
Paraphrase Detection Based on
Identical Phrase and Similar Word Matching

Hoang-Quoc Nguyen-Son1 , Yusuke Miyao2 , and Isao Echizen2

1University of Science, VNU-HCM, Hochiminh, Vietnam
nshquoc@fit.hcmus.edu.vn

2National Institute of Informatics, Tokyo, Japan
{yusuke,iechizen}@nii.ac.jp

Abstract
Paraphrase detection has numerous important
applications in natural language processing
(such as clustering, summarizing, and detect-
ing plagiarism). One approach to detecting
paraphrases is to use predicate argument tu-
ples. Although this approach achieves high
paraphrase recall, its accuracy is generally
low. Other approaches focus on matching
similar words, but word meaning is often
contextual (e.g., ‘get along with,’ ‘look for-
ward to’). An effective approach to detect-
ing plagiarism would take into account the
fact that plagiarists frequently cut and paste
whole phrases and/or replace several words
with similar words. This generally results
in the paraphrased text containing identical
phrases and similar words. Moreover, pla-
giarists usually insert and/or remove various
minor words (prepositions, conjunctions, etc.)
to both improve the naturalness and disguise
the paraphrasing. We have developed a sim-
ilarity matching (SimMat) metric for de-
tecting paraphrases that is based on match-
ing identical phrases and similar words and
quantifying the minor words. The metric
achieved the highest paraphrase detection ac-
curacy (77.6%) when it was combined with
eight standard machine translation metrics.
This accuracy is better than the 77.4% rate
achieved with the state-of-the-art approach for
paraphrase detection.

1 Introduction

Paraphrase detection is used to determine whether
two texts (phrases, sentences, paragraphs, docu-
ments, etc.) of arbitrary lengths have the same

meaning. Such detection is widely used to remove
the tremendous amount of duplicate information on
the Internet. It is also used to handle the over-
lap of semantic components in texts. Such compo-
nents are used in various natural language applica-
tions such as word sense discrimination, summariza-
tion, automatic thesaurus extraction, question-and-
answer generation, machine translation, and plagia-
rist or analogical relation identification.

Some researchers in the field of paraphrase de-
tection have used vector-based similarity to iden-
tify the differences between two sentences (Mihal-
cea et al., 2006; Blacoe and Lapata, 2012). The two
sentences are represented by two vectors based on
the frequency of their words in text corpora. The
vectors are compared to estimate sentence similar-
ity. Plagiarists attempt to thwart this comparison by
modifying the copied sentence by inserting or re-
moving a few minor words, replacing words with
similar words that have different usage frequencies,
etc. Such modification reduces the effectiveness of
vector-based similarity analysis.

Other researchers have analyzed the difference in
meaning between two sentences on the basis of their
syntactic parsing trees (Socher et al., 2011; Qiu et
al., 2006; Das and Smith, 2009). The structure of
the trees is a major factor used various sophisticated
algorithms such as recursive autoencoders (Socher
et al., 2011), heuristic similarity (Qiu et al., 2006),
and probabilistic inference (Das and Smith, 2009).
However, these algorithms are affected by manipu-
lation (deleting, inserting, reordering, etc.) of the
words in the sentences. Such manipulations can sig-
nificantly change the structures of the parsing trees.

PACLIC 29

504
29th Pacific Asia Conference on Language, Information and Computation pages 504 - 512

Shanghai, China, October 30 - November 1, 2015
Copyright 2015 by Hoang-Quoc Nguyen-Son, Yusuke Miyao and Isao Echizen

Other researchers (Mihalcea et al., 2006; Chan
and Ng, 2008) have used matching algorithms to de-
termine the similarity of two sentences. Mihalcea et
al. (2006), for example, proposed a method for find-
ing the best matching of a word in a sentence with
the nearest word in the other sentence. However,
word meaning is often contextual (e.g., ‘make sure
of,’ ‘take care of’).

Machine translation (MT) metrics, which are gen-
erally used to evaluate the quality of translated text,
can also be used to judge two texts in the same
language. Due to the similarity of machine trans-
lation and paraphrase detection, many MT metrics
have been applied to paraphrase detection (Finch
et al., 2005; Madnani et al., 2012). For exam-
ple, eight standard MT metrics have been combined
to create a state-of-the-art paraphrase detection ap-
proach (Madnani et al., 2012). However, the objec-
tives of machine translation and paraphrase detec-
tion differ: machine translation tries to effectively
translate text from one language to another while
paraphrase detection tries to identify paraphrased
text. This difference affects the application of MT
metrics to paraphrase detection.

A paraphrase is a restatement of the meaning of
a text using other words. It is a specific type of
plagiarisms. We identify common practices plagia-
rizers who try to paraphrase a text. The Microsoft
Research Paraphrase (MSRP) corpus (Dolan et al.,
2004) is commonly used to identify the common
practices. An example paraphrase pair extracted
from this corpus is shown in Figure 1.

Plagiarists frequently cut and paste several
phrases of different lengths. This can result in a
sentence pair containing identical phrases. The two
sentences in Figure 1 have two identical phrases:
“Intelligence officials” and “a week ago to expect
a terrorist attack in Saudi Arabia.” Plagiarists also
add and delete minor words to improve the natural-
ness of the text. In the example pair, the preposition
“in” (in bold) in the second sentence is considered a
minor word.

Moreover, plagiarists can replace several words
with similar words without changing the sentence
meaning to avoid paraphrase detection. The words
connected by dashed lines with arrows in the exam-
ple are most likely such replacements. The remain-
ing words are probably the combination of a few ma-

nipulations (reorganization, deletion, insertion, re-
placement, etc.). Such modifications are typically
intended to ensure that the paraphrased sentence has
the same meaning as the original sentence.

We make several contributions based on an anal-
ysis of related work and the common practices of
plagiarists in this paper.

• We present a heuristic algorithm for finding
an optimal matching of identical phrases with
maximum lengths.

• We suggest removing the minor words from the
words remaining in the sentences. These minor
words include prepositions, subordinating con-
junctions (‘at,’ ‘in,’ etc.), modal verbs, posses-
sive pronouns (‘its,’ ‘their,’ etc.), and periods
(‘.’).

• We present an algorithm for determining the
perfect matching of similar words by using
the matching algorithm proposed by Kuhn and
Munkres (Kuhn, 1955; Munkres, 1957). The
degree of similarity between two similar words
is identified using WordNet (Pedersen et al.,
2004). These similarities are used as weights
for the matching algorithm.

• We present a related matching (RelMat) met-
ric for quantifying the relationship between two
sentences on the basis of matching identical
phrases and similar words.

• We present a brevity penalty metric to reduce
the effect of paraphrased sentence modification.
This metric is combined with theRelMatmet-
ric into a similarity matching SimMat metric
for effectively detecting paraphrases.

We used the MSRP corpus to evaluate the
SimMat metric. Our method using the SimMat
metric outperformed many previous methods. The
SimMat metric had the highest accuracy (77.6%)
when used in combination with eight standard MT
metrics (MAXSIM, SEPIA, TER, TERp, METEOR,
BADGER, BLEU, and NIST). The accuracy was
higher than with the state-of-the-art approach (accu-
racy=77.4%). The result shows that our method ef-
fectively uses the paraphrasing practices commonly
used by plagiarists to detect them.

PACLIC 29

505

1

Intelligence officials told key senators a week ago to expect a terrorist attack in Saudi Arabia, Sen. Pat Roberts (R-Kan.) said yesterday.

Intelligence officials inWashington warned lawmakers a week ago to expect a terrorist attack in Saudi Arabia, it was reported today.

Fig 1 (introduction: main example

Figure 1: Example paraphrase pair taken from MSRP corpus.

2 Related work

2.1 Paraphrase detection

The baseline for paraphrase detection is based
on vector-based similarity. Each source mes-
sage and target message is represented as a vec-
tor using the frequencies of its words (such as
term frequency (Mihalcea et al., 2006) and co-
occurrence (Blacoe and Lapata, 2012)). The simi-
larity of the two vectors is quantified using various
measures (e.g., cosine (Mihalcea et al., 2006), addi-
tion and point-wise multiplication (Blacoe and La-
pata, 2012)). The problem with vector-based meth-
ods is to focus on the frequency of separate words
or phrases. However, plagiarists can paraphrase
by replacing words with similar words that have a
very different frequency. Moreover, they can delete
and/or insert minor words that do not change the
meaning of the original sentences. Such manipula-
tions change the quality of the representation vector,
which reduces paraphrase detection performance.

Several methods have been proposed for over-
coming the manipulation problem that use syntactic
parsing trees of messages. The replacement of simi-
lar words and the use of minor words do not change
the basic structure of the trees. Qiu et al. (2006) re-
ported a method that detects the similarity of two
sentences by heuristically comparing their predicate
argument tuples, which are a type of syntactic pars-
ing tree. The high paraphrase recall (93%) it attained
shows that most paraphrases have the same predicate
argument tuples. However, the accuracy was very
low (72%). Parsing trees were used for probabilistic
inference of paraphrases by Das and Smith (2009).

Another method considers these trees as input for
a paraphrase detection system based on recursive au-
toencoders (Socher et al., 2011). The drawback of
the parsing tree approach is that parsing trees are af-
fected by the reordering words in a sentence such as
the conversion of a sentence from passive voice to
active voice. Another method finds the maximum
matching for each word in two sentences (Mihal-

cea et al., 2006). The similarity of matching two
words is based on WordNet. However, the weakness
of this method is that a word in a first sentence is
probably matched to more than one word in the sec-
ond sentence. This means that a very short sentence
can be detected as a paraphrase of a long sentence
in some cases. Another problem with word match-
ing is that the meaning of some words depends on
the context. For example, the basic meaning of ‘get’
changes when used in the phrasal verb ‘get along
with.’

Commonly used techniques for detecting para-
phrases are based on MT metrics. This is because
the translation task is very similar to the paraphrase
detection task for text in the same language. For
example, Finch et al. (2005) extended a MT met-
ric (PER) and combined it with three other standard
metrics (BLEU, NIST, and WER) into a method for
detecting paraphrases. Another method developed
by Madnani et al. (2012) is based on the integration
of eight metrics (TER, TERp, BADGER, SEPIA,
BLEU, NIST, METEOR, and MAXSIM). However,
the main purpose of these metrics is for translating,
and their integration is unsuitable for detecting para-
phrases. To overcome these weaknesses, we devel-
oped a similarity metric and combined it with eight
standard metrics, as described below.

2.2 Standard MT metrics

Two basic MT metrics for measuring the similarity
of two text segments are based on finding the mini-
mum number of operators needed to change one seg-
ment so that it matches the other one. The transla-
tion edit rate (TER) metric (Snover et al., 2006) sup-
ports standard operators, including shift, substitu-
tion, deletion, and insertion. The TER-Plus (TERp)
metric (Snover et al., 2009) supports even more op-
erators, including stemming and synonymizing.

The BADGER MT metric (Parker, 2008) uses
compression and information theory. It is used to
calculate the compression distance of two text seg-
ments by using Burrows-Wheeler transformation.

PACLIC 29

506

This distance represents for probability that one seg-
ment is a paraphrase of the other.

The SEPIA MT metric (Habash and Elkholy,
2008) is based on the dependence tree and is used
to calculate the similarity of two text segments. It
extends the tree to obtain the surface span, which is
used as the main component of the similarity score.
After the components of the tree are matched, a
brevity penalty factor is suggested for deciding the
difference in tree lengths for the two text segments.

Two other MT metrics commonly used in ma-
chine translation are the bilingual evaluation under-
study (BLEU) metric (Papineni et al., 2002) and the
NIST metric (Doddington, 2002) (an extension of
the BLEU metric). Both also quantify similarity on
the basis of matching words in the original text seg-
ment with words in the translated segment. Whereas
the BLEU metric simply calculates the number of
matching words, the NIST metric takes into account
the importance of matching with different levels.
The main drawback of these word matching metrics
is that a word in a segment can match more than one
word in the other segment.

Two MT metrics based on non-duplicate match-
ing have been devised to overcome this problem.
The METEOR metric (Denkowski and Lavie, 2010)
uses explicit ordering to identify matching tuples
with minimized cross edges. However, it simply per-
forms word-by-word matching. The maximum sim-
ilarity (MAXSIM) metric (Chan and Ng, 2008) finds
the maximum matching of unigram, bigram, and tri-
gram words by using the Kuhn-Munkres algorithm.
However, the maximum length of the phrase is a tri-
gram. Moreover, the similarities of the phrases (uni-
gram, bigram, and trigram) are disjointly combined.
To overcome these drawbacks with the standard MT
metrics, we have developed a heuristic method for
finding the maximum of matching tuples up to the
length of the text segments being compared. We also
developed a metric for sophisticatedly quantifying
the similarity on the basis of the matching tuples.

3 Similarity matching (SimMat) metric

Our proposed similarity metric (SimMat) for quan-
tifying the similarity of input text comprises four
steps, as illustrated in Figure 2. The following is
a step-by-step description of our method using two

2

s1: The study is being published today in the journal Science
Lem:the study be be publish today in the journal science

Lem:they find be publish today in science .
s2: Their findings were published today in Science .

Fig 3: matching identical phrases (updated)

Figure 3: Matching identical phrases with their maximum
lengths (Step 1).

sentences, which is an actual paraphrase pair from
the MSRP corpus.
s1: “The study is being published today in the

journal Science”
s2: “Their findings were published today in Sci-

ence.”

3.1 Match identical phrases (Step 1)

The individual words in the two input sentences
are normalized using lemmas. The Natural Lan-
guage Processing (NLP) library of Stanford Univer-
sity (Manning et al., 2014) is used to identify the
lemmas. The lemmas for the two example sentences
are shown in Figure 3.

The heuristic algorithm we developed for match-
ing the lemmas in the two sentences repeatedly finds
a new matching pair in each round. In each round,
a new pair with the maximum phrase length is es-
tablished. The pseudo code of the algorithm is illus-
trated in Algorithm 1. The stop condition is when
there is no new matching pair. For example, two
identical lemma of phrases, “be publish today in”
and “science,” are matched (as shown as Figure 3).

In algorithm 1, the function getLemmas(s) ex-
tracts the lemmas of sentence s using the NLP li-
brary. The function lenL gets the number of ele-
ments in set L. The function match(L1[i], L2[j])
finds the maximum length matching of phrase L1,
which starts at the i-th position in the first sentence,
and that of phrase L2, which starts at the j-th posi-
tion in the second sentence.

3.2 Remove minor words (Step 2)

The words remaining after phrase matching in Step 1
are used for removing minor words. First, the part
of speech (POS) for each word is identified. The
Stanford library tool (Manning et al., 2014) is used
for this purpose. The POSs for the words in two the
example sentences are shown in Figure 4.

PACLIC 29

507

Step 1: Match

identical phrases

Step 3: Match

similar words

Step 4: Calculate

similarity metric
SimMat

s1

s2

Step 2:Remove

minor words

Figure 2: Four steps in calculation of similarity matching (SimMat) metric.

Algorithm 1 Match identical phrases.
1: function MATCHIDENTICALPHRASES(s1, s2)
2: L1 ← getLemmas(s1);
3: L2 ← getLemmas(s2);
4: P ← �;
5: repeat
6: new ← �;
7: for i = 0 to lenL1 − 1 do
8: for j = 0 to lenL2 − 1 do
9: if {L1[i], L2[j]} 6∈ P then

10: tmp←match(L1[i],L2[j]);
11: if lentmp > lennew then
12: new ← tmp;
13: end if
14: end if
15: end for
16: end for
17: if new is not null then
18: P = P

⋃
new;

19: end if
20: until (new = �);
21: return P ;
22: end function

Our analysis of the common practices of plagia-
rists showed that four types of minor words should
be removed: prepositions and subordinating con-
junctions (IN), modal verbs (MD), possessive pro-
nouns (PRP$), and periods (“.”). These minor POSs
generally do not change the meaning of the para-
phrased text as they are often used to simply improve
the naturalness of the paraphrased text. For example,
the two minor POSs (PRP$ and “.”) were deleted
from sentence s2 in Figure 4. An example of prepo-
sition deletion is illustrated in Figure 1. Detection
of remaining type of minor words (modal verbs) is
illustrated for an actual paraphrase pair in Figure 5.

3.3 Match similar words (Step 3)

After minor word deletion in Step 2, the perfect
matching of similar words is done using the al-

3

POS:DT NNVBZVBG VBN NN INDT NN NN
s1: The study is being published today in the journal Science

Lem:the study be be publish today in the journal science

Lem:they find be publish today in science .
s2: Their findings were published today in Science .

POS:PRP$ NNS VBD VBN NN IN NNP .

Fig 4: Removing minor words (updated)

Figure 4: Remove minor words (Step 2).

4

POS:DT NNVBZVBG VBN NN IN DT NN NN
s1: The study is being published today in the journal Science

Lem:the study be be publish today in the journal science

Lem:they find be publish today in science .
s2: Their findings were published today in Science .

POS:PRP$ NNS VBD VBN NN IN NNP .

Fig 6: Matching words (updated)

0.33

Figure 6: Find perfect matching of similar words using
Kuhn-Munkres algorithm (Kuhn, 1955; Munkres, 1957)
(Step 3).

gorithm we developed on the basis of the Kuhn-
Munkres algorithm (Kuhn, 1955; Munkres, 1957).
The weights of each pair in the algorithm are calcu-
lated from the similarity of the two lemmas of the
words using the path metric (Pedersen et al., 2004).
The path(w1, w2) metric computes the shortest path
(pathLength) between two words w1 and w2 in the
‘is-a’ hierarchies of WordNet, as shown in Eq. 1.
The pathLength is constrained to be a positive in-
teger to ensure that 0<= path<=1. For example,
the path metric for the “study” and “find” pair is
0.33. The perfect matching found for the two ex-
ample sentences is shown in Figure 6. The word
“study” in sentence s1 is matched with a similar
word, “findings,” in sentence s2.

path(w1, w2) =
1

pathLength(w1, w2)
(1)

3.4 Calculate similarity metric (Step 4)
Finally, the RelMat metric is calculated using the
results of identical phrase matching in Step 1 and
similar word matching in Step 3:

PACLIC 29

508

5

NNS TODT NN VBD NNP NNPPOS NN MD VB VBN DT NN IN NN IN NNPNNP .
Aides to the general said Mr. Segal 's arrival could have been the source of friction with Mr. Fowler .
aide to the general say Mr. Segal 's arrival could have be the source of friction with Mr. Fowler .

campaign official say the move may have be a source of some friction with Fowler .
Campaign officials said the moves may have been a source of some friction with Fowler .

NN NNS VBD DT NNS MD VB VBN DT NN IN DT NN IN NNP .

Fig 5: Example minor words

Figure 5: Example of removing minor words (modal verbs).

RelMat(s1, s2) =

=
#Np+

∑N−1
i=0 len(pi)

α +
∑M−1

j=0 path(wj)
α

#Np+#Nw +
∑N−1

i=0 len(pi)α +
∑M−1

j=0 1α
,

(2)

where #Np is the total number of words in the
matched identical phrases, #Nw is the number
of matched similar words, N and M are the cor-
responding numbers of matched identical phrases
and similar words, pi is the i-th matched phrase
in Step 1, len(pi) is the number of words in the
phrase pi, and path(wj) is the path metric of the
j-th matched word in Step 3.

Eq. 2 ensures that 0 <= RelMat <= 1. The
RelMat metric equals 1 only if the two sentences
are identical. Using #Np only in the numera-
tor means that the matching of identical phrases is
more important than the matching of similar words.
The len(pi)α and path(wj)α with α>= 0 indicate
the respective contributions of matched phrase pi
and matched word wj to the RelMat metric. The
greater the value of α, the greater the contribution of
the identical phrases and the lesser the contribution
of the similar words. Because 0<=path(wj)<=1,
we use 1α to normalize the contributions of the
matched words.

Threshold α is set to an optimal value of 0.2, as
described in more detail in Section 5. The RelMat
metric for the two example sentences is calculated
using

RelMat =
5 + (40.2 + 10.2) + 0.330.2

5 + 1 + (40.2 + 10.2) + 10.2
= 0.87.

The remaining words are probably modified by
few manipulations (e.g., insertion, deletion). Such

modification is typically intended to improve the
naturalness of text. Therefore, the two sentences be-
ing compared frequently have different lengths. To
reduce this effect, we developed a brevity penalty
metric p based on the METEOR metric (Denkowski
and Lavie, 2010). It is calculated as shown in Eq. 3,
where #ReW (s) is the number of words remaining
in sentence s after phrase matching and minor word
removal. Penalty p is combined with RelMat into
the similarity matching SimMat metric, as shown
in Eq. 4.

p(s1, s2) =

= 0.5× (
|#ReW (s1)−#ReW (s2)|

max(#ReW (s1),#ReW (s2))
)3

(3)

SimMat = RelMat× (1− p) (4)

Penalty metric p and the SimMat metric are re-
spectively calculated for the example sentences us-
ing Eq. 5 and Eq. 6. To calculate the #ReW , the
remaining words (in bold) are shown in Figure 6.

p(s1, s2) = 0.5× (
|5− 1|

max(5, 1)
)3 = 0.26 (5)

SimMat = 0.87× (1− 0.26) = 0.64 (6)

4 Combination of SimMat metric and MT
metrics

We proposed paraphrase detection method by com-
bining the SimMat metric with the eight standard
MT metrics described above, as shown in Figure 7.
The last two steps are described in detail below.

PACLIC 29

509

Paraphrase
detection

Step 1: Calculate
SimMat metric

Step 2: Calculate
MT metrics

Step 3:
Detect

paraphrases

s1

s2

1 dimension

15 dimensions

Result
of detection

Figure 7: Combination of SimMatmetric with eight MT
metrics.

4.1 Calculate MT metrics (Step 2)
The eight standard MT metrics are calculated for
the two sentences. Eight libraries are used to quan-
tify them. These libraries are suggested by NIST
and the state-of-the-art approach for paraphrase de-
tection (Madnani et al., 2012). The libraries are
described in more detail in the evaluation section.
The first six MT metrics (MAXSIM, SEPIA, TER,
TERp, METEOR, and BADGER) create six dimen-
sions in total. The two remaining metrics (BLEU
and NIST) using the n-gram model create four
(n=1..4) and five (n=1..5) dimensions, respectively.
These 15 dimensions metrics are combined with
that of our proposed metric (SimMat) for detect-
ing paraphrases in the last step.

4.2 Detecting paraphrases (Step 3)
The 16 dimensions, 15 from the MT metrics and 1
from our proposed metric (SimMat) are combined
for detecting paraphrases using a machine learning
approach. Several commonly used machine learn-
ing algorithms (including support vector machine,
logistic regression, etc.) were evaluated with these
dimensions. Such algorithms are run with 10-fold
cross validation in the training set of the MRPS cor-
pus for choosing the best classifier. Logistic regres-
sion had the best performance and was used for de-
tection.

5 Evaluation

5.1 MSRP corpus
We used the MSRP corpus to evaluate our method.
It contains 5801 sentences pairs including 4076 for
training and the remaining 1705 for testing.

The corpus has 2753 (67.5%) and 1147 (66.5%)
paraphrase cases corresponding to training and test-
ing datasets. The corpus was annotated by two na-
tive speakers. Disagreements in annotation were re-
solved by a third native speaker. Agreement between
the two annotators was moderate to high (averaging

0.0, 72.7%

0.2, 73.0%

71.1%
71.3%
71.5%
71.7%
71.9%
72.1%
72.3%
72.5%
72.7%
72.9%
73.1%

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

A
cc

u
ra

cy
 (

%
)

Threshold 

Figure 8: Estimated threshold α.

83%). This means that a perfect algorithm for de-
tecting paraphrases would have 83% accuracy.

5.2 Estimating threshold α for SimMat metric

A threshold α is used to adjust the contributions
of matched identical phrases and matched similar
words. It was estimated using Eq. 2 and the training
dataset of the MRPS corpus. The SimMat metric
was used as the single dimension for the logistic re-
gression algorithm with 10-fold cross validation, as
shown in Figure 8. Using only the training dataset
ensured that the results did not overfit the test data.

The higher the threshold α, the greater the con-
tribution of the matched identical phrases and the
lesser the contribution of the matched similar words.
If α is small, the contributions of identical phrases
are low and the contributions of similar words are
high, resulting in lower accuracy. However, the
SimMat metric is over-estimated if the value of α
is too large, resulting in lower accuracy. The high-
est accuracy (73.0%) was achieved for α = 0.2.
Therefore, α was set to 0.2 for the subsequent ex-
periments.

5.3 MT metrics result

In our approach, the proposed metric (SimMat)
is combined with eight MT metrics (MAXSIM,
SEPIA, TER, TERp, METEOR, BADGER, BLEU,
and NIST). These metrics are integrated to create
what we call the MTMETRICS algorithm, which is
state of the art for paraphrase detection. The eight
metrics are re-implemented on the basis of standard
libraries suggested by both of the state of the art and
a well-known organization – NIST. The details of

PACLIC 29

510

MT metric
Re-implementation MTMETRICS

Ver. Acc. F1 Acc. F1
MAXSIM 1.01 67.5% 79.4% 67.2% 79.4%
SEPIA 0.2 68.3% 79.8% 68.1% 79.8%
TER 1.01 70.1% 81.0% 69.9% 80.9%
TERP 1.0 70.7% 81.0% 74.3% 81.8%
BADGER 2.0 67.2% 79.9% 67.6% 79.9%
METEOR 1.5 71.7% 80.0% 73.1% 81.0%
BLEU 13a 72.1% 80.8% 72.3% 80.9%
NIST 13a 71.8% 80.4% 72.8% 81.2%

Integration 76.6% 83.1% 77.4% 84.1%

Table 1: Results for re-implemented MT metrics and MT-
METRICS algorithm (Madnani et al., 2012).

the re-implementation are shown in Table 1.
The versions of the eight libraries for the re-

implemented metrics are shown in column 2. They
were the latest for each library, for which we used
the default settings. Since the versions and settings
are not shown for MTMETRICS, there is little dif-
ference between the re-implemented metric results
and the MTMETRICS results. The results for the
integration of the eight re-implemented metrics (ac-
curacy=76.6%, F1=83.1%) also differ from the MT-
METRICS results (accuracy=77.4%, F1=84.1%).

5.4 Comparison with previous methods
The results of our comparison with previous meth-
ods are summarized in Table 2. These methods
were also evaluated using the MRPS corpus. Our
proposed metric (SimMat) was evaluated using
a threshold α of 0.2. This single metric outper-
formed many previous methods. The combination of
SimMat with the eight MT metrics had the highest
accuracy (77.6%).

6 Conclusion

Our proposed similarity matching (SimMat) met-
ric quantifies the similarity between two sentences
and can be used to detect whether one is a para-
phrase of the other. It is calculated using the match-
ing of identical phrases and similar words. Phrase-
by-phrase matching is done using a heuristic algo-
rithm that determines the longest duplicate phrase
in each iteration. Word matching is done using the
Kuhn-Munkres algorithm. WordNet is used for de-

Method Accuracy F-score
Vector Based Similarity
(baseline)

65.4% 75.3%

Mihalcea et al. (2006) 70.3% 81.3%
Qiu et al. (2006) 72.0% 81.6%
SimMat 72.7% 81.3%
Blacoe and Lapata (2012) 73.0% 82.3%
Finch et al. (2005) 75.0% 82.7%
Das and Smith (2009) 76.1% 82.7%
Madnani et al. (2012)
(re-implemented)

76.6% 83.1%

Socher et al. (2011) 76.8% 83.6%
Madnani et al. (2012) 77.4% 84.1%
Combination 77.6% 83.9%

Table 2: Accuracy and F-score of our method
(SimMat), previous methods, and combination of
SimMat with eight MT metrics.

termining the similarity of two words. This simi-
larity is used as the weights for the word-matching
algorithm. Minor words, which are often added or
removed from paraphrased text to improve natural-
ness, can create noise when detecting paraphrases.
They are thus removed as doing so generally does
not change the meaning. A brevity penalty metric is
combined with the SimMat metric to quantify the
effect of inserting and/or deleting words.

Evaluation using the MSRP corpus showed that
the SimMat metric detects paraphrases more ef-
fectively than previous methods. The SimMat
metric was combined with eight machine trans-
lation metrics. Although the accuracy of the
eight re-implemented metrics (accuracy=76.6%, F-
score=83.1%) was lower than the published result
(accuracy=77.4%, F-score=84.1%), their combina-
tion with the SimMat metric achieved the best ac-
curacy (77.6%), which was higher than with the
state-of-the-art approach (77.4%). Moreover, the F-
score of the combination (83.9%) is nearly similar
with the-state-of-the-art approach (84.1%). These
results show that our method is promising approach
to detecting paraphrasing.

Future work includes quantifying the weights of
words in matched phrases, determining the effect of
a word’s position in a sentence, and analyzing mis-
classified pairs to improve performance.

PACLIC 29

511

References

William Blacoe and Mirella Lapata. 2012. A comparison
of vector-based representations for semantic composi-
tion. In EMNLP, pages 546–556.

Yee Seng Chan and Hwee Tou Ng. 2008. Maxsim:
A maximum similarity metric for machine translation
evaluation. In ACL, pages 55–62.

Dipanjan Das and Noah A. Smith. 2009. Paraphrase
identification as probabilistic quasi-synchronous
recognition. In ACL, pages 468–476.

Michael Denkowski and Alon Lavie. 2010. Extending
the meteor machine translation evaluation metric to the
phrase level. In NAACL, pages 250–253.

George Doddington. 2002. Automatic evaluation of ma-
chine translation quality using n-gram co-occurrence
statistics. In Proc. of the 2nd International Confer-
ence on Human Language Technology Research, pages
138–145.

Bill Dolan, Chris Quirk, and Chris Brockett. 2004. Un-
supervised construction of large paraphrase corpora:
Exploiting massively parallel news sources. In COL-
ING, pages 350–356.

Andrew Finch, Young-Sook Hwang, and Eiichiro
Sumita. 2005. Using machine translation evalua-
tion techniques to determine sentence-level semantic
equivalence. In Proc. of the 3rd International Work-
shop on Paraphrasing, pages 17–24.

Nizar Habash and Ahmed Elkholy. 2008. Sepia: sur-
face span extension to syntactic dependency precision-
based mt evaluation. In Proc. of Association for Ma-
chine Translation in the Americas.

Harold W. Kuhn. 1955. The hungarian method for the
assignment problem. Naval research logistics quar-
terly, 2(1):83–97.

Nitin Madnani, Joel Tetreault, and Martin Chodorow.
2012. Re-examining machine translation metrics for
paraphrase identification. In NAACL, pages 182–190.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In ACL, pages 55–60.

Rada Mihalcea, Courtney Corley, and Carlo Strapparava.
2006. Corpus-based and knowledge-based measures
of text semantic similarity. In AAAI, volume 6, pages
775–780.

James Munkres. 1957. Algorithms for the assignment
and transportation problems. Journal of the Society
for Industrial & Applied Mathematics, 5(1):32–38.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalua-
tion of machine translation. In ACL, pages 311–318.

Steven Parker. 2008. Badger: A new machine translation
metric. In Proc. of Association for Machine Transla-
tion in the Americas.

Ted Pedersen, Siddharth Patwardhan, and Jason Miche-
lizzi. 2004. Wordnet:: Similarity: measuring the relat-
edness of concepts. In NAACL: Demonstration, pages
38–41.

Long Qiu, Min-Yen Kan, and Tat-Seng Chua. 2006.
Paraphrase recognition via dissimilarity significance
classification. In EMNLP, pages 18–26.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin-
nea Micciulla, and John Makhoul. 2006. A study of
translation edit rate with targeted human annotation.
In Proc. of Association for Machine Translation in the
Americas, pages 223–231.

Matthew G. Snover, Nitin Madnani, Bonnie Dorr, and
Richard Schwartz. 2009. Ter-plus: paraphrase, se-
mantic, and alignment enhancements to translation
edit rate. Machine Translation, 23(2-3):117–127.

Richard Socher, Eric H. Huang, Jeffrey Pennin, Christo-
pher D. Manning, and Andrew Y. Ng. 2011. Dynamic
pooling and unfolding recursive autoencoders for para-
phrase detection. In NIPS, pages 801–809.

PACLIC 29

512

