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Abstract
We propose three methods for obtaining dis-
tributed representations for verb-object pairs
in predicated argument structures by using
word2vec. Word2vec is a method for acquir-
ing distributed representations for a word by
retrieving a weight matrix in neural networks.
First, we analyze a large amount of text with
an HPSG parser; then, we obtain distributed
representations for the verb-object pairs by
learning neural networks from the analyzed
text. We evaluated our methods by measur-
ing the MRR score for verb-object pairs and
the Spearman’s rank correlation coefficient for
verb-object pairs in experiments.

1 Introduction

Natural language processing (NLP) based on cor-
pora has become more common thanks to the im-
proving performance of computers and development
of various corpora. In corpus-based NLP, word rep-
resentations and language statistics are automati-
cally extracted from large amounts of text in order
to learn models for specific NLP tasks. Complex
representations of words or phrases can be expected
to yield a precise model, but the data sparseness
problem makes it difficult to learn good models with
them; complex representations tend not to appear or
appear only a few times in large corpora. For ex-
ample, the models of statistical machine translation
are learned from various statistical information in
monolingual corpora or bilingual corpora. However,
low-frequency word representations are not learned
well, and consequently, they are processed as un-
known words, which causes mistranslations. It is

necessary not only to process NLP tasks by match-
ing surface forms but to generalize the language rep-
resentations into semantic representations.

Many approaches represent words with vector
space models so that texts can be analyzed us-
ing semantic representations for individual words or
multi-word expressions. These methods can be clas-
sified into two approaches: the word occurrence ap-
proach and the word co-occurrence approach. The
word occurrence approach includes Latent Seman-
tic Analysis (LSA) (Landauer and Dumais, 1997),
Probabilistic LSA (PLSA) (Hofman, 1999) and La-
tent Dirichlet Allocation (LDA) (Blei et al., 2003),
which acquire word representations from the dis-
tributions of word frequencies in individual docu-
ments (a word-document matrix). Recently, many
researchers have taken an interest in the word co-
occurrence approach, including distributional rep-
resentations and neural network language models
(Mikolov et al., 2013a; Mikolov et al., 2013b; Mnih
and Kavukcuoglu, 2013; Pennington et al., 2014).
The word co-occurrence approach uses statistics of
the context around a word. For example, the dis-
tributional representations for a word are defined
as a vector that represents a distribution of words
(word frequencies) in a fixed-size window around
the word. The neural network language models, in-
cluding word2vec (Mikolov et al., 2013a; Mikolov
et al., 2013b), GloVe (Pennington et al., 2014) and
vector Log-Bilinear Language model (vLBL) (Mnih
and Kavukcuoglu, 2013), generate distributed rep-
resentations, which are dense and low-dimensional
vectors representing word meanings, by learning a
neural network that solves a pseudo-task of predict-
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ing a word given its surrounding words. Word2vec
is preferred in NLP because it learns distributed rep-
resentations very efficiently. Neural network lan-
guage models have semantic compositionality for
word-word relations by calculating vector represen-
tations; e.g., ‘king’ - ‘man’ + ‘woman’ is close to
‘queen.’ However, they acquire the distributed rep-
resentations for a word, not phrase structures such as
verb and object pairs. It is necessary to obtain rep-
resentations for phrases or sentences to be used as
natural language representations.

We devised three methods for acquiring dis-
tributed representations for verb-object pairs by us-
ing word2vec. We experimentally verified that the
distributed representations of different verb and ob-
ject pairs have the same meaning. We focused on
verb-object pairs consisting of verbs whose mean-
ing is vague, such as light-verbs, e.g., the ‘do’ and
‘dishes’ pair in “do dishes”. The following two sen-
tences are examples that have similar meanings but
whose phrase structures are different.

1. I wash the dishes.

2. I do the dishes.

The representations for the verb-object pairs in
the first sentence is “wash(dishes),” and those for
the second sentence is “do(dishes)” with the light
verb ‘do’. Despite the difference between the rep-
resentations of these sentences, they have the same
meaning “I wash the dishes.” As such, there are
various sentences that have the same meaning, but
different representations. We examined the perfor-
mance of each method by measuring the distance
between distributed representations for verb-object
pairs (‘do’ and ‘dishes’ pair) and those for the cor-
responding basic verb (‘wash’) or predicated argu-
ment structures (“wash(dishes)”). We also experi-
mentally compared the previous methods and ours
on the same data set used in (Mitchell and Lapata,
2008).

2 Related work

There are many methods for acquiring word repre-
sentations in vector space models. These methods
can be classified into two approaches: the word oc-
currence approach and the word co-occurrence ap-
proach.

The word occurrence approach, including Latent
Semantic Analysis (LSA) (Landauer and Dumais,
1997), Probabilistic LSA (PLSA) (Hofman, 1999)
and Latent Dirichlet Allocation (LDA) (Blei et al.,
2003), presupposes that distributions of word fre-
quencies for each document (a word-document ma-
trix) are given as input. In the word frequency
approach, word representations are learned by ap-
plying singular value decomposition to the word-
document matrix in LSA, or learning probabilities
for hidden variables in PLSA or LDA. However, in
the word frequency approach, the word frequencies
for a document are given as a bag of words (BoW),
and consequently, the information on the word order
or phrase structure is not considered in these models.

The co-occurrence frequency approach, includ-
ing distributional representations and neural net-
work language models, uses statistics of the con-
text around a word. The distributional represen-
tations for a word w are defined as a vector that
represents the distribution of words (word frequen-
cies) in a fixed-size window around word w, or the
distribution of dependencies of word w, following
the distributional hypothesis (Firth, 1957). Alter-
natively, neural network language models, includ-
ing word2vec (Mikolov et al., 2013a; Mikolov et
al., 2013b), GloVe (Pennington et al., 2014) and the
vector Log-Bilinear Language model (vLBL) (Mnih
and Kavukcuoglu, 2013), generate dense and low-
dimensional vectors that represent word meanings
by learning a neural network that solves a pseudo-
task in which the neural network predicts a word
given surrounding words. After the training of the
neural network on a large corpus, the word vec-
tor for w is acquired by retrieving the weights be-
tween w and the hidden variables in the neural
network (Bengio et al., 2003; Collobert and We-
ston, 2008). Word2vec is preferred in NLP because
it learns distributed representations very efficiently.
The conventional methods for neural network lan-
guage models take several weeks to learn their mod-
els on tens of millions sentences in Wikipedia (Col-
lobert et al., 2011). It is likely possible for word2vec
to reduce the calculation time dramatically. How-
ever, these models basically learn word-to-word re-
lations, not phrase or sentence structures.

When we make distributed representations for
phrases or sentences, it is necessary to generate con-
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stitutive distributed representations for phrases or
sentences based on the principle of compositional-
ity. Mitchell and Lapata (2008) and Mitchell and
Lapata (2010) proposed the add model, which gener-
ates distributed representations for phrase structures,
whereas Goller and Küchler (1996), Socher et al.
(2012) and Tsubaki et al. (2013) proposed Recursive
Neural Network (RNN) models for phrase struc-
tures. Recently, new models based on tensor factor-
ization have been proposed (Baroni and Zamparelli,
2010; Grefenstette and Sadrzadeh, 2011; Kartsaklis
et al., 2012).

The add model is a method to generate distributed
representations for phrase structures or multi-word
expressions by adding distributed representations
for each word that constitutes the phrase structure.
However, the word order and syntactic relations are
lost as a result of the adding in the model. For ex-
ample, suppose that we have the distributed repre-
sentations for a verb, a subject and an object. The
result of adding the distributed representations is the
same if we change the order of the subject and the
object. For example, consider the distributed repre-
sentations for the following two sentences.

• The girl gave a present.

• A present gave the girl.

The distributed representations for these sentences
are as follows.

v(the) + v(girl) + v(gave) + v(a) + v(present)

= v(a) + v(present) + v(gave) + v(the) + v(girl)

where v(w) is the distributed representations for
word w. It is necessary for the models to be sen-
sitive to the word order to make a difference be-
tween these sentences. To solve these problems,
various approaches have been proposed. For exam-
ple, a method that adds weights to verbal vectors ap-
pearing ahead or one that assigns word-order num-
bers to n-grams was proposed. RNNM can acquire
distributed representations for one sentence using
RNN and a given syntactic tree (Socher et al., 2011;
Socher et al., 2012). RNNM makes use of syntactic
trees of sentences, as shown in Figure 1. It calculates
a distributed representation for the parent node from

v(He) v(runs) v(the)	
   v(company)

v(the	
  company)

v(runs the	
  company)

v(He runs the	
  company)

Figure 1: RNNM structure with syntax tree

the distributed representations for the child nodes in
the syntactic trees. However, it uses only the skeletal
structures of the syntactic trees; category and sub-
ject information in the syntactic trees are not used.
Hashimoto et al. (2014) proposed a new method that
acquires distributed representations for one sentence
with information on words and phrase structures by
using the parse trees generated by an HPSG parser
called Enju.

Tensor factorization is a method that represents
word meaning with not only vectors but also ma-
trices. For example, a concept ‘car’ has many
attributes such as information about color, shape,
and functions. It seems to be difficult to represent
phrases or sentences with a fixed-size vector because
many concepts can appear in a sentence and each
concept has its own attributes. Baroni and Zampar-
elli (2010) tried to represent attribute information of
each word as a product of a matrix and a vector.
Grefenstette and Sadrzadeh (2011) followed this ap-
proach and proposed new method that obtains the
representations of verb meaning as tensors. Kart-
saklis et al. (2012) proposed a method that calculates
representations for sentences or phrases containing a
subject, a verb and an object, based on Grefenstette
and Sadrzadeh (2011)’s method. Recently, three di-
mensional tensors have been used for representing
the relations of a subject, a verb and an object (de
Cruys, 2009; de Cruys et al., 2013).

3 Word2vec

Word2vec (Mikolov et al., 2013a; Mikolov et al.,
2013b) is the method to obtain distributed represen-
tations for a word by using neural networks with
one hidden layer. It learns neural network models
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Figure 2: CBOW
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W(t+1)

W(t-­1)

W(t-­2)

Figure 3: Skip-gram

from large texts by solving a pseudo-task to predict
a word from surrounding words in the text. The
word weights between the input layer and hidden
layer are extracted from the network and become the
distributed representation for the words. Mikolov et
al. proposed two types of network for word2vec, the
Continuous Bag-of-words (CBOW) model and the
Skip-gram model.

3.1 CBOW model
Figure 2 shows the CBOW model’s network struc-
ture. The CBOW model is a neural network with
one hidden layer, where the input is surrounding
words wt−k, . . . , wt−1, wt+1, . . . , wk, and the out-
put is wt. The input layer and output layer are com-
posed of nodes, each of which corresponds to a word
in a dictionary; i.e., input and output vectors for a
word are expressed in a 1-of-k representation. The
node values in the hidden layer are calculated as the
sum of the weight vectors of the surrounding words
wt−k, . . . , wt−1, wt+1, . . . , wk.

3.2 Skip-gram model
Figure 3 shows the Skip-gram model’s network
structure. The Skip-gram model is a neural
network with one hidden layer in which a 1-
of-k vector for word wt is given as an input

and 1-of-k vectors for the surrounding words
wt−k, . . . , wt−1, wt+1, . . . , wk are output.

4 Proposed methods

This section explains the proposed methods to ob-
tain the distributed representations for verb-object
pairs by using word2vec. First, we explain the base-
line for comparison of the proposed methods. Then,
we describe the proposed methods.

4.1 Baseline method
The baseline method is the add model using
word2vec. Word2vec is first trained with a
large amount of text; then, distributed represen-
tations for each word are obtained. For exam-
ple, the vector for “read” is obtained as “read
= (1.016257, -1.567719, -1.891073,. . . ,0.578905,
1.430178, 1.616185)”. Distributed representations
for a verb-object pair are obtained by adding the vec-
tor for the verb and the vector for the object.

4.2 Method 1
The CBOW model of word2vec is learned in a
pseudo-task that predicts a word from surrounding
words in the text. Thus, we expect that distributed
representations for verb-object pairs can be acquired
when the object is put near the verb. A large amount
of training text is parsed by Enju, and new training
text data is generated by inserting the object just af-
ter the verb for all verb-object pairs appearing in the
corpus as follows.

(original) I did many large white and blue round
dishes.

(modified) I do dish many large white and blue
round dish.

Enju (Miyao et al., 2005; Miyao and Tsujii, 2005;
Ninomiya et al., 2006) is a parser that performs high-
speed and high-precision parsing and generates syn-
tactic structures based on HPSG theory (Pollard and
Sag, 1994), a sophisticated grammar theory in lin-
guistics. In addition, Enju can generate predicate
argument structures. The Stanford Parser (de Marn-
effe et al., 2006; Chen and D.Manning, 2014) is of-
ten used, but it can analyze only syntactic structures.
Therefore, we used Enju, which can parse syntac-
tic structures and predicate argument structures. In
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Method 1, word2vec is trained from the new text
data generated by using Enju’s results to augment
objects near verbs in the text. Then, distributed rep-
resentations for verb-object pairs are generated by
adding the distributed representations for the verb
and the distributed representations for the object.

4.3 Method 2

We expect that distributed representations for verb-
object pairs can be obtained by training word2vec
with text in which each verb is concatenated with its
object for all verb-object pairs. For each verb v and
object o pair, v is replaced with v : o, where v and
o are concatenated into a single word using Enju’s
result. The following shows an example of Method
2.

(original) I did many large white and blue round
dishes.

(modified) I do:dish many large white and blue
round dish.

Word2vec is learned using the new generated text,
and distributed representations for verb-object pairs
are acquired.

4.4 Method 3

The Skip-gram model is learned by solving a
pseudo-task in which a word in the text is given
as input, and the neural network predicts each sur-
rounding word. It is likely that distributed repre-
sentations for verb-object pairs can be acquired by
providing the verb and its object to the neural net-
works at the same time when the input word is a
verb. We performed the learning in Method 3 by us-
ing a new Skip-gram model wherein the verb-object
pair is input to the neural networks when one of the
input words is a verb.

Figure 4 shows the neural network model for
Method 3. The model is trained from a large amount
of text, and distributed representations for words
are generated. Then, the distributed representations
for verb-object pairs are acquired by summing the
distributed representations for the verb and the dis-
tributed representations for the object in the same
way as Method 1.

INPUT OUTPUTHIDDEN

W(t)
Verb

W(t+2)

W(t+1)

W(t-­1)

W(t-­2)

O(t)
Object

SUM

Figure 4: New Skip-gram model

5 Experiments and evaluations

We performed two experiments to evaluate the per-
formance of Methods 1, 2, 3, and the baseline
method. We used word2vec in the experiments for
Methods 1, 2, and the baseline with the CBOW
model option (-cbow 1) and a modified word2vec
for Method 3 based on the Skip-gram model. In all
methods, the maximum window size was 8 words
(-window 8), the sample number for negative sam-
pling was 25 (-negative 25), and we did not use hier-
archical softmax (-hs 0). The number of nodes in the
hidden layer was 200; i.e., the number of dimensions
for the distributed representations was 200.

5.1 Experiment on light verb-object pairs

We performed an experiment on pairs of a light
verb and an object. The training corpus consisted
of the English Gigaword 4th edition (LDC2009T13,
nyt eng, 199412 - 199908), Corpus of Contempo-
rary American English (COCA), and Corpus of His-
torical American English (COHA). The size of the
training corpus was about 200 million words.

We developed a data set that consists of 17 triples
of a light verb, an object, and a basic verb. The
basic verb is one that almost has the same mean-
ing as the corresponding light-verb and object pair.
Table 1 shows examples of the data set. The pairs
were selected from “Eigo Kihon Doushi Katsuyou
Jiten (The dictionary of basic conjugate verbs in En-
glish)” (Watanabe, 1998) and a web site1. The basic
verbs were selected from “Eigo Kihon Doushi Jiten
(The dictionary of basic verbs in English)” (Konishi,
1980).

We evaluated each method by measuring the
1web page (http://english-leaders.com/hot-three-verbs/,

1/20/2015 reference)
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Table 1: Examples of distributed representations for light
verb-object pairs

verb-object pairs basic verbs examples
do-dish wash I do the dishes.

do-cleaning clean I’ll do the cleaning.
put,

do-nail paint, We do our hair, and then
we do our nails.

dress
do-laundry wash I’m doing the laundry.
have-lunch eat Let’s have lunch.

have-tea drink Let’s have some tea.
tell,

have-word talk,
I’d like to have a word
with you.

speak

make-call call I always get nervous
whenever I make a call.

clean,
make-bed put, I make the bed.

set
hold-door open Hold the door.

hold-tongue shut Hold your tongue!

give-hand help Give me a hand with
this box.

hold,

give-party have,
She is giving a party this
evening.

throw
report,

give-news present,
I will probably be able
to give you good news.

announce
finish-coffee drink He finished his coffee.

read-shakespeare read I read Shakespeare.
enjoy-movie watch,see Did you enjoy the movie?

mean reciprocal rank (MRR) score for each verb-
object pair in the data set, supposing that the corre-
sponding basic verb is the true answer for the pair.
Given a verb-object pair, we calculated its MRR
score as follows. First, we calculated the cosine dis-
tance between the verb-object pair and all basic verb
candidates in the dictionary. Then, we ranked the
basic verbs in accordance with the cosine measure.
The candidates of the basic verbs were 385 words in
the basic verb dictionary (Konishi, 1980).

5.2 Comparison with conventional methods

We also conducted experiments with the data set2

provided by Mitchell and Lapata (2008). This set
consists of triples (pair1, pair2, similarity), from

2http://homepages.inf.ed.ac.uk/s0453356/share

Table 2: Results for light verb-object pairs (Average of
MRR)

baseline Method 1 Method 2 Method 3
0.27 0.35 0.37 0.31

which we used 1890 verb and object pairs. The
semantic similarity scores in the data set are given
manually and range between 1 (low similarity) to 7
(high similarity). There are three types of combi-
nations for pair1 and pair2 in the data: adjective
+ noun, noun + noun, and verb + object. For ex-
ample, the similarity score for “vast amount” and
“large quantity” is 7, and the similarity score for
“hear word” and “remember name” is 1. We cal-
culated Spearman’s rank correlation coefficient on
the “verb + object” part of this data set. The sim-
ilarity scores for verb-object pair pair1 and pair2
were calculated using the cosine similarity between
the vector for pair1 and the vector for pair2. If
a system achieved a higher correlation coefficient,
this means that its judgment was similar to that of
humans.

6 Results

6.1 Results for light verb-object pairs

Table 2 shows the average MRR score for each
method. Method 2 achieved the best result. We con-
sider that training with the text in which verb-object
pairs were replaced with a single expression had a
good effect on word2vec. Method 1 and Method 3’s
similarities were also higher than those of the base-
line method. Therefore, it can be considered that
distributed representations for verb-object pairs that
were sensitive to verb-object relations were acquired
by improving the training data. However, Method 1
achieved a higher MRR than that of Method 3. We
consider that this is because Method 3 learned the
model from heterogeneous structures; i.e., the hid-
den layer in the neural networks received different
signals depending on whether the input was a verb
or not.

Table 3 shows the details of the experimental re-
sults. From the table, we can see that Method 1
outperforms Method 2 in many cases, although the
average MRR of Method 2 is greater than that of
Method 1. We think that this is because Method
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Table 3: Details of the experiment
VO baseline Method 1 Method 2 Method 3

do-dish 0.03 0.08 1 0.07
do-cleaning 0.05 0.14 0.25 0.33

do-nail 0.02 0.02 0.38 0.06
do-laundry 0.17 0.07 0.09 0.14
have-lunch 1 1 0.2 0.33

have-tea 0.5 1 1 0.5
have-word 0.12 0.07 0.05 0.12
make-call 1 1 1 1
make-bed 0.02 0.04 0.03 0.05
hold-door 0.02 0.5 0.2 0.5

hold-tongue 0.01 0.01 0.005 0.01
give-hand 0.03 0.13 0.05 0.05
give-party 0.05 0.07 0.01 0.19
give-news 0.02 0.12 0.01 0.06

finish-coffee 0.5 0.5 1 0.5
read-
shakespeare 1 1 1 1

enjoy-movie 0.11 0.13 0.02 0.38

2 achieved similarity 1 in some cases, and this in-
creased the average MRR.

6.2 Comparison with conventional method

Table 4 shows the results of Methods 1, 2, and 3 and
the baseline method using Skip-gram and CBOW
with Mitchell and Lapata’s data set. Method 1 us-
ing CBOW and size 50 achieved the best result. The
reason is the process of learning. The CBOW model
predicts a word by adding the vectors of surrounding
words. Therefore, Method 1 with the CBOW model
predicts a word from the sum of the vectors for a
verb and its object. Consequently, representations
for verb-object pairs are consistent in the learning
and generating processes.

Table 5 shows the comparison with other meth-
ods. BL, HB, KS, and K denote the results of the
methods of Blacoe and Lapata (2012), Hermann
and Blunsom (2013), Kartsaklis and Sadrzadeh
(2013), and Kartsaklis et al. (2013). Kartsaklis and
Sadrzadeh (2013) used the ukWaC corpus (Baroni
et al., 2009), and the other methods used the British
National Corpus (BNC). Word2vec is the result of
Hashimoto et al. (2014). They used the POS-tagged
BNC and trained 50-dimensional word vectors with
the Skip-gram model. We believe that our methods
can be improved by using POS-tagged texts.

Table 4: Results for verb-object pairs in Mitchell and La-
pata’s data set (Spearman’s rank correlation coefficient)

Method Option Score
Base-line CBOW, -size 50 0.323
Method1 CBOW, -size 50 0.329
Method2 CBOW, -size 50 0.233
Base-line Skip-gram, -size 50 0.308
Method1 Skip-gram, -size 50 0.305
Method2 Skip-gram, -size 50 0.173
Method 3 Skip-gram, -size50 0.272
Base-line CBOW, -size 200 0.321
Method1 CBOW, -size 200 0.328
Method2 CBOW, -size 200 0.201
Base-line Skip-gram, -size 200 0.308
Method1 Skip-gram, -size 200 0.292
Method2 Skip-gram, -size 200 0.171
Method 3 Skip-gram, -size200 0.275

Table 5: Comparison with other methods
Method Score
Method 1 with CBOW 0.329
BL w/ BNC 0.35
HB w/ BNC 0.34
KS w/ ukWaC 0.45
K w/BNC 0.41
Word2vec 0.42

7 Conclusion and future work

This paper proposed methods for obtaining dis-
tributed representations for verb-object pairs by us-
ing word2vec. We experimentally evaluated them in
comparison with the baseline add method in terms of
mean reciprocal rank and Spearman’s rank correla-
tion. Method 2, which concatenates verbs with their
objects in the text, achieved the best MRR score in
the experiment on light verb-object pairs. Method
1, which puts objects nearby verbs, achieved the
best correlation coefficient in the experiment on
Mitchell and Lapata’s data set. We consider that
the training text data in these experiments was too
small. It is necessary to use a large amount of data
to verify which method is best for obtaining dis-
tributed representations of verb-object pairs. Us-
ing a large amount of data and making comparisons
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with RNNM and tensor factorization are left as fu-
ture work.
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