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Abstract 

Code-switching is the practice of moving back 
and forth between two languages in spoken or 
written form of communication. In this paper, 
we address the problem of word-level language 
identification of code-switched sentences. Here, 
we primarily consider Hindi-English (Hinglish) 
code-switching, which is a popular 
phenomenon among urban Indian youth, though 
the approach is generic enough to be extended 
to other language pairs. Identifying word-level 
languages in code-switched texts is associated 
with two major challenges. Firstly, people often 
use non-standard English transliterated forms of 
Hindi words. Secondly, the transliterated Hindi 
words are often confused with English words 
having the same spelling. Most existing works 
tackle the problem of language identification 
using n-grams of characters. We propose some 
techniques to learn sequence of character(s) 
frequently substituted for character(s) in 
standard transliterated forms. We illustrate the 
superior performance of these techniques in 
identifying Hindi words corresponding to the 
given transliterated forms. We adopt a novel 
experimental model which considers the 
language and part-of-speech of adjoining words 
for word-level language identification. Our test 
results show that the proposed model 
significantly increases the accuracy over 
existing approaches. We achieved F1-score of 
98.0% for recognizing Hindi words and 94.8% 
for recognizing English words. 

1 Introduction 

Code-switching is a popular linguistic 
phenomenon where the speaker alternates between 
two or more languages even within the same 
sentence. In countries like India, where there are 

more than 20 widely used languages, code-
switching is an even more pronounced feature, 
mostly among urban population (Thakur et al., 
2007). Hindi and English are two popular ones 
among these languages, with millions of people 
communicating through them in pure forms or 
using a mixture of words from both the languages 
(code-switched), popularly known as ‘Hinglish’. 
 Many multi-national brands use Hinglish 
taglines for promoting their products in India. For 
example, “Khushiyon ki home delivery”1 is the tag 
line for Domino’s Pizza TM India. Hinglish is also 
used for casual communication among friends, for 
example, “Main temple ke pass hoon” meaning “I 
am near the temple”. There are plenty of research 
works focusing on analyzing texts used in popular 
forums, like online social groups, for applications 
like opinion mining, sentiment analysis, etc. 
However, machine analysis of Hinglish or any 
other code-switched text poses the following 
challenges. 

• Inconsistent spelling usage: Despite the 
availability of the standards for 
transliteration (e.g., ITRANS 2 ) of 
Devanagari script to Roman script (the 
Hindi language is based on Devanagari 
script while the English language is based 
on Roman script), people tend to use many 
inconsistent spellings for the same word. 
For example, the most common English 
transliteration for the Hindi word मैं is mai, 
as observed from our data set. But people 
often use mein or main as alternatives. 

• Ambiguous word usage: The 
transliterated word main, for the Hindi 

1 http://www.dominos.co.in/blog/tag/khushiyon-ki-home-
delivery/ 
2 ITRANS: http://www.aczoom.com/itrans/ 

Harsh Jhamtani Suleep Kumar Bhogi Vaskar Raychoudhury 
Adobe systems Samsung R&D institute Dept. of Comp. Sc. & Engg. 

Bangalore, India Bangalore, India IIT Roorkee, India 
harshjhamtani@gmail.com suleep.kumar@gmail.com vaskar@gmail.com 

                                                           

PACLIC 28

348

Copyright 2014 by Harsh Jhamtani, Suleep Kumar Bhogi, and Vaskar Raychoudhury 
28th Pacific Asia Conference on Language, Information and Computation pages 348–357



 

word मैं could be misinterpreted by a 
machine to be the English word. 

In order to address the afore-mentioned 
challenges and to enable automated analysis for 
code-switched languages, we need to identify the 
language of individual words. In case of 
transliterated Hindi words, we also need to find the 
authentic script. For example, in the sentence 
‘Main temple ke pass hoon’ the word ‘main’ is a 
non-standard transliterated form for the Hindi word 
मैं and ‘pass’ refers to the Hindi word पास and not 
the English word. 

We propose some novel solutions to address 
the problem of word-level language identification 
in code-switched texts. Our major contributions 
can be summarized as below. 

• We build a model to tackle the inconsistent 
spelling usage problem. The model learns 
the most common deviations from a 
standard transliteration scheme in English 
transliteration of Hindi words by 
identifying the erroneous character(s) that 
are frequently used in place of correct 
character(s) in standard transliterated 
forms. 

• In addition to n-grams of characters, we 
use frequency of usage of a word in 
English and in Hindi languages as features 
for word-level language identification. 

• We propose a technique using language 
and part-of-speech of neighboring words 
which, to the best of our knowledge, has 
not been applied before to solve this 
problem. 

• We achieved F1-score of 98.0% for 
recognizing Hindi words and 94.8% for 
recognizing English words. 

The rest of the paper is organized as follows. 
Section 2 describes the related work. Section 3 
describes the data sets used. Section 4 describes 
the algorithms and features used. Section 5 
describes the experiments conducted and their 
results. 

2 Related Work 

The socio-linguistic and grammatical aspects of 
code-switched texts have already been studied by 
many researchers. Ritchie and Bhatia (1996) and 
Kachru (1978) have discussed and examined 
different types of constraints on code-switching. 
Agnihotri (1998) discussed a number of examples 
of Hindi-English code-switching which do not 
comply with the constraints proposed in other 
literature. However, many of the constraints 
proposed for code switching, like the Free 
Morpheme Constraint (Sankoff and Poplack, 1981) 
and the Equivalence Constraint (Pfaff, 1979), are 
still widely applicable. 

Automatic language identification research has 
focused on identifying both spoken languages as 
well as written texts. Language identification of 
speech has been studied by House and Neuburg 
(1977), where the authors assumed that the 
linguistic classes of a language are probabilistic 
functions of a Markov chain. Language 
identification of written texts has been studied at 
document-level as well as at word-level 
perspectives. Two major techniques adopted are n-
gram (Cavnar and Trenkle, 1994) and dictionary-
lookup (Řehůřek and Kolkus, 2009). Most of the 
existing research works on document-level 
language identification consider only mono-lingual 
documents (Hughes et al., 2006). 

Word-level language identification in code-
switched texts has received little attention so far. 
King and Abney (2013) have used weakly 
supervised methods based on n-grams of 
characters. However, their training data is limited 
to monolingual documents, which limits the 
capability to capture some patterns in code-
switched texts. Nguyen and Dogruoz (2013) 
experimented with linear-chain CRFs to tackle the 
problem. But their contextual features are limited 
to bigrams of words. Our approach is more general 
in the sense we consider the language and POS 
(Part-of-speech) of the neighbouring words. So our 
approach will work for bigrams of words not 
present in training data. 

Automatically identifying linguistic code-
switching (LCS) points in code-switched texts 
have been studied by Joshi (1982), and Solorio and 
Liu (2008).  Elfardy et al. (2013) tackled the 
problem of identifying LCS points at the word 
level in a given Arabic text. They used sound 
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change rules (SCR) that model possible 
phonological variant of the word, along with 3-
gram model for dialect identification at word-level. 

Aswani and Gaizauskas (2010) proposed a bi-
directional mapping from character(s) in the 
Devanagari script to character(s) in the Roman 
script for the purpose of transliteration. But they 
have manually come up with a limited number of 
mappings. Dasigi and Diab (2011) used string 
based similarity metrics and contextual string 
similarity to identify orthographic variants in 
Dialectal Arabic.  

3 Data Sets 

In this section, we describe the datasets used for 
our experimentation. 

3.1 Data set 1: Hinglish sentences 

We have a dataset of 500 Hinglish sentences 
containing a total of 3,287 words (CNERG3). Each 
word is labeled as Hindi (H) or English (E). Out of 
these, 2420 are labeled as Hindi words while the 
rest 867 are labeled as English words. 
Corresponding to each Hindi word, the authentic 
Devanagari script is also written. Some examples 
from this dataset are given below. 
         bangalore\E  ke\H=के technical\E log\H=लोग 

We have another data set of 1000 sentences of 
social network chats. To avoid any bias, the data 
set was tagged manually by three people not 
associated with this work. The mean Cohen’s 
kappa coefficient of inter-annotator agreement 
between the sets of annotations was 0.852. There 
were few disagreements on the language of some 
named entities. An example from this dataset is 
given below. 

Main\H=मैं main\E temple\E ke\H=के 
pass\H=पास hoon\H=ह�.ँ  

 Above two data sets were clubbed to form the 
Data set 1. 

3.2 Data set 2: Transliteration Pairs 
The data set comprises of commonly used multiple 
transliterated forms of Hindi words. It contains 
30,823 Hindi words (Roman script) followed by 
the corresponding word in Devanagari script 
(Gupta et al., 2012). Some examples from this 
dataset are given below.  

3 http://cse.iitkgp.ac.in/resgrp/cnerg/ 

tera     तेरा 
 

thera  तेरा 
 teraa   तेरा 

 
teraaa   तेरा 
 3.3 Data set 3: Hindi word-frequency list 

It is a Hindi word frequency list which has 117,789 
Hindi words (in Devanagari script) along with their 
frequency computed from a large corpus 
(Quasthoff et al., 2006). Some examples of this 
dataset are as below: 
   लेने  2226    के   2143862 
 Also we generated a list standard transliteration 
forms of all these words using ITRANS rules. This 
list will be referred to as Translated Hindi 
Dictionary. 

3.4 Data set 4: English word-frequency list 

It is a standard dictionary of 207,824 English 
words along with their frequencies computed from 
a large news corpus. 

4 Word-level Language Identification 

Our model contains two classifiers. The Classifier 
1 works by combining four independent features as 
shown in the functional diagram Fig. 1.  These 
features do not take into account the context of the 
word. 

Classifier 1 Classifier 2

English 
Score

Modified 
Edit 

Distance

Hindi 
Score N-gramsFeatures

HINGLISH 
Sentences P(E,w)

POS Tagger 
(English)

POS Tagger
(Hindi)

POS-tagged 
HINGLISH Sentences

Identified Language 
of Words 

 
Fig 1. Functional Diagram of our Approach 

 The Classifier 2 operates on the output of 
Classifier 1 and the POS tagged Hinglish 
sentences. This classifier considers some 
contextual features which take into account the 
language and POS of neighboring words. 

4.1 Using Word-level features : Classifier 1 
Here, we describe the features used for Classifier 
1. The classifier outputs the probability P with                                                            
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which w is an English word, for each word w in a 
Hinglish sentence. If we call this probability P(E, 
w), then P(H, w) = 1- P(E, w), where P(H, w) is 
the probability with which w is a Hindi word. 
 

4.1.1 Common Spelling Substitutions and 
String Similarity (Modified Edit Distance) 

This feature is used to address the inconsistent 
spelling usage problem discussed in the 
Introduction section. To solve this problem, for 
every word we try to find the most similar word in 
our Transliterated Hindi Dictionary using  string 
similarity algorithms, like ‘Edit Distance’ (Wagner 
and Fischer, 1974).  

However, we observed cases in code-switching 
texts where this algorithm does not produce the 
intended outcome. For example, for the Hindi 
word खशुब,ू the possible transliterated forms are 
khushboo and khushbu with the former being the 
standard one. With the Edit Distance algorithm 
applied over the two forms, we shall get a 
dissimilarity value of 2. The same algorithm 
applied over the strings khushbu and khushi (ख़शुी), 
which refer to different Hindi words, also gives the 
same dissimilarity value. However, for all practical 
purposes, khushbu is much closer to khushboo than 
it is to khushi. It is an observed fact that people 
often tend to substitute, ‘u’ in place of ‘oo’ while 
writing transliterated forms. But the Edit Distance 
algorithm does not capture this fact. We call this 
type of substitutions as common spelling 
substitutions. 
 To overcome this problem, we have developed a 
‘Modified Edit Distance’ (MED) algorithm (Fig. 
2) which considers the common spelling 
substitutions. The idea is similar to Weighted Edit 
Distance (Kurtz, 1996), but in case of MED we 
automate the process of deciding the corresponding 
weights. We have experimented with four different 
methods to learn common spelling substitutions 
using the Transliteration Pairs data set. Here we 
present the working of the four methods.  

Method 1 

In this method, given the standard transliterated 
form w1of a word and a non-standard form w2 of 
the same word, we try to generate substitution 
pairs by first aligning the consonants. We add ‘;’ at 
start and end of each word to act as delimiters. ‘;’ 

is also to be considered as a consonant for the 
following procedure. 
 Consider a variable i varying from 1 to length of 
w1. For a consonant c at position i of w1, we try to 
align it with a consonant at the smallest position j 
of w2 such that: 

• jth character of w2 is same as c. 
• No character of w2, at a position greater 

than or equal to j, has already been 
aligned. 

• |j-i|<=3 
 If it is not possible to align a consonant, then it 
is not aligned. We define a segment to be a 
sequence of characters delimited by two aligned 
consonants (delimiting consonants inclusive). The 
two words will contain same number of segments. 
We consider two corresponding segments as 
substitution pairs if they do not have identical 
sequence of letters. 
e.g. w1=;tera; , w2=;teraa; 

 
S1 = {;t, ter, ra;} 
S2 = {;t, ter, raa;} 

This generates a substitution pair (ra;, raa;). 
Some substitution pairs generated by this method 
are given in Table 1. 
 

Substitution Pair Frequency 
ra; r; 1055 
na; n; 775 

Table 1. Substitution pairs generated by Method 1 

Method 2 

For this method, the only difference with 
method 1 is in the way the segments are defined. 
We define a segment to be a sequence of 
characters delimited by two aligned consonants 
(delimiting consonants exclusive). We consider 
two corresponding segments as substitution pairs if 
they do not have identical sequence of letters. 
e.g. w1=;tera; , w2=;teraa; 

 
S1 = {e, a}, S2 = {e, aa} 

This generates a substitution pair (a, aa). Some 
substitution pairs generated by this method are 
given in Table 2. 
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Substitution Pair Frequency 
a aa 7764 
a ha 872 

Table 2. Substitution pairs generated by Method 2 

Method 3 
 In this method, we do not include any delimiter 
at the beginning and end of the words. Rest of the 
working is same as in method 2.  

 
Some substitution pairs generated by this 

method are given in Table 3. 

Substitution Pair Frequency 
a aa 8674 

om on 1243 

Table 3. Substitution pairs generated by Method 3 

Method 4 

In this method, we align the vowels also. Rest of 
the working is same as in Method 3.  

For example, consider main (w1) and mein (w2) 
as two spelling variants of transliterated form of 
the Hindi word मैं. We first align ‘m’ of w1 with 
‘m’ of w2, ‘i’ of w1 with ‘i’ of w2, and ‘n’ of w1 
with ‘n’ of w2.  

 
 This generates the substitution pair (‘a’, ‘e’), 
i.e., ‘e’ has been used in place of ‘a’ 
interchangeably by the user. Some substitution 
pairs generated by this method are given in Table 
4. 

Substitution Pair Frequency 
i ee 1742 
f ph 1444 

Table 4. Substitution pairs generated by Method 4 

In all methods we keep some threshold thresh 
for the frequency of substitution pairs. Substitution 
pairs occurring less than thresh are not further 
considered. The comparison of performance of 
MED based on these four methods will be 
discussed in the section 5.7.  
 Let subsList be the list of substitution pairs. 
Each entry s in subsList has attributes sx, sy, and sf, 

where (sx, sy) is the substitution pair and sf is the 
corresponding frequency of occurrence. 
 Consider a substitution pair s which occurs with 
frequency sf in the training data. Then the cost of 
using the substitution is g(sf), i.e., a function of 
frequency sf. Here, g(f) = k / (log10(f)), where, k is 
a constant. 

modifiedEditDistance (transliteration w1, 
transliteration w2, list of substitutions subsList) 
 
NÅ length of w1 
MÅ length of w2 
initialize all elements of matrix dp[N][M] with 0 
for i Å1 to N: 
  for j Å1 to M: 
    if w1[i] == w2[j]: 
     v1Ådp[i-1][j-1]   
    else: 
     v1Å dp[i-1][j-1] + 1// substitution of a character 
     v2Å 1 + dp[i-1][j]   //  deletion of a character 
     v3Å 1 + dp[i][j-1]   //  insertion of a character 
     v4Å infinity 
     for s in subsList: 
        pÅ length of sx 
        qÅ length of sy 
          if w1 [i-p+1 : i] = sx and w2[j-q+1 : j] =sy : 
            v4Å min( v4 , g(sf) + dp[i-p][j-q] ) 
            dp[i][j] Å min( v1, v2, v3, v4) 
 
output: MED(w1,w2) = dp[N][M] 

Fig 2. Pseudo code for Modified Edit Distance 
Algorithm 

 We have used logarithmic scaling as the 
frequencies of occurrences of the substitution pairs 
are very much skewed towards larger values. For 
every other insertion, deletion and substitution of a 
character, cost is 1 as is commonly used for Edit 
Distance. For each word w in test data, we try to 
match it against words in our Transliterated Hindi 
Dictionary. The word corresponding to the 
minimum cost and the minimum cost itself 
computed by the above algorithm are stored. The 
minimum cost so obtained for each word is 
dissimilarityScore for that word. The algorithm for 
MED is shown in Fig.2. 

4.1.2 Frequency of Occurrence in English and 
Hindi 

Here we address the ambiguous word usage 
problem discussed in the Introduction section. 
Consider that the test data contains the word 
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‘main’, which can correspond to the Hindi word मैं 
or the English word. If we decide its language 
randomly, then the expected accuracy of 
identifying the correct language is 50%. If we 
know that main in English language is having 
higher usage frequency than the word मैं in Hindi 
language, then the probability of the test data word 
‘main’ being an English word increases. 
 Using formula (1), we compute the value 
corresponding to this feature and we call it English 
score (eng_score). First, we use logarithmic 
scaling on frequencies of occurrences of English 
words to do away with its skewness towards large 
values. Then, we normalize the word frequency 
values with respect to the largest frequency 
observed. 

  M=max ( log( freq(q) ) ) 
  ∀ word q ∈ Hindi Dictionary 
For a given word w in the test data, 
  score(w) = log( freq(w))/M 
  eng_score(w) = 0,  if w not in English  Dictionary 
      = score(w), otherwise  …(1) 

   
 

Fig 3. Density distribution plot for (a) English Score 
feature (b) Hindi Score feature 

 Similarly, we calculate the Hindi score 
(hin_score) using formula (2). However, first the 
MED algorithm is used to identify the closest 
matching Hindi word hw for a given word in the 
test data. 

  M=max ( log( freq(q) ) ) 
  ∀ word q ∈ Hindi Dictionary 
For a given word w in the test data, 
  score(w) = log( freq(hw))/M 
  hin_score(hw) = score(w)     …(2) 

Thus, we get English score and Hindi score for 
each word in the Dataset 1. The density 

distributions of eng_score and hin_score are 
shown in Fig. 3(a) and Fig. 3(b) respectively. 

4.1.3 Character N-grams 
This follows the idea that, in Hinglish sentences 
some contiguous sequences of letters occur more 
frequently in words of one language as compared 
to the words of the other language. For example, 
bigram ‘es’ frequently occurs at the end of English 
words (like, roses, fries), often denoting plural 
morphological forms. We considered bigrams and 
trigrams of characters for the task of word-level 
language identification. We used the technique of 
Delta TF-IDF, which has been shown to be more 
effective in binary classification of class 
imbalanced data using unigrams, bigrams, and 
trigrams (Martineau et al., 2009) 
 For any term t (n-gram of characters) in word w, 
the Delta TF-IDF score V is computed using 
formula (3). 

V(t,w) = n(t,w) * log2(Ht / Et)   ----(3) 
 Where n (t, w) is the frequency count of term t 
in word w. Ht and Et are the number of occurrences 
of term t in the English and Hindi dictionaries. 
Thus for every word w, we generate a set of feature 
values, with each n-gram t contributing one value. 

4.2 Using Context Level Features: Classifier 2 

All the previous features we have discussed focus 
on individual words of a code-switched sentence 
on a stand-alone basis, i.e., independent of the 
surrounding words or context. However, language 
usage of words in code-switched sentences may 
follow certain patterns, like words of a language 
are often surrounded by words of the same 
language (King and Abney, 2013). We tried to 
capture this context-dependence by considering the 
language and the POS of the surrounding words. 
For example, words on the two sides of 
conjunctions ‘and’, ‘aur (और)’, etc. are usually of 
same language as the conjunction. 

Our Classifier 2 operates over POS-tagged 
Hinglish sentences and the output from Classifier 
1, i.e., P(E, w) (Refer to Fig.1.). The notations and 
symbols are shown in table 5, and the 
corresponding procedure is presented in Fig.4.  
 We annotated POS of each word in the training 
data set with POS taggers. For English, we used 
Stanford NLP Maxent POS tagger (Toutanova et 
al., 2003). In case, the word has more than one 

PACLIC 28

353



 

possible POS usage, we consider the most frequent 
POS usage. For Hindi words, we used POS tagger 
by Reddy and Sharoff (2011). For each word w in 
the training data, we assign an identifier (id) X_P 
to it, where X can take values ‘E’ (for English) or 
‘H’ (for Hindi), and P is the corresponding POS of 
the word. For example, if ‘car’ is an English noun 
(NN), then its id will be as E_NN.  
 We then count the number of occurrences of 
various bigrams of ids’ in the training data. We use 
these counts to calculate the conditional probability 
of an identifier to occur given the previous 
identifier e.g. P(id2|id1) is the probability that 
identifier id1 will be followed by identifier id2. 
 For each word w, we have at most two possible 
candidate interpretations - Hindi word wH with 
POS as PwH, and English word wE with POS as 
PwE. wH is found using MED algorithm and wE is 
found using English Dictionary lookup. Now w 
refers to wE with probability P(E,w), and refers to 
wH with probability P(H, w) e.g. if w is ‘main’, 
then wH is मैं and wE is the English word main. 
Now the identifier corresponding to w1H will be 
H_PRP as मैं is a Hindi personal pronoun. 

 Symbol Meaning 
Sentence S A Hinglish sentence which is a 

sequence of words w1w2w3 … wN 
Matrix 
prob_pos[M][M] 

Conditional probability of the 
current word’s identifier (id) to be 
i, given that the identifier (id) of 
the previous word is j, as learnt 
from the training data. 

Array 
eng_prob[N] 

eng_prob[i] = P(E,wi)  
= Probability of the ith word in 
sentence to be English, as provided 
by Classifier 1. 

Array 
hin_tag[N] 

hin_tag[i] = PwiH = POS tag of 
wiH 

Array 
eng_tag[N] 

eng_tag[i] = PwiE = POS tag of 
wiE 

Integer M total number of identifiers possible 

Table 5. Notations and Symbols for classifier 2 

Consider a Hinglish sentence S = w1w2w3…wn. 
A possible interpretation can be Sx = w1H w2H w3E 
… wNH. Now S has an interpretation given by Sx 
with probability P(S=Sx) given by: 
P(S=Sx) = P(H,w1) * P(H,w2) * P(E,w3)..* P(H,wn) 

 Now we define score (Sx) as follows: 
score(Sx) = P(S=Sx) * P(id2|id1) * P(id3|id2)*... *                                                  
P(idN|idN-1) 

 For a sentence S with N words, we can have a 
maximum of 2N such possibilities. Now calculating 
the maximum score over these possibilities has 
optimal sub-structures, which lets us use dynamic 
programming. Algorithm for Classifier 2 is 
presented in Fig.4. We built a similar model using 
trigrams of identifiers. 

maxLikelihood (Sentence S, prob_pos[M][M], 
hindi_tag[N], eng_tag[N], eng_prob[N]): 
NÅ length of s 
Initialize all elements of dp [N+1][2] with 0 
dp [0][0] Å 0.5 
dp [0][1] Å 0.5 
for iÅ 1 to N: 
/* dp [i][0] is the maximum score such that wi refers to 
wiE when S[1,2,...i] have been considered */ 
/* dp [i][1] is the maximum score such that wi refers to 
wiH when S[1,2,...i] have been considered */ 
prev_valÅ dp [i-1][0]   // 0 => english 
v1Åprev_val * eng_prob[i] * trans_prob[PwiE][Pwi-1E] 
prev_valÅ dp[i-1][1]   // 1 => hindi 
v2Åprev_val *(1- eng_prob[i])*trans_prob[PwiE][Pwi-

1H] 
    dp [i][0] Å max(v1,v2)  
// Similar procedure to calculate dp [i][1] 

Fig. 4.  Algorithm for Classifier 2 (using identifier 
bigram) 

  Consider following cases for the first three 
words of the sentence ‘Main main temple ke pass 
hoon’: 

Case 1: Main (H_PRP) main (E_JJ) temple 
(E_NN)   
Case 2: Main (E_JJ) main (E_JJ) temple (E_NN) 
Case 3: Main (H_PRP) main (H_PRP) temple 
(E_NN) 
Case 4: Main (E_JJ) main (H_PRP) temple 
(E_NN) 
Case 1 is the correct case. The bigrams of 

identifiers corresponding to the case 1 i.e. H_PRP-
E_JJ and E_JJ-E_NN occur much more frequently 
in the training data as compared to bigrams of 
other cases. 

5 Experimentation and Results 

In this section, we shall discuss the experiments we 
carried out and the results obtained. We have used 
10-fold cross validation technique. We 
experimented with different classifiers like 
Decision Tree, SVM and Random Forest, provided 
by Scikit Learn (Pedregosa et al., 2011). 
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5.1 Experiment 1: Presence in English 
Dictionary  

In this experiment a word is classified as belonging 
to English class if it is present in English 
Dictionary otherwise the word is classified as 
belonging to Hindi class.  

For this experiment, we sorted the words of the 
English Dictionary in decreasing order of the 
frequency of occurrences of words. Then we 
considered only the top K words for the 
experiment. The results for different values of K 
are shown in Table 6.  
 
K HPR4 HRE HF1 EPR ERE EF1 
100 0.74 0.98 0.84 0.31 0.02 0.04 
500 0.76 0.96 0.85 0.59 0.15 0.24 
1000 0.79 0.95 0.86 0.69 0.28 0.40 
5000 0.85 0.93 0.89 0.75 0.55 0.64 
10000 0.87 0.86 0.87 0.63 0.64 0.63 
ALL 0.92 0.39 0.55 0.35 0.91 0.50 

Table 6. Results of Experiment 1 

We observed that with an increase in the number 
of words in the English dictionary, more English 
words will be correctly identified as ‘English’ 
words, resulting in increased recall values for the 
‘English’ class (ERE). But at the same time more 
Hindi words would be incorrectly marked as 
English, resulting in decrease in HRE. 

5.2  Experiment 2: King-Abney’s approach 
In this experiment we run the King’s (2013) n-
grams and context level algorithms on our data set. 
The results are shown in Table 7.  

 HPR HRE HF1 EPR ERE EF1 
Naïve 
Bayes 

0.66 0.83 0.74 0.39 0.20 0.27 

HMM 0.75 0.91 0.83 0.59 0.29 0.39 
CRF 0.76 0.96 0.85 0.76 0.28 0.41 

Table 7. Results of Experiment 2 

5.3 Experiment 3: Using Delta TF-IDF on n-
grams of characters (Our Approach) 

In this experiment we used only one of our features 
for classification. We have used Delta TF_IDF 

4 HPR = Precision for Hindi class, HRE = Recall for the Hindi, 
HF1 = f1 score for the Hindi class 
EPR = Precision for English class, ERE = Recall for the 
English class, EF1 = f1 score for the English class 
 

scores of n-grams of characters as features in our 
Classifier 1. The results of experiment 3 are 
presented in Table 8. The best results are obtained 
using Random Forest with number of trees equal to 
10. 

 HPR HRE HF1 EPR ERE EF1 
Random 
Forest 

0.89 0.79 0.84 0.52 0.71 0.6 

Table 8. Results of Experiment 3 

5.4 Experiment 4: All word-level features 
(Classifier 1) 

In this experiment we show the results produced by 
our Classifier 1 i.e., only using word-level features. 
Results of this experiment are presented in Table 9. 
We can see using other features, F1 scores have 
significantly increased. 

 
 HPR HRE HF1 EPR ERE EF1 
Random 
Forest  

0.95 0.98 0.97 0.94 0.85 0.89 

Table 9. Results of Experiment 4 
 

 
Fig.5. ROC curve for Random Forest Classifier based 

on all word-level features 

Thus best results came corresponding to 
Random Forest classifier, with number of trees = 
10, and based on following word-level features: 

• Delta TF-IDF on n-grams of characters 
• eng_score 
• hin_score 
• dissimilarityScore 

The corresponding ROC curve has been shown 
in Fig 5. The AUC (Area Under the curve) is 0.98. 

5.5 Experiment 6: Classifier 2  
As input to Classifier 2, we used POS tagged 
Hinglish sentences and the output of Classifier 1, 
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corresponding to the output from Experiment 4. 
We performed two experiments with Classifier 2 
using bi-grams and tri-grams of identifiers. The 
results are shown in Table 10. 

 HPR HRE HF1 EPR ERE EF1 
Identifier 
bi-grams 0.974 0.969 0.972 0.920 0.934 0.926 

Identifier 
tri-grams 

0.983 0.977 0.980 0.941 0.955 0.948 

Table 10. Results of Experiment 6 

 The accuracy of Classifier 2 obtained on using 
identifier tri-grams is more than the accuracy 
obtained on using identifier bi-grams. This is 
probably because usage of trigrams captures the 
context more efficiently. Moreover the 
improvement offered by Classifier 2 over 
Classifier 1 is only little. This is mainly because of 
the already high accuracy values of Classifier 1. 

We found that the percentage of named entities 
in the Dataset 1 is 8.59%. We observed that the 
percentage of named entities in the wrongly 
classified words is 23.2%. 

5.6 Experiment 7: Comparing four methods 
of creating substitution pairs 

In this experiment we compare the results of 
previously described four methods to create 
substitution pairs. The results of this experiment is 
shown in Fig. 6. The K value which was defined in 
section 4.1.1 is varied to compare the results. It is 
observed that Method 2 gives best results among 
all methods discussed. 

 
 

Fig 6. Graph showing comparison between four 
methods of creating substitution pairs 

5.7 Performance of MED  
To test the performance of MED algorithm in 
identifying correct Hindi words corresponding to 

given transliterated forms, we compared it with the 
some other well-known string matching 
algorithms: Damerau-Levenshtein (49.38%), 
Levenshtein (47.48%), Jaro-Winkler (50%), 
Soundex (46.23%). The accuracy of MED is 
54.1%.  
 For each Hindi word w in the Hinglish data-set, 
we try to match it against every word in our 
Transliterated Hindi Dictionary. The word 
corresponding to the minimum cost is stored and 
later compared with the correct word. Fig.7 shows 
the results with a Hindi dictionary of size 117,789. 
 

 
Fig 7. Performance of MED vs. other Algorithms 

6 Conclusion 

In this paper, we addressed the problem of word-
level language identification in bilingual code-
switched texts. We proposed a novel idea of 
utilizing the patterns in Hinglish sentences by 
considering the language and the POS of 
consecutive words. We proposed four different 
techniques to identify common spelling 
substitutions Our error analysis shows that a 
significant fraction of the errors made by the 
classifiers are actually named entities which are 
names of people or places, and can be considered 
either as Hindi or as English. In future, we would 
like to explore the changes of code-switching 
behavior from person to person. Also, we shall 
focus on other pairs of languages, like English-
Bengali, English-Gujarati, etc. and also on word-
level identification in multilingual code switched 
texts (i.e. having more than two languages). 
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