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Abstract

The Constituent-Context Model (CCM)
achieves promising results for unsupervised
grammar induction. However, its performance
drops for longer sentences. In this paper, we
describe a general feature-based model for
CCM, in which linguistic knowledge can be
easily integrated as features. Features take
the log-linear form with local normalization,
so the Expectation-Maximization (EM)
algorithm is still applicable to estimate model
parameters. Theℓ1-norm is used to control
the model complexity, leading to sparse
and compact grammar. We also propose
to use a separated development to perform
model selection and an additional test set
to evaluate the performance. Under this
framework, we could automatically choose
suitable model parameters rather than setting
them empirically. Experiments on the English
treebank demonstrate that the feature-based
model achieves comparable performance on
short sentences but significant improvement
on longer sentences.

1 Introduction

Unsupervised grammar induction, the task to in-
duce hierarchical structures from plain strings, has
attracted research interests for a long time. The
induced grammars can be used to construct large
treebanks (van Zaanen, 2000), study language ac-
quisition (Jones et al., 2010), improve machine
translation (DeNero and Uszkoreit, 2011), and so
on. In general, most approaches either induce the
constituency grammars (Klein and Manning, 2002;

Bod, 2006; Seginer, 2007; Cohn et al., 2009; Ponvert
et al., 2011), or the dependency grammars (Klein
and Manning, 2004; Headden III et al., 2009; Cohen
and Smith, 2009; Spitkovsky et al., 2010; Blunsom
and Cohn, 2010).

Among these approaches, the Constituent Context
Model (CCM) (Klein and Manning, 2002; Klein,
2005) is a simple but effective generative model
for unsupervised constituency grammar induction.
Specifically, the sequences (the contents enclosed
by spans) and contexts (the preceding and follow-
ing words) are directly modelled in CCM. The
Expectation-Maximization (EM) algorithm is used
to estimate parameters to optimize the data likeli-
hood. Although the CCM achieves promising re-
sults on short sentences, its performance drops for
longer sentences. There are two possible reasons:
(1) CCM models all constituents under only single
multinomial distributions, which can not capture the
detailed information of span contents; and (2) long
sequences only occur a few times in the training cor-
pus, so the probability estimation highly depends on
smoothing. Another problem of original CCM and
following improved unsupervised models (Smith
and Eisner, 2004; Mirroshandel and Ghassem-Sani,
2008; Golland et al., 2012) is the problematic evalu-
ation framework. The previous approaches train and
evaluate models on the same dataset, so there is no
reasonable way to choose model parameters unless
setting them empirically.

In this paper, we focus on CCM and present a
general feature-based framework in which various
overlapping features could be easily added. Pre-
vious dependency induction approach (Cohen and
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Smith, 2009) demonstrates enabling factored covari-
ance between the probabilities of different derivation
events could improve the induction results. The pro-
posed feature-based model provides a simpler and
more flexible way to share information between con-
stituents, e.g. different sequences may share the
same boundary words. Various features could cap-
ture rich information about span contents, which
alleviates the data sparsity problem and estimation
problem of CCM mentioned above. In addition, fea-
tures are combined in the log-linear form with local
normalization, so the EM algorithm can be adopted
to estimate model parameters with minor change,
without increasing the computing complexity. To
avoid overfitting, we useℓ1-norm regularization to
control the model complexity. Finally, we advocate
to estimate model probabilities on training set, use a
separated development set (a.k.a. the validation set)
to perform model selection, and measure the gener-
ative ability of trained model on an additional test
set. Under this framework, we could automatically
select suitable model and parameters rather than
choosing them manually. We carry out experiments
on the English treebank. Compared to original
CCM, the proposed feature-based model achieves
comparable performance on short sentences but sig-
nificant improvement on longer sentences. After ex-
amining the effect of grammar sparsity, we conclude
that with good regularization parameter (tunned on
the development set), the learned grammar could be
both compact and accurate.

The main contributions of this paper can be sum-
marized as follows:

(1) We present a general feature-based CCM,
where knowledge can be easily incorporated.

(2) We useℓ1-norm to control the model complex-
ity, leading to compact grammars.

(3) We propose to use separated development set
to tune parameters instead of heuristically choosing
parameters.

This paper is structured as follows. Section 2
gives an overview of the original CCM. Section 3
proposes the feature-based CCM and corresponding
parameter estimation method. Section 4 lists the fea-
ture templates used in experiments. Section 5 shows
the experimental results. We compare our work to
related approaches in Section 6 and conclude in Sec-
tion 7.

2 Constituent Context Model

The Constituent-Context Model (CCM) (Klein and
Manning, 2002) is the first model achieving better
performance than the trivial right branching base-
line in the unsupervised English grammar induction
task. Unlike many models that only deal with con-
stituent spans, the CCM defines generative proba-
bilistic models over all spans of a sentence, no mat-
ter whether they enclose constituents or distituents
(a.k.a. the non-constituents).

In particular, letB be a boolean matrix with en-
tries indicating whether the corresponding span en-
closes constituent or distituent. Note that each tree
could be represented by one and only one bracket-
ing, but some bracketings are not tree-equivalent,
since they may miss the full-sentence span or have
crossing spans. Define sequenceσ to be the sub-
string enclosed by span, and contextγ to be the pair
of preceding and following terminals1. The CCM
generate a sentenceS in two steps: first choose a
bracketingB according to prior distribution, then
generate the sentence given the chosen bracketing:

P (S,B) = P (B)P (S|B).

The priorP (B) uniformly distributes its probabil-
ity mass over all possible binary trees of the given
sentence, and zero for non-tree-equivalent bracket-
ings. The conditional probabilityP (S|B) is further
decomposed to the product of generative probability
of sequenceσ and contextγ for each span〈i, j〉:

P (S|B) =
∏

〈i,j〉
P (σ〈i,j〉, γ〈i,j〉|B〈i,j〉)

=
∏

〈i,j〉
P (σ〈i,j〉|B〈i,j〉)P (γ〈i,j〉|B〈i,j〉). (1)

From the above decomposition, we can see that
givenB, the CCM fills each span independently and
generates yield and context independently.

The Expectation Maximization (EM) algorithm is
used to estimate the multinomial parametersθ. In
the E-step, a cubic-time dynamic programming al-
gorithm is used to calculate the expected counts for

1For example, in sequence “0RB1DT2NN3”, we haveσ〈1,3〉 =
〈DT NN〉, andγ〈1,3〉 = 〈RB, ⋄〉. Since CCM works on part-of-
speech (POS) tags, only POS tags are shown here. The special
symbol⋄ represents the sentence boundary.
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each sequence and context for both constituents and
distituents according to the currentθ. The detailed
calculation of expectation can be found in Appendix
A.1 in (Klein, 2005). In the M-Step, the model finds
newθ′ to maximize the expected completed likeli-
hood

∑
B P (B|S,θold) log P (S,B|θ′) by normal-

izing relative frequencies.
From the probability definition (1), the CCM

gives single multinomial probability distribution
over all sequences. However, the number of pos-
sible sequences grows exponentially with respect to
the span length, leading to severe data sparsity prob-
lem for long sentences. In the next section, we pro-
pose the feature-based model to alleviate the this
problem, since overlapping features could represent
small units of the span contents.

3 Feature-based CCM

3.1 Model Definition

Motivated by (Berg-Kirkpatrick et al., 2010), we de-
fine factors in the log-linear form with local normal-
ization. LetF1,...,K beK different factors. Each fac-
tor Fk corresponds to ank-dimensional feature vec-
tor fk and ank-dimensional weight vectorwk. For
thekth factorFk, the corresponding multinomial pa-
rameter in original CCM is now treated as a function
of weightswk. Define the factor category function
δk to be+1 if Fk is constituent factor, and−1 oth-
erwise. In detail, for span〈i, j〉 in some bracketing
B for sentenceS, define

Fk(S〈i,j〉|wk) = Pk(S〈i,j〉|B〈i,j〉 = δk,wk)

=
exp(wk · fk(S〈i,j〉))∑

v exp(wk · fk(v))
(2)

wherefk returns a feature vector,wk is the corre-
sponding weight vector, and(·) denotes the inner
product of vectors. The denominator sums over the
unnormalized probabilities (the numerator) for all
possible factor valuesv. We approximately calcu-
late this summation only over values that appear in
training corpus.

For factorFk over bracketingB with correspond-
ing treeTB , define the active span setAk(B) as

Ak(B) =

{
{〈i, j〉 ∈ TB}, if δk = +1

{〈i, j〉 /∈ TB}, if δk = −1
(3)

Then the joint probability ofP (S,B|w) can be de-
fined:

P (S,B|w) = P (B)P (S|B)

= P (B)
∏

〈i,j〉
P (S〈i,j〉|B〈i,j〉)

= P (B)
∏

〈i,j〉∈Ak(B)

Fk(S〈i,j〉|wk)

= P (B)
∏

〈i,j〉

∏

k:δk=−1

Fk(S〈i,j〉|wk)

×
∏

〈i,j〉∈TB

∏
k:δk=1 Fk(S〈i,j〉|wk)∏
k:δk=−1 Fk(S〈i,j〉|wk)

= K(S|w)
∏

〈i,j〉∈TB

∏

k

F δk
k (S〈i,j〉|wk)

whereK(S|w) is independent ofB and the follow-
ing production is taken over tree spans only. One ad-
vantage of the locally normalized model is that the
EM algorithm could be still used to estimate param-
eters, which will be described in the next subsection.

If we define the same factors of CCM (sequence
and context for constituent and distituent) and set
weights properly, then the probability of feature-
based model is degenerated to the original CCM
model. So the original CCM can be treated as a spe-
cial case of the feature-based model.

3.2 Parameter Estimation

Let S be the set of training sentences. Under the
maximum likelihood estimation, we want to findw
to maximize the data log likelihood:

L(S|w) =
∑

S∈S
log

∑

B∈B(S)
P (S,B|w) (4)

However, the summation of hidden variableB is in-
side the logarithm operator, resulting in the com-
plicated expressions for the analytical solution. In-
stead, we use the Expectation-Maximization (EM)
algorithm to solve the problem approximately.

Given current model parameterswold in each iter-
ation of EM, we seek new parameterw to maximize
the expectation of the completed-data log likelihood:

Q(w,wold)

=
∑

S∈S

∑

B∈B(S)
P (B|S,wold) log P (S,B|w) (5)
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E-Step
The E-step evaluates the posterior probability

P (B|S,wold) given fixed wold. We modify the
inside-outside algorithm (Lari and Young, 1990) to
efficiently calculate the expected count for each fac-
tor. The original inside/outside merits are recur-
sively calculated over binary rules. In the feature-
based CCM, we recursively calculate these values
over spans. To simplify following derivations, we
define

φ〈i,j〉 =
∏

k

F δk
k (S〈i,j〉|wk) (6)

The inside probability IN〈i,j〉 can be defined re-
cursively:

(a) Unary spans: IN〈i,j〉 = φ〈i,j〉, if j − i = 1;
(b) Other spans:

IN〈i,j〉 =
j−1∑

k=i+1

φ〈i,j〉 IN〈i,k〉 IN〈k,j〉.

For sentenceS with lengthl, the outside probability
can be defined as:

(a) Sentence span: OUT〈0,l〉 = 1;
(b) Other spans:

OUT〈i,j〉 =
i−1∑
k=0

φ〈k,j〉 OUT〈k,j〉 IN〈k,i〉

+
l∑

k=j+1

φ〈i,k〉 OUT〈i,k〉 IN〈j,k〉.

Then we calculate the expected ratioφ〈i,j〉 for each
span:

e[φ〈i,j〉] = IN〈i,j〉×OUT〈i,j〉 / IN〈0,l〉 (7)

Finally, we accumulate expected countse and
1 − e constituent factors and distituent factors re-
spectively.

We do not consider empty spans in the above cal-
culation of inside/outside probabilities. Since the
empty spans do not depend on trees, we just add ex-
pected count1 for each distituent factor and0 for
each constituent factor over empty spans.

M-Step
In M-step, we want to tunew to maximize the

expected complicated log likelihood together with
the regularization terms:

Q(w,wold)−
K∑

k=1

λk‖wk‖1 (8)

whereλk is a non-negative coefficient for theℓ1-
norm of thekth weight vectorwk. Because of the
high-dimensional feature space, we useℓ1-norm of
weight vectorw as regularization terms to control
the model complexity. The regularization terms can
serve as automatic feature selector, leading to com-
pact models.

In original CCM, model parameters (multinomial
distribution probabilities) are estimated by normal-
izing relative frequencies in the M-step. In the
feature-based model, we use gradient-based search
algorithm to optimize the above objective function
numerically. Due to theℓ1-norm regularization, the
objective is not differentiable atw = 0. So we adopt
the OWL-QN method (Andrew and Gao, 2007) to
perform optimization. The open-source C++ imple-
mentationlibLBFGS2 is used in experiments. The
optimization process needs to calculate the gradient
of Q(w,wold) with respect tow.

Since the probabilities of factors are multiplied to-
gether, so the logarithm term in equation (5) can be
decomposed into the sum of the logarithm of each
factor probability. Additionally, theℓ1-norm term in
equation (8) is the sum ofℓ1-norm of the weights
for each factor. As a result, optimizing the overall
objective function is equivalent to optimize the cor-
responding functions for each factor.

Assuming the setVk contains all values of thekth

factorFk that can be found in training corpus, then
the gradient (omitting the regularization terms) of
Qk can be computed as follows:

∇wk
(Qk) =

∑

v∈Vk

e[Fk(v)]×∆v(wk) (9)

∆v(wk) = fk(v)−
∑

v′∈Vk

Fk(v
′)fk(v

′) (10)

wheree[Fk(v)] contains the expected counts calcu-
lated in the E-step. The similar derivation can be
found in (Berg-Kirkpatrick et al., 2010).

In this feature-based model, rich features can be
easily incorporated. We give some useful feature
templates in next section.

2http://www.chokkan.org/software/
liblbfgs/
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4 Feature Templates

4.1 Basic features

There are two kinds of features: constituent features,
with prefix {c:}; and distituent features, with prefix
{ d:}. Features in the two categories are active only
if the span enclose constituent or distituent respec-
tively. The basic feature templates are listed as fol-
lows with their names and descriptions. A running
example, span〈1, 3〉 in “0RB1DT2NN3”, is also shown
for each feature template.

• const: This constant feature always takes value
1 for any given span. We use this feature to measure
the number of spans.

• seq[n]: This indicating feature is active for se-
quence enclosed by span with sizen. If n = 0, then
sequences with any lengths are considered.

seq2 . . . DT_JJ DT_NN RB_DT . . .
value . . . 0 1 0 . . .

• lx[n]/rx[n]: The indicating feature for the
preceding/followingn terminals (left/right context),
where⋄ represents sentence boundary.

lx2 . . . ⋄_⋄ ⋄_RB RB_DT . . .
value . . . 0 1 0 . . .

rx2 . . . DT_NN NN_⋄ ⋄_⋄ . . .
value . . . 0 0 1 . . .

• lb[n]/rb[n]: The left/rightn boundary termi-
nals inside given span. If the length of span is less
thann, then this feature template is not activated.

lb2 . . . RB_DT DT_NN TO_VB . . .
value . . . 0 1 0 . . .

rb1 . . . RB DT NN . . .
value . . . 0 0 1 . . .

4.2 Composite features

Basic features can be composited to more compli-
cated features. We define two composition opera-
tors: join (.), and concatenation (+). For the join op-
erator, the composited feature space is the Cartesian
product of the feature spaces of the two operands.
For the concatenation operator, the composited fea-
ture space is the concatenation of the operands’ fea-
ture spaces.

Here we use an example to demonstrate the differ-
ence between join operator and concatenation oper-
ator. Assuming there are three possible values {⋄,

RB, DT} for feature lx1, and three possible values
{DT, NN, ⋄} for feature rx1, then the joined feature
space has3 × 3 = 9 dimensions while the concate-
nated feature space has3 + 3 = 6 dimensions. The
feature vectors of these two operators for span〈1, 3〉
in “0RB1DT2NN3” are shown as follows.

lx1.rx1

⋄.{DT,NN,⋄} RB.{DT,NN,⋄} DT.{DT,NN,⋄}
0 0 0 0 0 1 0 0 0

lx1 + rx1

⋄ RB DT DT NN ⋄
0 1 0 0 0 1

We restrict that only join followed by concate-
nation is allowed. As an example, the original
CCM could be represented as: {c:seq0, d:seq0,
c:lx1.rx1, d:lx1.rx1}.

4.3 Summary

There are huge number of feature combinations that
we can not try each of them in experiments. In ex-
periments, we use following sets of features.

The first feature set includes the sequences with
length up to5: { seq1, seq2, seq3, seq4, seq5}. Note
that sequences with arbitrary lengths are modelled
in the original CCM, while we restrict the maximal
sequence length to be5. Since most of the longer
sequences occurs only once or twice in the training
corpus, we discard them to speed up training proce-
dure and reduce memory usage.

Boundary words have been proven useful for de-
tecting phrase boundaries in supervised learning
task (Xiong et al., 2010). We introduce this idea
to unsupervised grammar induction. The features
used in experiments are combinations of left bound-
ary and right boundary words with lengths up to2:
{ lb1, lb2, rb1, rb2, lb1.rb1, lb1.rb2, lb2.rb1,
lb2.rb2}.

The original CCM also considers the pair of pre-
ceding one word and following one word as con-
texts. We consider combinations of left context and
right context words with lengths up to2: { lx1, lx2,
rx1, rx2, lx1.rx1, lx1.rx2, lx2.rx1, lx2.rx2}.
The special token⋄ is introduced to represent sen-
tence boundaries.

The last feature used is the constant feature
{ const}. The constant feature always takes value
1 for each span.
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Overall, we define two constituent factors and two
distituent factors. The first constituent/distituent fac-
tors, denoted asFc:s andFd:s, are the concate-
nation of sequence features, boundary features, and
constant feature. The second constituent/distituent
factors (Fc:x andFd:x), are the concatenation of
context features and constant feature.

5 Experiments

5.1 Datasets and Settings

We carry out experiments on the Wall Street Jour-
nal portion of the Penn English Treebank (Marcus
et al., 1993). We report the unlabeled F1 score (the
harmonic mean of precision and recall) as evalua-
tion metric. Constituents which could not be gotten
wrong (single words and entire sentences) are dis-
carded. These are standard settings used in previous
work (Klein, 2005).

To perform model selection and parameter tun-
ning, we split the treebank into three parts: sec-
tion 02-21 as training set, section00 as development
set, and section23 as test set. As standard machine
learning pipeline, we perform EM on training set,
tune parameters on development set, and report the
result of selected model on test set. We remove
punctuation and null elements in treebank, as the
standard preprocessing step (Klein, 2005). For com-
parison, we build various datasets with sentences
lengths no more than10, 20, 30, 40 words after re-
moving punctuations. Table 1 gives the number of
sentences for each dataset.

Dataset Train Dev Test

PTB10 5,899 265 398
PTB20 20,243 992 1,286
PTB30 32,712 1,573 2,028
PTB40 37,561 1,809 2,338

Table 1: Data statistics

We select regularization parameters from set
{0.03, 0.1, 0.3, 1, 3, 10} for factorsFc:s andFd:s.
No regularization is used for factorFc:x and
Fd:x, since the number of context types are almost
fixed and relatively small in datasets with different
lengths. Each combinations ofλc:s andλd:s are
tested on the development set. The final values ofλ
is the one with the highest development F1 score.

5.2 Induction Results

EM algorithm is sensitive to the initial condition.
We adopt the same uniform-split initialization and
the same smoothing values (2 for constituents and
8 for distituents) as described in (Klein, 2005). For
feature-based model (F-CCM), we still use uniform-
split strategy to initialize probabilities in the first E-
step, and set all weights to zero as the initial point of
the gradient-based search algorithm in the M-step.

PTB10 Train Dev Test
LBranch 28.62 28.64 30.58
RBranch 61.58 63.59 61.00
UBound 88.20 88.35 86.80
CCM 72.50 73.58 70.30
F-CCM 71.66 72.95 69.75

PTB20 Train Dev Test
LBranch 17.22 17.43 17.21
RBranch 48.39 47.85 47.96
UBound 86.35 86.26 86.20
CCM 48.96 48.46 48.08
F-CCM 59.86 59.86 59.10

PTB30 Train Dev Test
LBranch 13.37 13.61 13.33
RBranch 42.70 42.76 42.57
UBound 85.72 86.02 85.88
CCM 43.01 43.27 42.59
F-CCM 48.87 48.82 48.15

PTB40 Train Dev Test
LBranch 12.08 12.31 11.95
RBranch 40.59 40.54 40.73
UBound 85.54 85.77 85.69
CCM 33.44 33.62 33.10
F-CCM 45.44 45.46 45.10

Table 2: Results on PTB10, PTB20, PTB30, PTB40

Table 2 shows the experimental results on the
datasets of different length limits. LBranch and
RBranch rows show the left branching and right
branching binary tree baselines. As the English
grammar tends to be right branched, the trivial
RBranch achieves quite high F1 scores. UBound
rows show the results of binarized treebank, which is
the upper bound of any grammar induction systems
that output binary trees. We reimplement the base-
line CCM, which achieves comparable performance
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compared to previous reported results (Klein, 2005).
The results of feature-based CCM are presented in
the F-CCM rows.

From these results, we observe that the original
CCM performs much better than the right branch-
ing baseline on short sentences, but the performance
decreases dramatically on longer sentences, even
lower than the right branching baseline. In contrast,
our feature-based CCM achieves comparable perfor-
mance with original CCM on PTB10, and much bet-
ter performance than the original CCM and the right
branching baseline on longer sentences. These ex-
perimental results demonstrate the effectiveness and
robustness of the feature-based model.

5.3 Grammar sparsity

The regularization terms can serve as feature selec-
tion mechanism. In this section, we compare the
sparsity of learned sequence grammars between var-
ious regularization coefficients on PTB10.

λc:s λd:s Fc:s Fd:s Dev

0 0 72,289 72,289 69.56
0.1 0.03 55,407 71,668 70.39
0.1 0.1 54,591 69,988 70.87
0.1 0.3 56,660 57,729 70.32
0.1 1 55,860 27,058 72.95
0.1 3 55,534 9,885 60.82
0.1 10 56,513 3,149 55.55
0.03 1 69,390 28,046 67.13
0.1 1 55,860 27,058 72.95
0.3 1 31,763 27,525 70.32
1 1 11,816 27,418 71.01
3 1 4,040 27,559 71.08
10 1 1,456 27,875 72.26

Table 3: Number of non-zero weights for factorsFc:s
andFd:s. The corresponding F1 scores on the develop-
ment set are shown in the last column.

As mentioned in section 5.1, we only tune regu-
larization parametersλc:s andλd:s. We can not
report results of all combinations since there are too
many of them. Instead, we report results with ei-
ther λc:s or λd:s fixed to the best tunned value.
The number of active dimensions (i.e. with non-zero
weight) and the development F1 score are examined
in experiments.

Table 3 shows the results of these experiments.
With the increasing of regularization parameters, the
model becomes more and more sparser (as mea-
sured by the number of non-zero weights). The
tuned optimal parameter values areλc:s = 0.1
and λd:s = 1. It is interesting to observe that
the optimal regularization value for distituent fac-
tor is greater than the one for constituent factor.
This fact can be explained that since there are more
distituents than constituents, the distituent weights
need to be penalized more heavily. The best devel-
opment F1 is72.95, greater than the F1 score69.56
achieved without regularization, since the unregular-
ized model may overfit the training data.

If we compare experiments with fixedλc:s, the
development F1 score first increases and then de-
creases with the increase ofλd:s. In contrast, with
fixed λd:s, the performance varies little for differ-
ent λc:s. These results somehow demonstrate the
distituents modelled in CCM play a more important
role than the constituents.

5.4 Discussion

Experiments show that we achieve better perfor-
mance than original CCM while using compact
grammars. There are some issues we want to dis-
cuss here.

1. We only test a few feature templates. Other
features such as words, stems may improve the
results. Moreover, punctuations contain useful
information in grammar induction (Spitkovsky
et al., 2011b; Ponvert et al., 2011), while cur-
rently punctuations are ignored in our model.

2. In previous unsupervised constituency gram-
mar induction, how to choose parameters is an
art. While in the proposed model, we use de-
velopment set to perform model selection.

3. EM algorithm could only find sub-optima. One
possible solution is the Lateen EM (Spitkovsky
et al., 2011a), in which multiple objective func-
tions are an alternative optimized. Another
method is the annealing technique during prob-
ability estimation process. We will investigate
these in future work.

4. ℓ1-norm regularization is used to learn sparse
and compact model. Bayesian learning is an al-
ternative framework, which can be also applied
to CCM.
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6 Related Work

The Constituent-Context Model (Klein and Man-
ning, 2002; Klein, 2005) is the first unsuper-
vised constituency grammar induction system that
achieves better performance than the trivial right
branching baseline for English. However, the per-
formance of CCM degrades on long sentences. Fol-
lowing approaches improve CCM in various aspects.
Smith and Eisner (2004) propose to condition the
yield feature on the length of the yield and use an-
nealing techniques to estimate parameters. Anneal-
ing techniques can be also used for the proposed F-
CCM, which we plan to do in future work. Klein and
Manning (2004) demonstrate the joint model of con-
stituency and dependency could improve unsuper-
vised grammar inference. Some other approaches
also consider to use additional information such as
the words (Headden III et al., 2009), the automatic
induced tags (Headden III et al., 2008), or the par-
ent information (Mirroshandel and Ghassem-Sani,
2008). These information could be easily incorpo-
rated to the proposed model as features.

Feature-based models have been widely used in
many supervised tasks such as parsing (Charniak,
2000), word alignment (Moore, 2005; Liu et al.,
2006), machine translation (Koehn et al., 2003), etc.
For the unsupervised learning tasks, the calculation
of normalization part is usually time-consuming or
even impossible. Existing approaches are mainly
based on the contrastive estimation (Smith and Eis-
ner, 2005; Smith and Eisner, 2005; Dyer et al., 2011)
to learn parameters. The local normalized feature-
based model has been proposed in (Berg-Kirkpatrick
et al., 2010), in which features are defined over gen-
erative rules and the normalization is done locally.
They use theℓ2 regularization, while we apply the
local-normalization model to CCM withℓ1 regular-
ization and show improved performance could be
achieved with sparse solution. Many unsupervised
approaches aim to learn compact and sparse gram-
mar, including the Bayesian models (Johnson et al.,
2007; Cohn et al., 2010; Blunsom and Cohn, 2010)
and posterior regularization (Ganchev et al., 2010).
We use alternative (and simpler) regularization tech-
nique to obtain sparse solution.

The most related work is (Golland et al., 2012),
in which a similar feature-based model for CCM is

proposed. There are many differences between their
work and our proposed model. (1) We useℓ1 reg-
ularization to learn sparse model, while they do not
mention sparsity problem. (2) We propose to use a
separated development set to perform model selec-
tion and an additional test set to report final results,
while they directly train and evaluate their model on
the same dataset, which is problematic. (3) We eval-
uate different feature sets from theirs. The limited
lengths for sequences could reduce the memory us-
age for long sentences.

7 Conclusion

The constituent-context model performs well on
short sentences, but the performance degrades on
longer sentences. We present a feature-based model
for CCM, in which linguistic knowledge can be inte-
grated as features. Features take the log-linear form
with local normalization, so the EM algorithm is
still applicable to estimate model parameters. To
avoid overfitting, we use theℓ1-norm regulariza-
tion to control model complexity. We also pro-
posed a reasonable model selection and evaluation
framework. Experimental results demonstrate that
the feature-based model achieves comparable per-
formance on short sentences but significantly out-
performs the original CCM on longer sentences.
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