences into the target sentences and the back-
ward NMT model translates the target into the

32nd Pacific Asia Conference on Language, Information and Computation
The 5th Workshop on Asian Translation
Hong Kong, 1-3 December 2018
Copyright 2018 by the authors



PACLIC 32 - WAT 2018

=,
-,

’ L1 syntheti =
s ’ synthetic N
’ .
1
L1 mono L1 Encoder L1 Decoder L1 output
L2 mono L2 Encoder L2 Decoder L2 output
\ .
N~ L2 synthetic e
~ -
S~ -
- — — -
Figure 1: The architecture of unsupervised NMT

model. The green arrows indicate the direction of
data flow in encoder—decoder language models; the
red arrows indicate the direction of data flow in back-
translation models. The dotted lines are losses com-
puted from output of the decoders and the original
inputs.

source. These models generate sentences sep-
arately and then use the resulting translations
to train each other. From another perspective,
by combining the translation with its original
sentence, a pseudo-parallel corpus is created,
which is utilized to train the model to recon-
struct the original sentence from its translation.
More specifically, from the perspective of the
two encoders, the models learn to encode both
ground truth and synthetic monolingual sen-
tences into latent representations; from the per-
spective of the two decoders, the models gener-
ate good sentences from latent representations,
from encoders in both languages.

Figure 1 shows the illustration of the archi-
tecture of unsupervised NMT models.

4 Experiments

4.1 Setup

The system in this work was
an unsupervised NMT model trained on
Chinese—-Japanese charcater level data. This
was to confirm the effectiveness of the model.
Then, two experiments were completed, one
for the ideograph model and the other for the
stroke model. As discussed in the “Dataset
Preparation” section, this is to enhance the
shared information between the two languages.
Understanding the importance of this in unsu-

baseline
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pervised NMT models is one of the main goals
of this work.

4.2 Training

The system developed in this work was imple-
mented based on Lample et al. (2018) 5. Trans-
former (Vaswani et al., 2017) cells were used
as the basic units in the encoders and decoders
through the PyTorch 0.4.0 toolkit, and the num-
bers of both the encoder and decoder layers
were set to 4. The dimension of the token em-
beddings and the hidden layers was set to 512.
The Adam optimizer (Kingma and Ba, 2015)
was used, with a learning rate of 0.0001 and a
batch size of 32. A maximum length of 175 to-
kens per sentence for each type of dataset and
a dropout rate of 0.1 was set. It is worth men-
tioning that the random blank-out rate was set
to 0.1 in the last experiment. BLEU scores (Pa-
pineni et al., 2002) of the translation in both
directions were evaluated at every epoch, and
training was stopped when the scores from the
last ten epochs did not improve.

5 Results

BLEU scores of 7.01 for translation from ZH-JA
and 7.73 for JA-ZH were recorded, respectively,
at the time of result submission. However, af-
ter bug-fixing and fine-tuning, the best scores
increased to 31.99 and 25.87 respectively (both
using stroke data).

The results of the baseline systems and the
two experiments on sub-character level data are
recorded in Table 3. The two sub-character level
models outperform the character level baseline
model. Moreover, the stroke model performs
better than the ideograph model. The trans-
lation examples can be found in Table 4.

6 Discussion

6.1 Effectiveness of Unsupervised NMT
Model

According to Lample et al. (2018), the source
data and target data should share 95% of the
tokens in order to make the model effective.

Shttps://github.com/facebookresearch/
UnsupervisedMT
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Level Direction BLEU
Character JA-ZH 24.18
ZH-JA 29.79
A-7ZH 25.
Ideograph J 576
ZH-JA 32.61
Stroke JA-ZH 26.39
ZH-JA 32.99

Table 3: BLEU scores of 3 unsupervised NMT mod-
els on 6 translation directions. The stroke data has
the best BLEU scores in both the JA-ZH and ZH-JA
translation directions

However, according to the baseline and exper-
iments in this paper, it seems that only 66.89%
of shared tokens on character level data are re-
quired to generate good translations. Although
the BLEU scores of both translation directions
is not as good as the most basic supervised NMT
model using RNNSearch (Zhang and Komachi,
2018), it is still promising, since the training
data used in this work is much smaller than the
original setting (Lample et al., 2018).

On the other hand, the testing output pro-
duced by the model was closely investigated.
In both translation directions, translations were
produced which do not use the exact terms in
the reference, but instead use synonymous ex-
pressions. Several native speakers were asked
to judge the grammaticality, fluency, and nat-
uralness of the output translations, and many
of the translations were thought to be better
than the references. For example in Table 4, the
character-level model Chinese translation “H
IR” was very close to the reference “Ffi/R”
semantically, and this translation was consis-
tent in ideograph- and stroke-level models. This
might be because of the encoder—decoder lan-
guage models in the architecture, which suc-
cessfully grasp the features of the language and
express it in the translation. Therefore, if
semantic-based metrics (instead of n-gram based
metrics, like BLEU) could be introduced to
NMT evaluation, the performance of unsuper-
vised NMT could be better reflected in their
BLEU scores.
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6.2 Shared Information

Zhang and Komachi (2018) proposed that in
logographic languages, sub-character decompo-
sitions could help supervised NMT models.
It is found that sub-character decompositions
(ideographs and strokes) are also helpful in un-
supervised NMT models. This is largely due
to the increase in shared information. Fur-
thermore, since strokes are smaller units than
ideographs, and they contain more shared infor-
mation, the model performance is improved. For
example in Table 4, despite the fact that transla-
tions produced by ideograph and stroke models
were better than that of character model, stroke
model was even slightly better than ideograph
model. The stroke model translated Japanese
“KBl” into Chinese “Z3A”, which was con-
sidered more precise than ideograph model’s
“%41A)”. This might be due to the similarity of
characters between Chinese and Japanese; and
stroke model, as a model of finer granularity of
sub-character level, successfully took advantage
of this shared information.

Current unsupervised models still perform
poorly on distant language pairs, so if the shared
information between distant languages can be
improved, unsupervised NMTs may be created
for more general purpose.

7 Conclusion

The effectiveness of unsupervised NMT mod-
els is investigated for another language pair:
Chinese—Japanese. The unsupervised NMT sys-
tem is quite promising for similar languages,
even if the monolingual dataset is not large.
However, to evaluate its performance more suc-
cessfully, better semantic-based metrics are re-
quired.
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Type Sentence
Reference-JA 3 Ty WA XB T Hd &0 & HET520 0 HX %
w~L Tz

Reference-ZH 3 AR B9 2 2 4 X1 YW

W2 RT L9 %225 D ik |

Charcater-JA [X 3

Cn T RGE MG k.
IonT &1 B EfE £ T 5 H»

9 & Hkr $5% B & ORY .
Chorscter 201 3 0 SR 7 W 2 I W M 2 B
Ideograph-JA [ 3 12 RT K9 122> D H

IZoWT @ fIX & RY .
Ideograph—ZH
Stroke-JA X 312 RY D F,
ES » T bbb

B3 ox 7 HE & T AR WA A Ry 2 A Pl .

F& 1 2 WEf &8 o fiIX T

Stroke-ZH 3oh R 7 HE U & T REAR A KK 2 A4 Pl

English

Figure 3 showed 2 example sentences of judging whether

“2%” is an inherent expression.

Table 4: Translation examples from 3 unsupervised NMT models in 6 translation directions. Note that even
if the produced translations are not the exact words from the reference sentences, they are synonymous.
Furthermore, the stroke model can generate more accurate translations semantically than the ideograph

model.
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