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Abstract will see below functions denoted by higher or-
der anaphors take binary relations (or binary rela-
Formal properties of functions denoted by tions and sets) as arguments and give sets of type

higher order anaphors likeach otherand (1) quantifiers as output whereas simple anaphors
syntactically complex expressions contain-  have arguments of the same type as higher order
ing each otherare studied. A partial com- ones (that is their arguments are binary relations

parison between these functions and func- <o a0 binary relations) but their output are
tions denoted by (simple and complex) re-

flexives is draw. In particular it is shown that sets (of |nd|VId_uaIs). ) )

both types of function are predicate invari- The semantics of reciprocal sentences is a com-
ant (in a generalised sense). These results ~plex matter (as shown for instance in Dalrymple
allows us to understand the anaphoric char- et al., 1998; Cable, forthcoming; Dolls, forth-
acter of both reflexive and reciprocal expres-  coming; Mari, forthcoming). In fact there does
sions. not seem to be any general agreement concerning
the data and the interpretation of reciprocal con-
structions (cf. Beck, 2000). In this paper | am
not, strictly speaking, interested in the semantics

By higher order anaphor, | mean expressions Iik@f higher orgler anaphors but'in the formal proper-
each other, sometimes called basic higher orddies of functions denoted by higher order anaphors.
anaphors, and various complex expressions syhWo types of such properties will be discussed:

tactically containingeach other. These complex those which are similar to properties of functions
anaphors include Boolean compounds léach denoted by simple anaphors and those which make

other and most studentgach other and them- them different from functions denoted by simple

selvesand various modifications efach othetike anaphors. Formal properties of functions denoted
only each otheror at least each other. Higher by simple anaphors have been studied in Keenan
order anaphors are also expressions formed #g007), Zuber (2010b) and Zuber (2011) and some
the application of shigher order anaphoric de- formal properties of higher order anaphors are
terminerlike each othersor every ...except each 9Iven in Sabato and Winter (2012) and Peters and
otherto a common noun (CN). All such exlores_Westerﬁhl (2006). As far as | can tell, no compar-

sions will be called reciprocals and sentences cofSOn between the two types of function have been

taining them (in object position) will be called re-Made. Moreover, only basic anaphors (that is syn-
ciprocal sentences. tactically simple anaphors) have been taken into

Higher order anaphors can be opposed to (logfonsideration.
cally) simple anaphors whose basic example is tt‘f
reflexive pronourimself/herself/themselves. This
simple basic anaphora can also occur in Booleank/e will consider binary relations and functions
complex anaphors likeimself and most studentsover universe&® which is supposed to be finite. If a
or in modified expressions likenly himself, even function takes only a binary relation as argument,
themselves. So the distinction between simple arits type is noted2 : 7), wherer is the type of
higher order anaphors is of logical nature: as wehe output; if a function takes a set and a binary

1 Introduction
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relation as arguments, its type is notgd2 : 7). D2: For each type (1) quantifier @,
If 7 = 1 then the output of the function is a setQ...(R) = {a : Q(aR) = 1}.
of individuals and thus the type of the function
is (2 : 1). Forinstance the functioRELF, de-  From now onQ,.,(R) will be noted Q(R).
fined asSELF(R) = {z : (v,2) € R}, is of Nominative and accusative extensions can thus be
this type. The case we will basically consider hergonsidered as functions from binary relations to
is whenr corresponds to a set of tyge) quanti-  sets. By type1) quantifiers | will mean basic type
fiers and thus- equals, in Montagovian notation, (1) quantifiers as well as their nominative and ac-
({{e,t)t)t). In short, the type of such functions cusative extensions.
will be no'Fed either2 : (1)) (functions_f_rom bi- Given that type(1) quantifiers and their ar-
nary relations to sets of typ@l) quantifiers) or gyments form Boolean algebras, every quantifier
(_1,2 : (1)) (functions from sets and binary rela-¢ has its Boolean complement, denoted-bg,
tions to sets of typ&l) quantifiers). and its post-complemeif)—, defined as follows:
Let R be a binary relation. Thendom(R) = Q- = {P : P C E AP € Q} (where
{z : 3y(z,y) € R} andrg(R) = {z : 3y(y,z) € P’ is the Boolean complement @?). The dual
R}. Furthermore, for any € F, aR = {z : Q% of the quantifierQ is, by definition, Q¢ =
(a,z) € R} andRa = {z : (z,a) € R}. The —(Q-) = (-Q)~-. A quantifier@Q is self-dual iff
relation R~ is the converse of? (thatisR~! = (@Q = Q“. These definitions work also for extended
{{z,y) : (y,xz) € R}) and the relation?® is the type(1) quantifiers. It easy to see for instance that
maximal symmetric relation included i, thatis —(Quec) = (Q)ace ANA (QY)aee = (Quee)?. A
RS =RNR L Atype(2:1)ortype(2: (1)) type(1) quantifierQ is positiveiff Q(#) = 0.
function F' is convertible iff F(R) = F(R™'). A special class of typél) quantifiers is formed
Relation is defined ad = {(z,z) : € E}. pyindividuals, that is ultrafilters generated by an
The relationR! is the transitive closure of the re- element ofE. ThusI, is an individual (generated
lation R, that is the smallest transitive relation inbya € E)iff I, = {X : a € X}. Ultrafilters
which R is included. are special (principal) filters. A (principal) filter
Basic type(1) quantifiers are functions from generated by the set C E'is the following quan-
sets (sub-sets aF) to truth-values. In this case tifier: Ft(A) = {X : X C EAA C X}. Thus
they are denotations of subject NPs. Howevedltrafilters are principal filters generated by single-
NPs can also occur in oblique positions andons.
in this case their denotations do not take sets One property that we will use is the property of
(denotations of verb phrases) as arguments blifing on. The basic typél) quantifier lives on the
rather denotations of intransitive verb phrasessetA (whered C E)iffforall X C E, Q(X) =
that is relations, as arguments. To account fap(X N A). If E is finite then there is always the
this eventuality it has been proposed to extend thgnallest set on which a quantifiérlives: it is the
domain of application of basic typ&) quantifiers meet of all sets on whict) lives. The fact thatd
so that they apply to n-ary relations and act ag the smallest set on which the quantifi@dives
arity reducers, that is have as output an (n—1)-awyill be notedLi(Q, A). If A € Q thenA is called
relation. Since we are basically interested inhe witness set of): A = wt(Q). The quantifier
binary relations, the domain of application of() is calledplural, noted@ € PL, iff Ja ek SUCh
basic type(l) quantifiers will be extended by thatQ C I, N I,.
adding to their domain the set of binary relations. Eynctions from pairs of sets to truth-values
In this case the quantifig€p can act as a’subject” o binary relations between sets are tyge1)
quantifier or a "direct object” quantifier giving quantifiers. In NLs they are denoted by (unary)
rise to thenominative case extensiai.,» and npominal determiners, that is expressions which
accusative case extensiah,.. respectively. They (ake one CN as argument and give a NP as
are defined as follows (Keenan, 1987; Keenan angl;tput. Denotations of nominal determiners obey

Westersahl, 1997): various constraints. Recall first the constraint

of conservativity for type(l,1) quantifiers. A
D1: For each type (1) quantifier @, well-known definition of conservativity is given
Qnom(R) = {a: Q(Ra) = 1}. in D5:

233



PACLIC-27

GNPs are linguistic objects that can play the role
D3: FF € CONS iff for any property X,Y one of syntactic arguments of transitive verb phrases
hasF(X,Y)=F(X,XNY) (TVPs). So "ordinary” NPs or DPs (determiner
phrases) are GNPs. However there gesmuine
Definition D3 can be generalised so that it apGNPs which differ from "ordinary” NPs in that
plies to type(1, 2 : ) functions (cf. Zuber 2010a): they cannot play the role of all verbal arguments;
in particular they cannot occur in subject position.
D4: Afunction F of type (1,2 : ) is conservative This is the case of anaphoric expressions.
iff F(X,R)=F(X,(ExX)NR) The GNPs related to reflexives and reciprocals
are anaphoric noun phrasefANPs). Roughly,
Observe that the above definition does not detheir ("referential”) meaning depends on the
pend on the type of the result of the application meaning of another expression in the sentence,
of the function. So obviously it can be used withthe so-callecgntecedent of the anaphor, by which
higher order functions. Typé2 : 1) functions it is bound. In the simplest case the antecedent
can also be (predicate or argument) invariant ang the subject NP. Thus a more specific form of
invariance is a property depending on the type adentences that we will consider of the form given
the output of the function. Thus (see Keenan anith (2) instantiated in (3) and (4):
Westersahl, 1997):

(2) NP TVP ANP.
D5: A type (2 : 1) function F is predicate (3) Most students washed themselves.
invariant iff a € F(R) = a € F(S) whenever (4) Leo and Lea hate each other.
aR = aS.
Thus the GNPs we consider are ANPs. In the

For instance the functio§ ELF' is predicate gpove examples we have syntactically simple
invariant. The following definitions are general-Anps. Such ANPs can occur as syntactic parts
isations of predicate invariance applying to type complex GNPs; in particular they can be parts
(2: (1)) and type(1, 2 : (1)) functions: of Boolean compounds and can be modified by

_ o categorially polyvalent modifiers such amly,
D6: A type (2 : (1)) function F' satisfiesHPI 5150 even, at least, let alone, etc. :
(higher order predicate invariance) iff for any pos-

itive type (1) quantifier@, anyA C £, any binary 5y | o and Lea admire themselves and most
relationsk, S, if A = Wit(Q) and Ft(A)R = oachers.

Ft(A)SthenQ € F(R) iff Q < F(S_)'_ (5b) Leo and Lea admire each other, themselves
D7: Atype(1,2: (1)) functionF satisfieDIHPI 4.0 teachers.

(higher order predicate invariance for unary de(G) Two monks hug each other only.
terminers) iff for any positive typél) quantifier
@, any A C E, any binary relationg? and S, if
A=Wt(@Q1) andFt(A)RNX = Ft(A)SN X
then@ € F(X,R) iff Q € F(X,S).

A special class of complex ANPs is formed by
the application onaphoric determinergADets),
to CNs. Again, this can be done both with reflex-
3 Reciprocals and reflexives ive determiners and with reciprocal ones. Many

languages have possessive anaphoric determiners.

In this section | briefly present simple syntactic, ofThis is the case with Slavic languages which
categorial, similarities and, possibly, differenceshave the possessive "determiner-pronoSi’O.J
between reflexives and reciprocals, both simplémeaning, roughly ’ones own’) which can be

and syntactically complex. considered as ADet with reflexive meaning (cf.
We will consider sentences of the form given inZuber, 2011). Similarly, marking the simple
Q): reciprocaleach otheiin English by the possessive
marker results in a ADet with reciprocal meaning.
(1) NP TVP GNP This possibility is indicated in the following
examples:

In this schema, GNP is a generalised noun phrase.
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(7) Leo and Lea admire their own books. (17) Most philosophers protect themselves from
(8) Leo and Lea admire each other’s books. themselves.
(18) Most philosophers protect themselves and

Thustheir ownin (7) is a ADet with a reflexive the president from themselves.
meaning andach other'sin (8) is an ADet with (19) Two monks protect themselves from the guru
reciprocal meaning. and themselves.

More interestingly it is possible to use an(20) Five philosophers protected each other from
ordinary determiner (or its "part”) and the simplethemselves.
ANPs himself/herselfithemselvés form a ADet (21) Leo and Lea/every student protected each
with reflexive meaning and to use an ordinary deother from Al.
terminer and the simple ANR=sach othetto form  (22) Leo and Lea protected every philosopher
an ADet with reciprocal meaning. Thus, roughlyffom each other.
speaking (Zuber, 2010a), i is an ordinary one
place determiner, denoting monotone increasing This shows that reflexives can occur twice in a
function, therD..., including himselbr D...in ad- sentence in two different argumental positions of
dition to themselveare ADets with the reflexive the verb. This is not the case with reciprocals:
meaning. IfD is a determiner denoting monotone
decreasing functions thdd, not even himselfs ?(23) Leo and Lea prevented each other from each
an ADet as well. The following sentences contairmther
various complex ADets with reflexive meaning: ?(24) Leo and Lea gave each other each other’s

book.
(9) Two students admire most teachers in addition
to themselves and Picasso The above sentences are not acceptable, or at
(10) Leo and Lea washed some vegetariangast not interpretable.
including at least themselves. The difference pointed out by the above exam-
(11) Leo and Lea admires no philosophers, ngjles is related to the difference in the categorial
even themselves or Socrates. status of reflexives on the one hand and reciprocals

on the other. Thus itis usually assumed that ANPs
Quite similar procedure can be applied, thoughvith reflexive meaning are "argument” reducers:
probably somewhat less productively, to (syntacwhen applied to a di-transitive verb phrase they
tically) simple and complex reciprocals in ordergive a transitive verb phrase, and when applied to
to obtain ADets with reciprocal meaning. Thea transitive verb phrase they give just a VP.
following examples illustrate this possibility: The situation with reciprocals is different.
Recall that ANPs are GNPs. GNPs apply to TVPs
(12) Two students shaved most students includingnd give VPs as result. So what is the category
each other. of such VPs. Ignoring directionality, the subject
(13) Leo and Lea admire most logicians inNPs in the constructions we are interested in are
addition to each other. of the categoryS/(S/NP). This means that, in
(14) Leo and Lea admire no philosopher, let alonerder to avoid type mismatch, verb phrases must
each other. be raised and have the categaty(S/(S/NP)).
Then their denotational type ig(e, t)t)t). Con-
As the following examples show simple andsequently, sentences of the form (1) are true iff
complex reflexives and reciprocals can occur alsthe quantifier denoted by th& P is an element
in other than direct object positions. The follow-of the set denoted by'V P GN P. Thus ANPs
ing example show that reflexives and reciprocalwith reciprocal meaning denote type : (1))
can be arguments of a verb taking three argumentsinctions. This categorial difference is related to
the following semantic difference. Consider the
(15) Leo protected himself/himself and Lea fromfollowing examples:

Al.
(16) Leo and Lea protected every students fronfR5a) Leo and Lea washed themselves
themselves. (25b) Bill and Sue washed themselves.
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(26) Four persons, Leo, Lea, Bill and Sue washesatisfies the left predicate invariance:
themselves.

(27a) Leo and Lea hug each other. D 8: Atype (2 : 1) function F is left predicate
(27b) Bill and Sue hug each other. invariant iff for any « € FE and any binary
(28) Four persons, Leo, Lea, Bill and Sue hugelationsR, S, if Ra = Sa thena € F(R) iff
each other. a € F(S)whereRa = {z : (z,a) € R}.

Clearly (25a) in conjunction with (25b) entails Accusative extensions of typd) quantifiers,
(26) whereas (27a) in conjunction with (27b) doesvhich can also be considered as tyf® : 1)
not entail (28). This means that the quantifiers defunctions, satisfy a stronger condition than predi-
noted by the subject NPs in (27a) and (27b) deate invariance. They satisfy so-callaccusative

not apply to the predicate denoted by the complexxtensiorcondition AE (Keenan and Westeast,
VPsinthese sentences and that the GNPsld@  1997):

otherdenote typg?2 : (1)) functions.

There are of course genuine tyfige, t)t)t) (0r D 9: A type (2 : 1) function F' satisfies AC iff
type (2 : (1)) in our notation) functions, that is for anya, b € E and any binary relation®, S, if
such that they are not lifts of simple tyge2 : 1) 4R = bS thena € F(R)iff be F(S).
functions.

Itis important (Keenan, 2007) that functions de-
noted by reflexive expressions, simple and com-
We have seen that higher order anaphors dendi&X. do not satisfy AC and thus they are different
type (2 : (1)) functions. Any type(2 : 1) from accusative extensions of type) quantifiers
function whose output is denoted by a VP caflénoted by "ordinary” NPs in the object position.
be lifted to the type(2 : (1)) function. This - Inthatsense, reflexive expressions are also gen-
is in particular the case with the acusative anyin€ GNPs.
nominative extensions of a typé) quantifier. ~ The corresponding higher order extension
For instance the accusative extension of a tjipe condition is defined in D10:
quantifier can be lifted to typ€ : (1)) function
in the way indicated in (29). Such functions willD10: A type (2 : (1)) function F' satisfies
be calledaccusative lifts. More generally ifff is HEC (higher order extension condition) iff
atype(2 : 1) function, its lift F~, a type(2 : (1)) for any positive type(l) quantifiers Q; and

4 Higher order anaphors

function, is defined in (30): Q2, any A, B C E, any binary relationsk, S,

if A = Wt(@) and B = Wit(Q2), and
(29) QLc(R) = {Z : Z(Quee(R)) = 1}. F(A)R = Ft(B)S then Q1 € F(R) iff
(30) FL(R) = {Z : Z(F(R)) = 1} Q2 € F(S).
The variableZ above runs over the set of tyd&) Functions which are accusative lifts satisfy
quantifiers. HEC. We will see that functions denoted by

As we have seen, simple reflexives are intehigher order anaphors do not satislEC
preted by the functior® ELF. This function is because functions satisfyingdEC have the
of type (2 : 1), that is a function which takes following obvious property:
binary relations as argument and gives a set as
result. Complex reflexives are interpreted by corProposition 1: Let” be a type(2 : (1)) function
responding Boolean combination S£LF with ~ which satisfiesHEC and letR = E x C, for
(lifted) denotations of NPs being a part BoolearC" C E arbitrary. Then for anyX C E either
compounds or, in the case of modification by't(X) € F(R) orforanyX, Ft(X) ¢ F(R).
categorially polyvalent particles, by modifications
of SELF. Obviously, they are also of type In order to present various properties of func-
(2 : 1). These functions satisfy predicate invaritions denoted by higher order anaphors | will dis-
ance defined in D5. The functiohE L F', but not cuss only some such functions and not define
the functions denoted by complex reflexives, alsall functions which constructions discussed in the
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previous section denote. Some other functions af86b) I LE Ageon;(R) = ILEA(R) N QE..(R)
discussed in Zuber (2012).
Consider first the function given in (31): Let us see now some constraints on the above
functions. First we have:
(31) RFL-RECIP(R) = {Q : JacgA =
Wt(Q) A Q(Dom(A x A)N (RN R™)) =1} Proposition 2: FunctionRFL-RECIP, SEA
andSEAg satisfyHPI.
Informally, this function can be considered as
the denotation of an anaphor likach other or Proof We prove only that RFL-RECIP
oneself or themselves. In other words it does nasiatisfies HPI. Suppose thatA = Wi(Q)
makea priori a distinction between "purely” re- and that Q € REF-RECIP(R). We
flexive and "purely” reciprocal interpretation, ashave to show that if for some binary rela-
apparently it happens in many languages. Obsertien S (i) holds (i): Vica(zR = zS) then
in particular that individuals can be in the output) € RFL-RECIP(S). Given the defini-
of this function. Furthermore, the meet of two in-tion of RFL-RECIP this happens when
dividuals can be in the output of this function everQ(Dom((A x A)N(SNS~!) = 1. Butif (i) holds
if they are in the relatior with themselves only. then(Ax A)N(RNR™1) = (Ax A)N(SNS~1).
The following function excludes the "reflexive HenceQ € RFL-RECIP(S).
part” and interprets purely reciprocal anaphors (in
their strong logical reading): It is easy to prove, using proposition 1, that:

(32) SEA(R) = {Q : A = Wt(Q) N |A| > Proposition 3: Function®RF'L-RECIP, SEA

2AQ(Dom((Ax A)N(RNRY)NTI)) =1}, andSEAq do not satisfyHAI.

wherel’ is the complement of the identity relation

I. Proof: We prove only that the functioRF'L-
RECIP does not satisfy HAI. Given its

Consider now example (33), where, clearly, alefinition in (31) we can see that faf C F

Boolean composition of two higher order func-arbitrary , for anyC; such thatC C C; we

tions is involved, one of which is an accusative lifthave Ft(C,) ¢ RFL-RECIP(E x C) and
for any Co C C we haveFt(Cy) € RFL-

(33) Leo and Lea admire each other and mosRECIP(E x C). Hence, given proposition 1,

teachers. RFL-RECIP does not satisf{HPI.

We want to give a function interpreting the Here are some other properties:

complex anaphoeach other and most teachers.

Obviously this function has to entail the func-Proposition 4: Let F € {RFL-
tion SEA above and be completed by the partRECIP,SEA,ILEA} and R = S~!. Then
corresponding tonost teachers. Itis givenin (34): F(R) = F(5)

(34)SEAQ(R)={Z:Z e SEANZ € QL } Proposition 4 has an interesting consequence:
sinceR = (R~1)~!, it follows from Proposition
The above functions are based on the relatiod that functionsRF L-RECIP,SEA and/LEA
RS. Sentences in (35) have somewhat illogicafre convertible.
interpretation. Functions corresponding to these The above properties do not hold for complex

interpretations are given in (36): higher order functions that is functions denoted
by syntactically complex reciprocals. For higher
(35a) Five students followed each other. order functions based on the relatidd® the

(35b) All pupils followed each other and two following proposition holds:

teachers.

(86a)ILEA(R) = {Z : 3ace(Li(Z,A) N A x Proposition 5: Let F € {RFL-
ANT C RY} RECIP,SEA,SEAg}, R = S7!' and
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Dom(R) = Dom(S). ThenF(R) = F(S5). are symmetry sensitive. Functions denoted by
complex anaphors (reflexive or reciprocal) do
To illustrate Proposition 5 consider the follow-not have this property. They have the following

ing examples: property:
(37a) Five students followed each other. D12: A type (2 : 7) function F' is symme-
(37b) Five students preceded each other. try and range sensitive ;' € SYMRS iff

F(R) = F(S) wheneverRN R~t = SN S~!

If we consider that the relation expressedly ~andRg(R) = Rg(S).
low is the converse of the relation expressed by
precedehat (37a) and (37b) are equivalent. Note thatSY' M'S C SY M RS. Thus not only

Observe that the property of functions exfunctions denoted by complex anaphors but also
pressed in Proposition 6 does not depend on tiBose denoted by simple anaphors are symmetry
type of the output of the function. It is easy toand range sensitive. This is what all anaphors have
see, for instance that many reflexives function! common. In order to distinguish anaphors with

denoted by reflexives have a similar propertypurely reflexive meaning from those with purely
More precisely we have: reciprocal meaning the following definitions can

be used:

Proposition 6: Let” € {SELF,SELF ® Qucc}, _ _
where® is a Boolean connectivep = 5~! and D13: A type (2 : 7) function F' is symmetry
Dom(R) = Dom(S). ThenF(R) = F(S). only sensitive}’ € SYMOS, iff F(R) = F(S)
whenever RN RINnI' = SNnStnrI and
Thus Propositions 5 and 6 express, informally,Rg(R) = Rg(S).

properties of functions sensitive to some aspecfd14: A type (2 : 7) function F' is reflexiv-
of their arguments only. Conservativity, asy and range sensitivef’ < REFLRS, iff

defined in D4 is such a property. Definition’ (1) = F'(S) wheneverR N I = S SN 1 and
of conservativity given in D4 naturally applies Rg(R) = Rg(S).

to functions denoted by anaphoric determiners. .

The conservativity of anaphoric determiners FOr instanceonly each otherdenotes a sym-
giving rise to reflexives is discussed in Zubefmelry only sensitive function arimselfor him-
(2010b). We are not directly interested here in th&€!f and most studendienote reflexivity and range
semantics of anaphoric determiners but it woul§ensitive functions.

be easy to show that the anaphoric determiner Observe thatSY M OS < SYMRS and
Every...except each otheas it occurs in (38) REFLS C SYMRS. Similarly SYMS <

denotes a conservative function: SY NRS. Thus purely reflexive anaphors denote
functions which are not symmetry only sensitive

(38) Two students washed every student excef{'d Purely reciprocal anaphors denote functions

each other. which are not reflexivity sensitive but both classes
are symmetry and range sensitive.

To conclude let us see some other properties %f Conclusive remarks
functions denoted by anaphors. These functions
are "sensitive” to some aspects of their argumentg, has been shown that it is preferable to treat sim-
that is to some properties of the binary relationgle and complex reciprocal expressions, belonging
to which they apply. Consider the following to the class of higher order anaphors, as denoting
definition: type (2 : (1)) functions (that is functions having
relations as arguments and sets of typequan-
D11: A type (2 : 7) function F' is symmetry tifiers as result) and not as denoting tyfie 2)
sensitive, F ¢ SYMS, iff F(R) = F(S) quantifiers, as usually proposed. The main reason
whenevetRN R~ = SN S~ L for this treatment is the fact that the basic recip-
rocal expressioeach othercan combine not only
FunctionsSELF, RFL-RECIP and SEA with NPs (which denote (extensions of) type
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