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Abstract

The Constituent-Context Model (CCM)
achieves promising results for unsupervised
grammar induction. However, its performance
drops for longer sentences. In this paper, we
describe a general feature-based model for
CCM, in which linguistic knowledge can be
easily integrated as features. Features take
the log-linear form with local normalization,
so the Expectation-Maximization (EM)
algorithm is still applicable to estimate model
parameters. Thé;-norm is used to control
the model complexity, leading to sparse
and compact grammar. We also propose
to use a separated development to perform
model selection and an additional test set
to evaluate the performance. Under this
framework, we could automatically choose
suitable model parameters rather than setting
them empirically. Experiments on the English
treebank demonstrate that the feature-based
model achieves comparable performance on
short sentences but significant improvement
on longer sentences.

Introduction

2Department of Computer Science
National University of gapore
13 Computing Drive, Singapor

Bod, 2006; Seginer, 2007; Cohn et al., 2009; Ponvert
et al.,, 2011), or the dependency grammars (Klein
and Manning, 2004; Headden Il et al., 2009; Cohen
and Smith, 2009; Spitkovsky et al., 2010; Blunsom

and Cohn, 2010).

Among these approaches, the Constituent Context
Model (CCM) (Klein and Manning, 2002; Klein,
2005) is a simple but effective generative model
for unsupervised constituency grammar induction.
Specifically, the sequences (the contents enclosed
by spans) and contexts (the preceding and follow-
ing words) are directly modelled in CCM. The
Expectation-Maximization (EM) algorithm is used
to estimate parameters to optimize the data likeli-
hood. Although the CCM achieves promising re-
sults on short sentences, its performance drops for
longer sentences. There are two possible reasons:
(1) CCM models all constituents under only single
multinomial distributions, which can not capture the
detailed information of span contents; and (2) long
sequences only occur a few times in the training cor-
pus, so the probability estimation highly depends on
smoothing. Another problem of original CCM and
following improved unsupervised models (Smith
and Eisner, 2004; Mirroshandel and Ghassem-Sani,

Unsupervised grammar induction, the task to in2008; Golland et al., 2012) is the problematic evalu-
duce hierarchical structures from plain strings, hagtion framework. The previous approaches train and
attracted research interests for a long time.
induced grammars can be used to construct larggasonable way to choose model parameters unless
treebanks (van Zaanen, 2000), study language aketting them empirically.

quisition (Jones et al., 2010), improve machine In this paper, we focus on CCM and present a

translation (DeNero and Uszkoreit, 2011), and sgeneral feature-based framework in which various

on. In general, most approaches either induce tlmerlapping features could be easily added. Pre-

constituency grammars (Klein and Manning, 2002yious dependency induction approach (Cohen and
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Smith, 2009) demonstrates enabling factored covar2 Constituent Context Model

ance between the probabilities of different derivatio . .
events could improve the induction results. The proq—-he Constituent-Context Model (CCM) (Klein and

posed feature-based model provides a simpler arllvI nning, 2002) is the first model achieving better

more flexible way to share information between Conperformance than the trivial right branching base-

line in the unsupervised English grammar induction

stituents, e.qg. different sequences may share the i .
g g y task. Unlike many models that only deal with con-

same boundary words. Various features could cap-. ) )
N y W . gtltuent spans, the CCM defines generative proba-
ture rich information about span contents, which

. . . Dbilistic models over all spans of a sentence, no mat-
alleviates the data sparsity problem and estimation . -
. " ter whether they enclose constituents or distituents
problem of CCM mentioned above. In addition, fea-(a k.a. the non-constituents)
tures are combined in the log-linear form with local*™ " ' o
. . In particular, letB be a boolean matrix with en-

normalization, so the EM algorithm can be adopted. "~ "™ .

. . . ries indicating whether the corresponding span en-
to estimate model parameters with minor change,

: . . . . closes constituent or distituent. Note that each tree
without increasing the computing complexity. To

. o - could be represented by one and only one bracket-

avoid overfitting, we usé;-norm regularization to . . .

. . ing, but some bracketings are not tree-equivalent,

control the model complexity. Finally, we advocate .

. o - since they may miss the full-sentence span or have
to estimate model probabilities on training set, usea ~ . .
o crossing spans. Define sequencéo be the sub-
separated development set (a.k.a. the validation s€l). :
: string enclosed by span, and contexb be the pair
to perform model selection, and measure the gener; . : .
, - . o of preceding and following termindis The CCM
ative ability of trained model on an additional test ) :
enerate a sentencgin two steps: first choose a

set. Under this framework, we could automaticall . ) . DT
. bracketing B according to prior distribution, then
select suitable model and parameters rather than

. . enerate the sentence given the chosen bracketing:
choosing them manually. We carry out expenmentg
on the English treebank. Compared to original P(S, B) = P(B)P(S|B).
CCM, the proposed feature-based model achieves
comparable performance on short sentences but sihe prior P(B) uniformly distributes its probabil-
nificant improvement on longer sentences. After exty mass over all possible binary trees of the given
amining the effect of grammar sparsity, we concludgentence, and zero for non-tree-equivalent bracket-
that with good regularization parameter (tunned ofhgs. The conditional probability?(S|B) is further
the development set), the learned grammar could composed to the product of generative probability

both compact and accurate. of sequence and contexty for each spari, j):
The main contributions of this paper can be sum-

marized as follows: P(S|B) = [ P(ey.jy> i Biiy)
(1) We present a general feature-based CCM, (i.5)

where knowledge can be easily incorporated.
(2) We usée/1-norm to control the model complex-
ity, leading to compact grammars.

(3) We propose to use separated development gaiom the above decomposition, we can see that
to tune parameters instead of heuristically choosingiven B, the CCM fills each span independently and
parameters. generates yield and context independently.

This paper is structured as follows. Section 2 The Expectation Maximization (EM) algorithm is
gives an overview of the original CCM. Section 3ysed to estimate the multinomial paramet@rsin
proposes the feature-based CCM and correspondifige E-step, a cubic-time dynamic programming al-

parameter estimation method. Section 4 lists the fegorithm is used to calculate the expected counts for
ture templates used in experiments. Section 5 shows———

1 H " . —
the experimental results. We compare our work thT E;;,e;r?;nﬁlle;;nji?alljgez;er{sﬁﬁgjgl\glv]V\\/Iv?)nfsviin%:rt-of-

related approaches in Section 6 and conclude in Segseech (POS) tags, only POS tags are shown here. The special
tion 7. symbolo represents the sentence boundary.
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each sequence and context for both constituents afitien the joint probability of?(.S, Bjw) can be de-

distituents according to the currefit The detailed fined:

calculation of expectation can be found in Appendix

A.1in (Klein, 2005). In the M-Step, the model finds

new @’ to maximize the expected completed likeli-
hood 3" 5 P(B|S, 6°%)log P(S, B|#') by normal-
izing relative frequencies.

From the probability definition (1), the CCM
gives single multinomial probability distribution
over all sequences. However, the number of pos-
sible sequences grows exponentially with respect to
the span length, leading to severe data sparsity prob-
lem for long sentences. In the next section, we pro-
pose the feature-based model to alleviate the this
problem, since overlapping features could represent
small units of the span contents.

_ P(B)P(S|B)
:P(B)HP(S< B

(i,9)
= P(B) H Fi. (S5 we)

(i,7)€AR(B)

B)H H Fi (S jylwr)

(4,9) k:0p=—1

H Hk:ékzl Fk(s(z,]>|wk)
ey Messi=-1 FilSiep o)

K(S|w) H HF‘S‘“ W)

whereK (S|w) is independent oB and the follow-

3 Feature-based CCM

ing production is taken over tree spans only. One ad-
3.1 Model Definition vantage of the locally normalized model is that the
Motivated by (Berg-Kirkpatrick et al., 2010), we de-EM algorithm could be still used to estimate param-
fine factors in the log-linear form with local normal- eters, which will be described in the next subsection.
ization. LetF; g be K different factors. Each fac-  If we define the same factors of CCM (sequence
tor F}, corresponds to a,-dimensional feature vec- and context for constituent and distituent) and set
tor f;, and anj-dimensional weight vectaw;. For weights properly, then the probability of feature-
thek!” factor F},, the corresponding multinomial pa- based model is degenerated to the original CCM
rameter in original CCM is now treated as a functiormodel. So the original CCM can be treated as a spe-
of weightswy;.. Define the factor category function cial case of the feature-based model.
0 to be+1 if F}, is constituent factor, and 1 oth-
erwise. In detail, for spafi, j) in some bracketing
B for sentence5, define

3.2 Parameter Estimation

Let S be the set of training sentences. Under the
maximum likelihood estimation, we want to find
Fi.(Sqijylwr) = Pe(Si. | B jy = Ok, wi) to maximize the data log likelihood:

_exp(wy - fi(S45)) > L(S 1 (S,B 4
= S oxplwr e(0) ) lw) = ;;g ogBEZB%S) jw)  (4)

where f, returns a feature vectoty;, is the corre- However, the summation of hidden varialids in-
sponding weight vector, anfl) denotes the inner side the logarithm operator, resulting in the com-
product of vectors. The denominator sums over thelicated expressions for the analytical solution. In-
unnormalized probabilities (the numerator) for alkiead, we use the Expectation-Maximization (EM)
possible factor values. We approximately calcu- aigorithm to solve the problem approximately.

late this summation only over values that appear in Gjven current model parametess’' in each iter-
training corpus. ation of EM, we seek new parameterto maximize

For factor £, over bracketingB with correspond-  the expectation of the completed-data log likelihood:
ing treeTs, define the active span sdi;(B) as y
Qw, w”)

{(Z,]> € TB}, if (Sk =+1 _ B‘S wold) 1o P(S B”ll)) (5)
3 E § ) g )
{(i,4) ¢ Tp}, ifé,=-1 ) SES BeB(S
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E-Step where )\, is a non-negative coefficient for thg-

The E-step evaluates the posterior probabilitporm of thek weight vectorw,. Because of the
P(B|S, w°?) given fixed w??. We modify the high-dimensional feature space, we dsenorm of
inside-outside algorithm (Lari and Young, 1990) towveight vectorw as regularization terms to control
efficiently calculate the expected count for each fadhe model complexity. The regularization terms can
tor. The original inside/outside merits are recurserve as automatic feature selector, leading to com-
sively calculated over binary rules. In the featurepact models.

based CCM, we recursively calculate these values |n original CCM, model parameters (multinomial
over spans. To simplify following derivations, wegistribution probabilities) are estimated by normal-
define izing relative frequencies in the M-step. In the

5 feature-based model, we use gradient-based search

HF ylwr) (6) : o et -
algorithm to optimize the above objective function

numerically. Due to thé;-norm regularization, the

The inside probability Ni; ;y can be defined re- objective is not differentiable av = 0. So we adopt

cursively: the OWL-QN method (Andrew and Gao, 2007) to
(@) Unary spans:N; jy = ¢ jy, if j —i=1; perform optimization. The open-source C++ imple-
(b) Other spans mentationl i bLBFGS? is used in experiments. The
Z ¢ VNG IN optimization process needs to calculate the gradient
(i) 0k T ) of Q(w, w°) with respect taw.
For sentenc@ Wlth length/, the outside probability  Since the probabilities of factors are multiplied to-
can be defined as: gether, so the logarithm term in equation (5) can be
(a) Sentence span:W3 ;) = 1; decomposed into the sum of the logarithm of each
(b) Other spans factor probability. Additionally, the;-norm term in
outy; Z S5y OUT (o iy INGii equation (8) is the sum df;-norm of the weights

for each factor. As a result, optimizing the overall
objective function is equivalent to optimize the cor-
+ k:%:ﬂ (i) OUT (k) NG - responding functions for each factor.
Then we calculate the expected ratig ;, for each  Assuming the sep), contains all values of thet"

span. factor Fj, that can be found in training corpus, then
the gradient (omitting the regularization terms) of
eldgip] = INGj) X OUTG ) /Ny (T) 9, can be computed as follows:
Finally, we accumulate expected countsand
1 — e constituent factors and distituent factors re- Vo, (Qr) = Z e[Fi(v)] x Ay(wy) (9)
spectively. VeV,
We do not consider empty spans in the above cal- / /
A, = — F 10
culation of inside/outside probabilities. Since the (w k(v) Z RS (10)

. '€V
empty spans do not depend on trees, we just add ex- v

pected count for each distituent factor and for

each constituent factor over empty spans. wheree[Fj,(v)] contains the expected counts calcu-

lated in the E-step. The similar derivation can be
M-Step found in (Berg-Kirkpatrick et al., 2010).

In M-step, we want to tunev to maximize the . .
In this feature-based model, rich features can be
expected complicated log likelihood together with
easily incorporated. We give some useful feature

the regularization terms:
templates in next section.

idy —_—
w’ E Akllwg |1 (8) htt p: / / wwv. chokkan. or g/ sof t war e/
I'i bl bf gs/
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4 Feature Templates RB, DT} for feature 1x1, and three possible values
{DT, NN, ¢} for feature rx1, then the joined feature
space ha8 x 3 = 9 dimensions while the concate-
There are two kinds of features: constituent featurepated feature space has- 3 = 6 dimensions. The
with prefix {c:}; and distituent features, with prefix feature vectors of these two operators for spiars)
{da:}. Features in the two categories are active onlyh “,RB;DT,NN3” are shown as follows.

if the span enclose constituent or distituent respec Txl 1%l

tively. The bgsm feature templatgs are listed as_fol— >{DT.NN,0} | RB{DTNN,o} | DT.{DT NN}
lows with their names and descrlpt!ons. A running 0 ‘ 0 ‘ 010 ‘ 0 ‘ 110 ‘ 0 ‘ 0
example, spafil, 3) in “oRB;DT2NN3", is also shown

4.1 Basic features

for each feature template. x1  + rxl
e const: This constant feature always takes value ¢ |RB|DT ) DT | NN | ©
1 for any given span. We use this feature to measure 0OjJ1]0j]Jo0jo]1
the number of spans. We restrict that only join followed by concate-

e seq[n]: This indicating feature is active for se-nation is allowed. As an example, the original
quence enclosed by span with sizelf n = 0, then CCM could be represented asic:feqo0, d:seqo,

sequences with any lengths are considered. c:1x1.rx1,d:1x1.rx1}.
seq2 || ... | DT_JJ | DT_NN | RB DT 43 Summary
value || ... 0 1 0

There are huge number of feature combinations that
we can not try each of them in experiments. In ex-
periments, we use following sets of features.

The first feature set includes the sequences with

e 1x[nl/rx[n]: The indicating feature for the
preceding/followingn terminals (left/right context),
whereo represents sentence boundary.

1x2 e ¢ ¢ | ©RB|RBDT|... length up tab: {seq1, seq?2, seq3, seq4, seq5}. Note
value || ... 0 1 0 that sequences with arbitrary lengths are modelled
rx2 || ... |[DTNN|[NNo| oo |... in the original CCM, while we restrict the maximal
value || ... 0 0 1 sequence length to be Since most of the longer

sequences occurs only once or twice in the training

e 1b[nl/rb[n]: The left/rightn boundary termi- di d1h d o
nals inside given span. If the length of span is lesEOTPUS, We discard them to speed up training proce-

thann, then this feature template is not activated. dure and reduce memory usage.
Boundary words have been proven useful for de-

b2 || ... |RBDT |DTNN | TOVB | ... tecting phrase boundaries in supervised learning
value | ... 0 1 0 task (Xiong et al., 2010). We introduce this idea
rbl || ... RB DT NN to unsupervised grammar induction. The features
value || ... 0 0 1 . used in experiments are combinations of left bound-

. ary and right boundary words with lengths up2to

4.2 Composite features {1b1, 1b2, rb1, rb2, 1bl.rbl, 1bi.rb2, 1b2.rb1,

Basic features can be composited to more complib2.rb2}.

cated features. We define two composition opera- The original CCM also considers the pair of pre-
tors: join (), and concatenationH). For the join op- ceding one word and following one word as con-
erator, the composited feature space is the Cartesitaxts. We consider combinations of left context and
product of the feature spaces of the two operanddght context words with lengths up o {1x1, 1x2,
For the concatenation operator, the composited feax1, rx2, 1x1.rx1, 1x1.rx2, 1x2.rx1, 1x2.rx2}.
ture space is the concatenation of the operands’ fe@ihe special toker is introduced to represent sen-
ture spaces. tence boundaries.

Here we use an example to demonstrate the differ- The last feature used is the constant feature
ence between join operator and concatenation opdreonst}. The constant feature always takes value
ator. Assuming there are three possible values {1 for each span.
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Overall, we define two constituent factors and twd.2 Induction Results
distituent factors. The first constituent/distituent faCEM algorithm is sensitive to the initial condition
tors, denoted agic:s and Iy, are the concate- We adopt the same uniform-split initialization and

nation of sequence features, boundary features, same smoothing valueg for constituents and
constant feature. The second constituent/distituegtfor distituents) as described in (Klein, 2005). For

factors (c:x and Fg.x), are the concatenation of ¢o,y,re_hased model (F-CCM), we still use uniform-
context features and constant feature. split strategy to initialize probabilities in the first E-
5 Experiments step, and set all weights to zero as the initial point of

the gradient-based search algorithm in the M-step.
5.1 Datasets and Settings

We carry out experiments on the Wall Street Jour- PTB10 | Train | Dev | Test
nal portion of the Penn English Treebank (Marcus LBranch | 28.62| 28.64| 30.58
et al., 1993). We report the unlabeled F1 score (the RBranch| 61.58| 63.59| 61.00
harmonic mean of precision and recall) as evalua- UBound | 88.20| 88.35| 86.80
tion metric. Constituents which could not be gotten CCM 72.50| 73.58 | 70.30
wrong (single words and entire sentences) are dis- F-CCM | 71.66| 72.95| 69.75
carded. These are standard settings used in previous PTB20 | Train | Dev | Test
work (Klein, 2005). LBranch | 17.22| 17.43| 17.21
To perform model selection and parameter tun- RBranch| 48.39 | 47.85| 47.96
ning, we split the treebank into three parts: sec- UBound | 86.35| 86.26 | 86.20
tion 02-21 as training set, sectidil) as development CCM 48.96 | 48.46 | 48.08
set, and sectiofi3 as test set. As standard machine F-CCM | 59.86| 59.86| 59.10
learning pipeline, we perform EM on training set, PTB30 | Train | Dev | Test
tune parameters on development set, and report the LBranch | 1337 13.61 | 13.33
result of_selected model on tes_t set. We remove RBranch| 42.70| 42.76| 42.57
punctuation and nul! elements in treebank, as the UBound | 85.72| 86.02 | 85.88
star_1dard preprocessing step (Klein, 2095). For com- CCM 43.01| 43.27| 4259
:oarlst(r:n, we bun(:hv?]gogé ggtezjets v;nh fstentences F-CCM | 4887| 4882 48.15
engths no more thaho, 20, 30, 40 words after re- .
mo?/ing punctuations. Table 1 gives the number of PTBA0 | Train | Dev | Test
sentences for each dataset. LBranch | 12.08| 12.31 | 11.95
RBranch| 40.59 | 40.54 | 40.73
| Dataset| Train| Dev| Test] UBound | 85.54| 85.77 | 85.69
PTB10| 5,899 265] 398 CCM 33.44| 33.62| 33.10
PTB20 | 20,243| 992 | 1,286 F-CCM | 45.44| 45.46| 45.10
PTB30 | 32,712| 1,573 | 2,028
PTB40 | 37,561 | 1,809 | 2,338 Table 2: Results on PTB10, PTB20, PTB30, PTB40
Table 1: Data statistics Table 2 shows the experimental results on the

datasets of different length limits. LBranch and
We select regularization parameters from sdRBranch rows show the left branching and right
{0.03,0.1,0.3,1, 3,10} for factorsF..s andFy.s. branching binary tree baselines. As the English
No regularization is used for factoF..x and grammar tends to be right branched, the trivial
Fy4.«, since the number of context types are almodkBranch achieves quite high F1 scores. UBound
fixed and relatively small in datasets with differentrows show the results of binarized treebank, which is
lengths. Each combinations af.s and \y.5 are the upper bound of any grammar induction systems
tested on the development set. The final values ofthat output binary trees. We reimplement the base-
is the one with the highest development F1 score. line CCM, which achieves comparable performance
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compared to previous reported results (Klein, 2005). Table 3 shows the results of these experiments.
The results of feature-based CCM are presented Wvith the increasing of regularization parameters, the
the F-CCM rows. model becomes more and more sparser (as mea-
From these results, we observe that the origingured by the number of non-zero weights). The
CCM performs much better than the right branchtuned optimal parameter values akg.s = 0.1
ing baseline on short sentences, but the performanaad \g.s = 1. It is interesting to observe that
decreases dramatically on longer sentences, evdre optimal regularization value for distituent fac-
lower than the right branching baseline. In contrastor is greater than the one for constituent factor.
our feature-based CCM achieves comparable perfoFhis fact can be explained that since there are more
mance with original CCM on PTB10, and much betdistituents than constituents, the distituent weights
ter performance than the original CCM and the righteed to be penalized more heavily. The best devel-
branching baseline on longer sentences. These eépment F1is2.95, greater than the F1 sco66.56
perimental results demonstrate the effectiveness aadhieved without regularization, since the unregular-

robustness of the feature-based model. ized model may overfit the training data.
. If we compare experiments with fixed: . 5, the
5.3 Grammar sparsity development F1 score first increases and then de-

The regularization terms can serve as feature selgg©ases with the increase &j: s. In contrast, with
sparsity of learned sequence grammars between vBAt Ac:s. These results somehow demonstrate the

role than the constituents.

‘ Ac:s ‘ Ad:s H Fe:s ‘ Fa:s ‘ Dev ‘ 5.4 Discussion

0 0 72,289 | 72,289| 69.56 , _

01 | 0.03 || 55.407| 71.668| 70.39 Experiments show that we achieve better perfor-
0.1 0.1 | 54591 69.988| 70.87 mance than original CCM while using compact
0.1 0.3 | 56,660| 57,729/ 70.32 grammars. There are some issues we want to dis-
01 | 1 | 55860| 27,058 72.95 cuss here.

0.1 3 55.534| 9.885| 60.82 1. We only test a few feature templates. Other
0.1 10 56,513| 3.149| 55.55 features such as words, stems may improve the
0.03 1 69.390| 28.046| 67.13 results. Moreover, punctuations contain useful
0.1 1 55,860 | 27.058| 72.95 information in grammar induction (Spitkovsky
0.3 1 31,763| 27,525/ 70.32 et al., 2011b; Ponvert et al., 2011), while cur-
1 1 11,816 27.418| 71.01 rently punctuations are ignored in our model.

3 1 4,040 | 27,559 71.08 2. In previous unsupervised constituency gram-
10 1 1.456 | 27.875| 72.26 mar induction, how to choose parameters is an

art. While in the proposed model, we use de-

Table 3: Number of non-zero weights for factdrs. s velopment set to perform model selection.

andFy.g. The corresponding F1 scores on the develop- 3. EM a}lgorithm_cou_ld only find Sub-optima. One
ment set are shown in the last column. possible solution is the Lateen EM (Spitkovsky

etal., 2011a), in which multiple objective func-
As mentioned in section 5.1, we only tune regu-  tions are an alternative optimized. Another

larization parameterdc.s and \g.5. We can not method is the annealing technique during prob-
report results of all combinations since there are too  ability estimation process. We will investigate
many of them. Instead, we report results with ei-  these in future work.

ther A\¢c.s or \y.s fixed to the best tunned value. 4. ¢;-norm regularization is used to learn sparse
The number of active dimensions (i.e. with non-zero  and compact model. Bayesian learning is an al-
weight) and the development F1 score are examined ternative framework, which can be also applied
in experiments. to CCM.
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6 Related Work proposed. There are many differences between their
work and our proposed model. (1) We usereg-
The Constituent-Context Model (Klein and Man-y|arization to learn sparse model, while they do not
ning, 2002; Klein, 2005) is the first unsuper-mention sparsity problem. (2) We propose to use a
vised constituency grammar induction system thajeparated development set to perform model selec-
achieves better performance than the trivial righfion and an additional test set to report final results,
branching baseline for English. However, the pefynjle they directly train and evaluate their model on
formance of CCM degrades on long sentences. Fahe same dataset, which is problematic. (3) We eval-
lowing approaches improve CCM in various aspectgate different feature sets from theirs. The limited

Smith and Eisner (2004) propose to condition thgangths for sequences could reduce the memory us-
yield feature on the length of the yield and use amge for long sentences.

nealing technigues to estimate parameters. Anneal-

ing techniques can be also used for the proposed - Conclusion

CCM, which we plan to do in future work. Klein and i

Manning (2004) demonstrate the joint model of con] N€ constituent-context model performs well on
stituency and dependency could improve unsupe?—hort sentences, but the performance degrades on

vised grammar inference. Some other approach!e%nger sentences. We present a feature-based model

also consider to use additional information such afé)r CCM, inwhich linguistic knowledge can be inte-

the words (Headden 11l et al., 2009), the automatigrated as features. Features take the log-linear form
induced tags (Headden Il et al., 2008), or the pat’ i_th Ioce_ll normalizati'on, so the EM algorithm is
ent information (Mirroshandel and Ghassem-Sanﬁt'” applicable to estimate model parameters. To

2008). These information could be easily incorpof"vOIOI overfitting, we use thé,-norm regulariza-

rated to the proposed model as features. tion to control model complexity. We also pro-

. posed a reasonable model selection and evaluation
Feature-based models have been widely used i .
%amework. Experimental results demonstrate that

many supervised tasks such as parsing (Charnlat ‘e feature-based model achieves comparable per-

2000), word alignment (Moore, 2005; Liu et al., .
. : formance on short sentences but significantly out-
2006), machine translation (Koehn et al., 2003), etc. .
erforms the original CCM on longer sentences.

For the unsupervised learning tasks, the calculatidh
of nor_malizat_ion part i_s gsually time-consuming _orACknOWIedgments

even impossible. Existing approaches are mainly

based on the contrastive estimation (Smith and Ei¥Ve would like to thank Zhonghua Li for insightful
ner, 2005; Smith and Eisner, 2005; Dyer et al., 2011discussion about the feature-based model and help
to learn parameters. The local normalized featureén the numeric optimization toolkit. We also thank
based model has been proposed in (Berg-Kirkpatrickiangyu Duan for his help on the reimplementation
et al., 2010), in which features are defined over ger®f original CCM. Thank the anonymous reviewers
erative rules and the normalization is done locallyfor their helpful comments and suggestions.

They use the, regularization, while we apply the
local-normalization model to CCM with; regular-
ization and show improved performance could b
achieved with sparse solution. Many unsupervise@alen Andrew and Jianfeng Gao. 2007. Scalable train-
approaches aim to learn compact and sparse gram-ng of I1-regularized log-linear models. Froceed-
mar, including the Bayesian models (Johnson et al., ings of the 24th International Conference on Machine
2007;: Cohn et al., 2010; Blunsom and Cohn, 2010) Leaming pages 33-40.

and posterior regularization (Ganchev et al., 2010y&ylor Berg-Kirkpatrick, Alexandre Bouchard-Cote,

We use alternative (and simpler) regularization tech- ‘]Ohn. DeNero’.and Dan Klein. 2010. Painless unsu-
. . . pervised learning with features. Human Language
nigue to obtain sparse solution.

_ Technologies: The 2010 Annual Conference of the
The most related work is (Golland et al., 2012), North American Chapter of the Association for Com-
in which a similar feature-based model for CCM is putational Linguisticspages 582-590.
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