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Abstract

Understanding and interpretation of nominal
compounds has been a long-standing area
of interest in NLP research for various rea-
sons. (1) Nominal compounds occur fre-
quently in most languages. (2) Compound-
ing is an extremely productive word formation
phenomenon. (3) Compounds contain implicit
semantic relations between their constituent
nouns. Most approaches that have been pro-
posed so far concentrate on building statisti-
cal models using machine learning techniques
and rely on large-scale, domain-specific or
open- domain knowledge bases. In this paper
we present a novel approach that combines the
use of lexical hierarchies such as PurposeNet
and WordNet, with WordNet-based similar-
ity measures for the interpretation of domain-
specific nominal compounds. We aim at build-
ing a robust system that can handle most of the
commonly occurring English bigram nominal
compounds within the domain.

1 Introduction

Understanding and interpretation of nominal com-
pounds has been a long-standing area of interest in
NLP research. The main reasons that make under-
standing compound nouns an interesting and chal-
lenging task are: (1) Compound nouns are a frequent
phenomenon in many languages, occurring in differ-
ent languages with varying frequencies. English and
Sanskrit are two languages that display great flexi-
bility in compounding (Ó Séaghdha, 2008). About
3.9 % of the words in Reuters are bigram nominal

compounds (Baldwin and Tanaka, 2004). (2) Com-
pounding is a recursive process that can lead to for-
mation of large and complex compounds, that are
difficult for comprehension. (3) Compounds usu-
ally carry an implicit meaning that may sometimes
differ significantly from that of the combining con-
cepts. Consider the example of a garden knife. A
garden knife is interpreted as a knife used in the gar-
den. Here the modifier garden modifies the locative
information of the head noun knife. Alternatively,
consider the example of a gamma knife. A gamma
knife is a device used to treat brain tumors by admin-
istering gamma radiations in a particular manner.
Here, the modifier does not necessarily modify the
head, instead they both combine together to denote
a different concept. This understanding of the dif-
ference in the structure and purpose between gamma
knife and other kinds of knife cannot be achieved by
any means of statistical predictions or morphologi-
cal and syntactic analyses of the compound.

The most common representations adopted for the
interpretation of nominal compounds involve an in-
ventory of verbs, prepositions or abstract semantic
relations. Verb and preposition paraphrases bring in
lexical ambiguity in the interpretation of the com-
pound, essentially owing to the polysemous nature
of verbs and prepositions. For example, morning tea
and bar lights would both be paraphrased using the
preposition in. However, the paraphrase ’tea in the
morning’ conveys the temporal aspect of the com-
pound, while the paraphrase ’lights in the bar’ de-
scribes the location information in the compound.
Due to this polysemous behaviour of prepositions
and verbs, a restricted inventory of abstract semantic
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relations is more favorable for the compound inter-
pretation problem.

Most of the approaches proposed for interpreting
nominal compounds fall into one of the two classes
(a) supervised machine learning approaches, and (b)
unsupervised data driven approaches. These ap-
proaches fail to handle the sparseness of data, which
is a major issue in case of noun compounds. They
collect statistics that use occurrence frequencies of
the compounds. Therefore, rarely occurring com-
pounds lead to wrong estimations of probabilities
and thereby unreliable interpretations. A third and
less frequently adopted alternative involves the use
of large-scale, domain-independent, lexical and con-
ceptual hierarchies that provide detailed natural lan-
guage semantics. Such ontologies promise reliabil-
ity and accuracy of data but fail to cover equally,
lexical items and semantic relations. Moreover,
construction of such ontologies is extremely time-
consuming, due to which manually built ontologies
are never up to date with changes in the language.
This motivates us to argue that the most optimal
approach to compound interpretation would be the
combination of a lexical hierarchy for the frequent
and idiosyncratic compounds (Johnston and Busa,
1996) and WordNet-based similarity for those that
are not listed in the hierarchy. We show in this paper,
that adopting our hybrid approach helps us achieve
significant results (70% accuracy) in ontology-based
compound interpretation, irrespective of the size,
coverage and domain of the ontology. We perform
all our experiments using PurposeNet (KiranMayee
et al., 2008), which is a purpose-centric ontology of
artifacts and semantic relations.

The rest of the paper is divided into the follow-
ing sections. In section 2, we discuss some re-
lated works that use ontologies and also motivate
our choice of a hybrid approach using ontology. In
section 3, we discuss the architectural design of Pur-
poseNet in brief. We then proceed to explain our
hybrid approach in section 4, and discuss the prepa-
ration and analysis of data in section 5. We finally
produce in section 6, the results for the compound
interpretation experiments performed, and then dis-
cuss the scope of improvement and future work in
section 7.

2 Related Work

The most common approaches to handle compound
interpretation are broadly categorized under super-
vised and unsupervised approaches. The supervised
approaches combine machine learning techniques
with lexical taxonomies to classify the nominal com-
pounds into one of a set of pre-defined semantic re-
lations. The unsupervised approaches are usually
data-driven probabilistic methods that collect statis-
tics on the occurrence frequency of compounds in
the corpus and use them to predict the most probable
interpretation for the compounds. Other approaches
have evolved which focus on the use of large, lexi-
cal and conceptual hierarchies, both domain specific
and domain independent, for this task. The earliest
such approach is by Johnston and Busa (1996). They
make use of the Generative Lexicon model proposed
by Pustejovsky (1991), that couples lexical semantic
representations with mechanisms to capture the re-
lations between those representations and their syn-
tactic expressions. Their lexicon consists of a type,
argument, event, and qualia structure for every lexi-
cal entry. Phrase structure schemata were developed
to compositionally understand the links between the
qualia of head nouns and their corresponding mod-
ifiers. However, this approach works only for those
nouns and noun compounds whose qualia are listed
in the lexicon. It also restricts the nominal com-
pounds that can be interpreted by the type of the
modifier and the action prescribed in the qualia of
the head.

Most of the approaches that followed depend
on supervised machine learning and domain spe-
cific lexical hierarchies. Rosario and Hearst (2001)
mapped the nominal compounds into unique con-
cept IDs and into terms in the MeSH medical on-
tology. They built different models based on these
MeSH descriptor terms and trained artificial neu-
ral networks to classify every nominal compound
into one of the different semantic relations. Kim
and Baldwin (2005) introduced a machine learn-
ing approach that used WordNet for classifying
compounds based on abstract semantic relations.
They built a training set of 1088 manually anno-
tated compounds, and interpreted the test cases us-
ing WordNet-based similarity. They calculated the
similarity between a given test instance and every
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training instance in the training set, and predicted
the semantic relation of the most similar training
instance. They used different similarity measures
such as WUP (Wu and Wu, 1994), LCH (Lea-
cock and Chodorow, 1998), JCN (Jiang and Con-
rath, 1997)and LIN (Lin, 1998) and obtained a good
result of 53% accuracy over open domain. The
only bottleneck however, is that it requires sufficient
training data distributed over the different abstract
semantic relations. We therefore increase the ro-
bustness of our system by extending ontology search
with a module that performs word similarity mea-
surement for compounds.

3 PurposeNet Ontology

3.1 Architectural Design
PurposeNet is a purpose-centric ontology of arti-
facts, where the artifacts are organized in a multi-
ple inheritance hierarchy. The ontology contains ar-
tifacts and relations between them. There are two
types of features:

• Descriptive features

• Action features

and three types of relations:

• Subtype

• Component

• Accessory

Every artifact is expressed in terms of 20 descriptive
features and 7 action features and is connected to
the other artifacts via one or more of the above men-
tioned relations. While the descriptive features cap-
ture information pertaining to the physical nature of
the artifact, the action features capture information
about the actions performed on and by the artifact,
such as its birth, maintenance and destruction. Ta-
ble 1 shows the descriptive features for Butter Knife
while Table 2 shows the action features for the Car.

3.2 Schema for Handling Nominal Compounds
in the Ontology

A nominal compound is a complex construction
where two or more different concepts combine to-
gether to form a single concept. While on the con-

Descriptive
Features

Possible Values Butter
Knife

Color Black, White, Green any
Constituition Metal, Plastic, Foam,

Rubber
Steel,Metal

Fluidity Fluid, Non-fluid Non-fluid
Heaviness Light-Weight, Moderate-

Weight, Heavy-Weight
Light
Weight

Inertness Inert, Reactive, Alkaline,
Acidic

Inert

Mobility Mobile, Immobile Immobile
Oiliness Oily, Non-oily Non-oily
Physical
State

Solid, Liquid, Gaseous Solid

Shape Cubical, Cuboidal, Cylin-
drical, Flat

Flat

Size Big, Small, Huge Small
Sliminess Slimy, Non-slimy Non-slimy
Smell Pleasant, Unpleasant,

Odourless
Odourless

Smoothness Smooth, Rough Smooth
Softness Soft, Hard Soft
Sound Silent, Bearable, Unbear-

able, Noisy
Silent

Stability Stable, Non-stable Stable
Subtleness Subtle, Non-subtle Non-subtle
Taste Sweet, Sour, Bitter Tasteless
Temperature Hot, Cold, Room-

temperature
Room-
temperature

Transparency Transparent, Translucent,
Opaque

Opaque

Viscidity Viscous, Non-viscous Non-viscous

Table 1: Descriptive features for Butter Knife.

ceptual level, a nominal compound represents a sin-
gle concept, it manifests as a set of ordered lexi-
cal items, due to which representation of a nominal
compound in a knowledge base becomes a challenge
by itself. Compounds can be represented by a sin-
gle unit or a single node in the ontology. They can
also be broken into their respective constituents and
the constituents be placed under appropriate classes
with appropriate relations ascribed between them.
We discuss in this section how compounds are han-
dled in different ontologies, and the motivation for
the schema adopted in PurposeNet.

WordNet (Fellbaum, 1998) is one of the most
notable of the available, large scale, general pur-
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Action Feature Subtype Definition Some Values for Car
Birth Manufacture of artifact Fix Chassis to Body, Attach Seats, Attach Tyres

Purpose Purpose of artifact Transport Human

Maintenance
General Maintenance

Maintenance of artifact
Clean Car, Clean Engine

Repair Maintenance Repair Car, Repair Engine
Wear and Tear Wear and tear of artifact Burst Tyre, Overheat Engine

ProcessRel Actions the artifact can perform Board Passengers, Move from A to B, Alight Passengers

Set up
First time Set up

Set up the artifact for functioning
Check Ignition System, Check Brake

General Set up Check Tyre, Check Brake
Result On Destruction Results on destruction of artifact Engine recycled to metal, Seats - reused

Table 2: Action features for Car.

pose, domain-independent ontologies. Although
it focuses mainly on the taxonomies of words, it
does not attach any significance to the representation
of multi-word expressions (MWEs) such as com-
pounds. Most of the compounds listed in WordNet
are represented as a single node in the lexical hierar-
chy. Ex : wildfire, orange juice and mailman. Such
a representation is suitable only to compound nouns
that are commonly occurring and in which the re-
lationship between the constituents is unambiguous
and easily comprehensible (Mahesh, 1996).

ConceptNet (Havasi, 2007) is a large-scale, com-
monsense knowledge base, similar in structure to
WordNet, but the nodes in ConceptNet are mostly
semi-structured English fragments or compound
concepts connected to each other by semantic rela-
tions. Since all the compound formations are cov-
ered as individual nodes in the ontology, ConceptNet
fails to explicate the relations within the constituents
of the compound, much like WordNet. Further, such
a representation has led to redundancy in data. Sim-
ilar compound constructions are represented as dif-
ferent nodes in the ontology. This fails to capture
the similarity between different constructions and
leaves little scope for interpreting new compounds
made from similar constructions. For example, Con-
ceptNet captures orange juice, lemon juice, and fruit
juice as different nodes. It fails to capture the infor-
mation that a fruit juice is made from a fruit, and the
fruit can be orange, or lemon or any other.

Yet another ontology that we have surveyed is
the Brandeis Semantic Ontology (Pustejovsky et al.,
2006) built on the basis of the Generative Lexicon
approach (Johnston and Busa, 1996). This ontol-
ogy uses a type structure, argument structure, qualia
structure and an event structure for every entry, and

couples them with phrase structure schemata. How-
ever, as discussed in section 2, this approach works
only for nouns whose qualia are defined in the lex-
icon and which adhere to the type of the modifiers
and the action prescribed in the qualia. The above
discussed drawbacks have motivated us to adopt a
new schema for representing nominal compounds in
the ontology.

1. Compounds that are incomprehensible by
themselves and cannot be predicted from sim-
ilar constructions are defined as unique nom-
inals. Even compounds that are signif-
icantly different from similarly constructed
compounds, in terms of their physical nature or
in their purpose, manufacture etc, are unique.

2. All unique nominals must be represented by a
single node in the ontology hierarchy. Example
: gamma knife and garden knife.

3. All similarly constructed compounds must be
represented by a generic compound in such a
way that the similarity between the construc-
tions is captured while leaving scope for new
constructions to be captured.

Consider the examples of wheat bread, rice bread
and ginger bread. Compounds such as wheat bread,
rice bread, oat bread, barley bread and all other
similar constructions can be captured using the fea-
ture {component, cereal} in the generic class bread.
However, gingerbread is a confectionery. It is a
unique nominalisation, and must be represented by
a single node in the ontology. Such a representation
therefore shrinks the ontology from polynomial to
linear space without any loss of information.
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4 APPROACH

We propose a hybrid approach that combines the use
of ontology with word similarity measures to inter-
pret nominal compounds. The approach includes
the following two phases: (1) ontology search and
(2) word-similarity based interpretation. In the first
phase, given an nominal compound, we search the
ontology to locate the node corresponding to the
head or the nominal compound, and then extract the
corresponding descriptive and action features of the
artifact represented by it. We use pattern matching
techniques to match the modifier in these features,
and then with the use of a pre-constructed mapping
between the features and semantic relations, we map
the feature to its corresponding semantic relation in
our inventory. This phase can only interpret a com-
pound when both its constituent nouns are covered
in the ontology. It fails for the rest of the cases
when the head and/or the modifier are not covered
in the ontology. To increase the robustness of the
system, we adopt in the second phase, a word simi-
larity measurement technique to handle the remain-
ing compounds where the head or the modifier are
not covered in the ontology.

4.1 Pre-Processing

The first step in our approach is the pre-processing
of the test data and the ontology. Pre-processing of
the test instances includes stemming of constituent
nouns in the given compounds using Porter Stem-
mer. In every compound that is made up of one
or more plural constituent nouns, we modify Porter
Stemmer to stem those plurals and rebuild the com-
pound from the new constituents.

In order to access the ontology in an efficient way,
we need to index the nodes in the ontology. We
therefore adopt the Dewey Encoding scheme 1 to in-
dex the nodes in our ontology hierarchy. This type of
indexing helps in quick accessing of the nodes and
also makes it easy for traversal from one node to an-
other within the hierarchy. We apply the indexing
mechanism starting from the root node of the ontol-
ogy which is ’Entity’ and label it ’0’. Every other
node in the ontology is given an index containing
the path from the root to the node, and each path
uniquely identifies the absolute position of the node
within the hierarchy (Tatarinov et al., 2002). Fig-

ure 1 shows a small part of the indexed PurposeNet
hierarchy.

Figure 1: Dewey Order Indexing

4.2 Ontology Search

Given a compound 〈N1N2〉 to be interpreted, we
first check for the following different possibilities re-
garding its coverage in the ontology, each of which
can be handled in our hybrid approach:

(a) the compound is unique and occurs as a single
node in the ontology.

(b) the compound is non-unique and both the head
(N2) and the modifier (N1) are encoded as different
nodes in the ontology.

(c) the compound is non-unique and only the head
(N2) is present in the ontology.

(d) the compound is non-unique and only the
modifier (N1) is covered in the ontology.

Case (c) and (d) are handled in the next phase us-
ing word similarity measures. However, the case
where neither of the constituents of the nominal
compound are covered in our ontology is currently
not handled in our hybrid approach.

Our strategy is to adopt different search traversals
suited to each of the different cases, and use pattern
matching to identify the right features in the ontol-
ogy. For the compound 〈N1N2〉, we first define a
Left end (LE) and a Right end (RE) as boundaries of
our search traversal. They are essentially the nodes
representing the compound or its constituents in the
ontology. We then obtain the indexes corresponding
to N1 and N2 by reading from the index table. Then,
we extract all the action features 〈A〉, and all the de-
scriptive features 〈D〉 of the RE, and match the LE
using simple pattern matching expressions. When
the compound is unique and occurs as a single node

1http://en.wikipedia.org/wiki/Dewey_
Decimal_Classification
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in the ontology (case (a)), the LE is the modifier
while the RE is the node that defines the compound
as an artifact. In the case when both the constituents
of the compound occur as different nodes in the on-
tology (case (b)), the LE is the modifier, while the
RE is the head of the compound.

Now, given the LE and the RE, we implement a
robust search mechanism between the two ends, us-
ing different search traversals postulated below:

• One level search - Consider the example
of lemon tea, where tea has a feature
{component,emon}. In such cases where the
LE and the RE are directly related to each
other, we perform a single level search through
the features of the RE and extract that feature
whose value matches the LE.

• Multi Level Search - This search is called when
the one level search fails to return any non-
empty feature for the compound. Consider
the example of bedroom light. We define the
family of bedroom as its parents and siblings,
that is the immediate super class in the hier-
archy(parent), and all those nodes that are sub
classes of the parent (siblings). We replace the
LE (bedroom) with each member of its family
and repeat the one level search with each of the
new LE. Here, we also take into consideration
the super class of the LE from WordNet (Hy-
pernym) in the family of LE. The intuition be-
hind this multi level search is that every mod-
ifier that belongs to the same family modifies
the head noun in the same way. Ex: A lemon
juice is juice made from lemon, and so is a fruit
juice, juice made from fruit.

• If the above search mechanisms fail to re-
trieve a semantic relation for the compound,
we replace the RE with the values of each of
its features in turn, and repeat the One level
and Multi Level search with the new RE. This
search mechanisms particularly holds for com-
positional compounds that follow the law of
transitivity. If A is a component of B and B is a
component of C, then A is a component of C.

When all the above search traversals fail to re-
trieve any feature, then ontology search fails to in-
terpret the given compound.

4.3 Word Similarity Measurement

This phase of our experiments is built on a hypoth-
esis that states that ’a compound can be interpreted,
at least in part, by knowledge about the meanings
of similar compounds’ (Ó Séaghdha, 2008). There-
fore, we define our experiments on the unpredicted
compounds of phase 1 in such a way that by under-
standing and interpreting similar compounds formed
by each of their constituents taken individually, we
can interpret the underlying semantic relation for our
target compound instance.

Most of the word similarity measures can be clas-
sified into one of the following three classes: (a) Ap-
proaches that use knowledge resources such as on-
tologies and thesauri for extracting information such
as glosses of the lexical items, or hierarchy infor-
mation such as the Is-A from WordNet. (b) Ap-
proaches that acquire context information for each
of the words and check the overlap between the con-
texts to calculate the similarity. Here, words that oc-
cur in similar contexts are intuitively more similar.
(c) Approaches that are specifically built for simi-
larity between word pairs. These approaches con-
sider, for each word pair, the contexts in which the
constituents of the word pairs occur together. The
intuition behind this approach is that when both the
constituents occur together in a particular context,
the context will most likely yield information about
the relation between the constituents (Ó Séaghdha,
2008).

In this paper, we use the Extended gloss overlap
measure that uses gloss information from WordNet
(Banerjee and Pedersen, 2003). The extended gloss
overlap measure calculates the relatedness between
two lexical items by comparing their glosses, along
with the glosses of the synsets that are related to
these lexical items. As mentioned earlier, cases (c)
and (d) are handled in this phase, along with other
compounds that can not be predicted in phase 1 due
to lack of coverage in the ontology. Our strategy
consists of building a set of compounds which we
call the base set, and measuring the similarity be-
tween a given test instance and each base instance.
We choose the k most similar base instances, and in-
terpret them using ontology search. We first explain
the steps involved in building the base set for cases
(c) and (d).
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Given a nominal compound whose head is cov-
ered as a node in the ontology hierarchy, we ex-
tract all the descriptive features of the correspond-
ing node, as well as the descriptive features of ev-
ery action feature, as each of these can be potential
modifiers of the head in a compound. For example,
consider a nominal compound 〈N1, N2〉, where N1
and N2 are the modifier and the head respectively,
and N2 is covered in the ontology. We extract the
descriptive features 〈D〉 and the action features 〈A〉
of N2. However, since the action features are verbs
and cannot act as modifiers in a nominal compound,
we extract the descriptive features 〈D′〉 of the node
corresponding to every A ε 〈A〉 and append 〈D〉 and
〈D′〉 to the list of potential modifiers 〈M〉. In the
next step, we add the family members(parent, sib-
lings) of every M ε 〈M〉. We then run a POS tag-
ger on each of these modifiers and prune away those
modifiers that are NNP or are not tagged as nouns.
For each of the remaining modifiers M in 〈M〉, we
construct compounds with the head N2 and form the
base set of compounds.

For a compound whose modifier is covered in
the ontology, we follow a similar strategy as above,
building a set of base compounds based on on the
occurrences of the modifier in the ontology. Con-
sider again, a nominal compound 〈N1, N2〉, where
N1 and N2 are the modifier and the head respectively
and N1 is covered in the ontology. In this case, we
extract all the nodes in the ontology 〈N〉 and for ev-
ery N ε 〈N〉, we extract its descriptive features 〈D〉,
and action features 〈A〉. We then check its descrip-
tive features 〈D〉 as well as the descriptive features
〈D′〉 of every node corresponding to the action fea-
tures 〈A〉 for any occurrence of the modifier N1. For
every occurrence of the modifier N1, we construct a
compound of N1 with that node N and add to our list
of base compounds.

In the next step, we use the WordNet::QueryData2

to query the different senses of the constituents for
the test compound 〈N1, N2〉 and each of the base
set compounds 〈N1′, N2′〉. For each sense of N1
and each sense of N1’, we calculate the related-
ness using the extended gloss overlap measure, and
obtain the most related senses. Similarly, we ob-

2http://search.cpan.org/dist/
WordNet-QueryData/QueryData.pm

Base compound Similarity of
modifiers

Similarity of
heads

Fruit Soup 5145 70
Fruit Skin 5145 40
Fruit Drink 5145 37

Table 3: Base compounds and their similarity with Fruit
custard.

tain the most similar senses of N2 and N2’, and
then calculate the similarity between the compounds
〈N1, N2〉 and 〈N1′, N2′〉 as the product of the sim-
ilarity between the most related senses of their cor-
responding constituents N1-N1’ and N2-N2’. For
example, the 3 most similar base compounds to the
nominal compound fruit custard were found to be
fruit soup, fruit skin and fruit drink. We show in Ta-
ble 3, the relatedness measures of these base com-
pounds with our test compound. Finally, we use the
k-best method and obtain k(3 or 4) base compounds
that are most similar to the test compound. We then
interpret them using the ontology search. This re-
sults in a set of most probable interpretations for the
test instance. Human judgement would be required
to choose the most appropriate interpretation out of
the most probable interpretations.

5 Preparation of Data

5.1 Extraction

In order to perform our experiments on nominal
compounds that are within the tourism domain, we
compiled a list of those compounds from the web,
that were formed by the artifacts listed in our Pur-
poseNet ontology. Firstly, we extracted all the arti-
facts that are described in the ontology. Those arti-
facts which are represented using noun compounds
in the ontology were further split into their corre-
sponding noun constituents and then appended to
the list of nouns for web search. We then used the
Bing Search API to search the web for all occur-
rences of the nouns representing each of the arti-
facts and extract compounds formed by them. The
search was restricted to the top 10 web results ob-
tained from Bing. We used a simple heuristic to
identify the noun compounds, similar to that used by
Lauer (1996). All those occurrences of the artifact
nouns that were preceded or succeeded by nouns,
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and which are not flanked by tokens tagged as nouns
on either side were extracted as noun compounds.
A list of stop words was then used to prune away
compounds containing junk words. This extrac-
tion does not retrieve hyphenated noun sequences as
these noun sequences need further validation before
appending to the list of nominal compounds.

There are a total of 616 artifacts in the ontology.
These artifacts were used to prepare a list of 400
nouns for the web search. We ran the bing web
search API on each of these 400 nouns and a to-
tal of 89,578 compounds were extracted. However,
this extraction mechanism also resulted in incorrect
cases due to false tagging of words as nouns. There-
fore, we manually identified and extracted from this
list, some compounds which were restricted to our
tourism domain, to form a small test set of 600 com-
pounds for our experiment.

5.2 Semantic Relations

In our experiment, we use an inventory of 22 se-
mantic relations proposed by Girju (2006) for in-
terpreting the nominal compounds. We chose this
list as it contains clearly defined semantic relations,
with clear and well defined boundaries and sufficient
coverage of the different possible semantic relations
that can exist between two nouns. Moreover, most
of these relations are captured as features in Pur-
poseNet. This simplifies the task of mapping fea-
tures from the ontology to these relations in the Pur-
poseNet experiment.

5.3 Annotation

We used two human annotators for annotating the
compounds. Only a list of compounds and the an-
notation guidelines were provided for the annota-
tion. The compounds were allowed to be anno-
tated with more than one semantic relation, as and
when suitable. Table 4 shows the distribution of the
compounds among the different relations, for each
of the annotators. Rarely occurring relations (<5
times) have not been considered in the table. We ob-
serve that different semantic relations in our inven-
tory provide different depths of interpretations for
the nominal compounds. For example, the type rela-
tion has a very ’surfacy’ nature, and most of the com-
pounds can be classified into this class. A wine bot-
tle is a type of bottle, glass furniture is a type of fur-

Relation Annotator 1 Annotator 2
Part-Whole 184 90

Type 178 192
Purpose 132 122
Source 70 78

Property 25 22
Hypernymy 25 30

Location 34 30
Topic 12 8

Theme 8 8
Temporal 5 5

Table 4: Distribution of annotated data among the rela-
tions.

niture, and similarly, orange juice is a type of juice.
Alternatively, each of these compounds can be inter-
preted using deeper semantic relations, such as pur-
pose and source. A wine bottle can be interpreted as
a bottle used to serve wine, a glass furniture is furni-
ture made up of glass, and orange juice is juice made
from orange. Therefore, in case of such compounds,
both type and purpose, type and source can be con-
sidered as the appropriate annotations. However, all
occurrences of purpose, source and other relations
cannot be replaced using type. Since there is no
clear method of distinguishing the agreements from
the disagreements in annotations involving type, we
choose to calculate the inter annotator agreement in
two ways. The first calculation counts all the mis-
matches between type and purpose, type and source
etc as disagreements, while the second calculation
counts all the mismatches containing type as one of
the annotations as an agreement between the annota-
tors. In the first case, the inter-annotator agreement
on the 600-nominal compounds set was 65.6% with
a moderate kappa score of 0.57. The second calcula-
tion, on the other hand, produced a high inter anno-
tator agreement of 89% with a kappa score of 0.87.
The ideal inter-annotator agreement can be defined
as a value belonging to range bound by these two
limits.

It is evident from analysis that part-
whole(meronymy) and purpose exhibit very
little agreement with each other. This can be mainly
attributed to the possibility of more than one correct
interpretations for a given compound. For example,
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Annotation1 Annotation 2 Disagreement count
Part-Whole Type 90

Purpose Type 22
Source Type 14

Hypernymy Type 12
Part-Whole Source 10

Property Type 6
Part-Whole Purpose 6

Purpose Theme 6
Purpose Location 6
Source Hypernymy 6

Table 5: Distribution of the disagreements in annotation3.

a glass furniture can be interpreted as ’furniture
made of glass’ (part-whole) or ’furniture made from
glass’ (source) or ’a type of furniture’ (type). All
such instances of disagreements that occurred in our
data set were solved using a third annotator whose
judgement was chosen as final.

6 Experiment and Results

We conducted our experiments on the set of 600
nominal compounds extracted from web using the
Bing Search API. Each nominal compound was al-
lowed to be interpreted using more than one fea-
ture from PurposeNet. These features were in turn
mapped to their corresponding semantic relations in
our inventory using a set of rules that were built
manually based on the definitions of the features
and semantic relations. In order to evaluate the
performance of the hybrid approach, we adopt a
single-label evaluation method where compounds
with atleast one correctly predicted label are con-
sidered to be correctly interpreted by our system.
However, we disregard the less informative labels
such as hypernymy and type as correct interpreta-
tions for any compound, and do not consider them
in our evaluation. The results of our experiment on
the 600 nominal compounds are reported in detail in
Table 6. The first column lists all the semantic rela-
tions that were found in our data set. The second col-
umn reports the distribution of the compounds that
were successfully interpreted by our model, with de-
tailed contribution of each phase, for each semantic

3Minor disagreements (<5) have not been shown in the ta-
ble.

Relation
Predicted

Unpredicted
Phase1 Phase2

Meronymy 22.5 14 3
Purpose 16.5 3.5 6
Type 22.5 12 10
Location 0 2.5 1
Source 2.5 2.5 1
Hypernymy 6 5 2
Property 3 0 2
Beneficiary 3.5 1 0

Table 6: Distribution of the predicted and unpredicted
nominal compounds.

relation. The last column gives the distribution of
those compounds that failed to be interpreted by our
hybrid model. Compounds that were annotated with
multiple labels were counted under each of the la-
bels. We observe that our system has precision and
recall values of 0.76 and 0.92 respectively, while its
overall accuracy (calculated as the ratio of the num-
ber of correctly predicted compounds to the total
number of compounds) is 0.70. As shown in the
table, most of the uninterpreted compounds belong
to type and purpose relation. We also observe that
of all the nominal compounds that were predicted,
55% of the compounds were predicted in phase 1 of
the approach, while the remaining 39% of the com-
pounds were predicted at the end of phase 2. This
indicates that the addition of lexical word similarity
measures to our ontology search has caused a signif-
icant improvement in the results of compound inter-
pretation.

7 Conclusion and Future Work

We have observed that most of the approaches pro-
posed so far for understanding nominal compounds
implement machine learning techniques or statis-
tical prediction methods to classify nominal com-
pounds into different semantic relations. In this pa-
per, we described a hybrid, ontology-based approach
for the understanding and labeling nominal com-
pounds with semantic relations. It is a unique sys-
tem that combines lexico-semantic information from
a domain-specific hierarchy with gloss information
from WordNet for interpreting two word nominal
compounds. It implements an efficient look-up
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mechanism that uses minimised search space for
searching nominal compounds in the ontology. To
increase the robustness of the system, we use lexical
similarity measures based on gloss information from
WordNet to handle compounds beyond the scope of
our ontology.

We presented the experimental results of our hy-
brid approach, and compare the contribution of each
phase of our system in successfully interpreting
nominal compounds. Our system has achieved an
accuracy of about 70% on domain-specific nominal
compouns and is comparable in its performance to
Girju’s state-of-the-art best performing system for
domain-independent nominal compounds (Girju et
al., 2005) that reports, on an average, an accuracy
of 75%. This motivates us to further experiment
our hybrid approach our hybrid model on different
ontologies (such as ConceptNet and WordNet) and
different lexical and relational word similarity mea-
sures and compare their performance for the task of
compound interpretation.
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