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Abstract. This paper deals with how to enhance the performance of a rule-based parser 

using statistical Information. PP (Prepositional Phrase) attachment ambiguity is one of the 

main ambiguities found in parsing. We therefore conducted some experiments on extracting 

statistical information for PP attachment from a corpus, and on applying such information to 

a rule-based parser. Two types of information are used: supervised learning data and 

unsupervised learning data. In this paper, we show how we apply these types of information 

and to what degree they contribute to the PP attachment as well as to the overall parsing 

performance. The final results show a 5.42% performance improvement in PP attachment, 

with an 8.7% error reduction ratio in the overall parsing performance. 
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1 Introduction 

For a rule-based parser using CFG as its grammar, syntactic ambiguity is a challenging problem 

as it becomes more difficult to resolve conflicts between rules as the number of rules increases. 

Certain methods to solve this problem have been suggested, and have generally introduced 

statistical approaches (Sagae and Lavie, 2003; Foth and Menzel, 2006). 

Many recent parsing technologies have also taken statistical approaches, as we can get more 

linguistic data, such as the Penn Treebank (Collins, 1999; Collins, 2000; Charniak, 2000). 

These technologies have shown encouraging performances. But practically speaking, statistical 

parsing has efficiency and scalability problems. As a statistical parser generally uses a 

significant number of parameters, and the search space is large, the parsing speed is relatively 

low and is not adequate for a real-time application.  In our previous research, we conducted 

some experiments on applying statistical information to a rule-based parser (Roh, 2009). The 

parsing performance was affected mainly in the attachment performance and by the attachment 

information. Therefore, we do not need to apply full statistical information. 

The scalability problem indicates the difficulty in incorporating other types of knowledge 

for use in parsing. Usually, a practical parser uses various types of additional knowledge for 

parsing, such as lexical patterns or semantic patterns. However, it is not easy to incorporate 

other knowledge into a parsing system based on probability. It is also difficult to tune the parser 

minutely with respect to each sentence. Thus, we want to use a rule-based parser as a base 

parsing system, and selective statistical information for ambiguity resolution. 

Our parsing system conducts bottom-up chart parsing using ACFG (Augmented Context 

Free Grammar) rules, which have many syntactic and semantic features and constraints for 
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prohibiting implausible syntactic structures and prioritizing the rules. These parsing rules are 

initially extracted from the Brown Corpus in the Penn Treebank. Not only have the syntactic 

tags and bracketing style been modified, but the rules have also been revised and enlarged in 

the course of extending the target domain of the parser.  Our parser shows a competitive 

performance in rule-based parsing. However, the parsing performance remains at a standstill, 

and we now need to resolve syntactic ambiguity for additional improvements in performance. 

In the next section, we briefly introduce a PP attachment task, and in sections 3 and 4, we 

present ways to apply supervised learning data and unsupervised learning data for a PP 

attachment, respectively. In section 5, we show a method for applying two types of data. Finally, 

we conclude this paper with several remarks on our future work. 

2 PP attachment Disambiguation 

PP attachment disambiguation is a task used to determine which site a PP is attached to while 

parsing. There have been many researches regarding PP attachment disambiguation 

(Ratnaparkhi, 1998; Stetina and Nagao, 1997; Olteanuand and Moldovan, 2005; Foth and 

Menzel, 2006). The main issues are mainly concerned with data extraction, learning methods, 

disambiguation models, and the treatment of the data sparseness problem.  

Most of them simplify the problem into selecting an attachment site between a noun and a 

verb. However, in real parsing, the situation is more complicated. There can be more 

attachment sites, and the impact of a PP attachment on the other part has to be considered.  

A few researchers have dealt with multiple PP attachments (Merlo, 1997; Bharati, 2005). Foth 

and Menzel (2006) presented a more comprehensive disambiguation method using Lexical 

Attraction, which is a type of mutual information. 

We solve this problem by simply giving an attachment weight to the existing chart weight. 

We focus on how we can calculate the attachment weight when a PP is attached to some other 

constituent. 

3 Supervised Learning 

In conducting supervised learning, we consider a PP attachment task as a process of full 

syntactic analysis, and we use the statistical model typically used in statistical parsing.  

There are two different probabilistic models depending on how the probability is 

conditioned. One is a bilexical model (Collins, 1996), which is a kind of discriminative model, 

and the other is a generative model (Collins, 1999). In the bilexical model, given two words wi 

and wh, the probability that wi is dependent on wh is expressed as follows. 

),|( hi wwDP , (1) 

where D represents a dependency relation between wi and wj. 

In the generative model, given a head, wh, the probability that a dependent wi will be 

generated is expressed as follows. 

)|( hi wwP  (2) 

3.1 Generative Model 

The state of the art model in statistical parsing is the generative model (Collins, 2000; Charniak, 

2000). Therefore, we first consider this model in our analysis.  The generative probability that 

the i-th dependent (child) di is dependent on head child h in a chart generated in chart parsing is 

expressed as follows. 

))(),(),(|)(),(()|( idisthlhtdldtPhdP iii  , (3) 

where t(x) represents the tag of x, l(x) represents the lexical root of x, and dist(i) represents 

the distance feature between the head child and i-th dependent in the chart.  
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to the matter
 

 

Figure 1: An example chart 

 

Figure 1 shows a snapshot of the parsing process of the sentence, “President Bush called his 

attention to the matter.” In the chart, the generative probability is as follows. 

)100,,|,()|( 2 VBDcallTOtoPhdP                                 (4) 

The distance feature “100” captures how far the dependent is from the head child, and is a 

function of the surface string, as in Collins (1999). The problem of using such probability is 

that the generative probability is too low. This makes it difficult to apply other types of 

knowledge such as lexical or semantic patterns, or to apply statistical information selectively. 

The desirable characteristic of the lexical dependency weight is that the weight is 1 when the 

head child and its dependent have no preference, is a value greater than 1 when two words have 

a dependency preference, and is a value between 0 and 1 when they have a dependency 

dispreference. For this, we normalize the generative probability by dividing it with the 

generative probability given only the tag of the head child. The dependency weight is expressed 

as follows. 

))(),(|)(),((

))(),(),(|)(),((
)|(

idisthtdldtP

idisthlhtdldtP
hdW

ii

ii
i    

(5) 

Considering that the rule probability of PCFG reflects only the probability about a syntactic 

tag, the weight can be regarded as reflecting the variation through lexicalization. 

The above method suffers from the data sparseness problem that the lexical statistical 

approach usually has. The following back-off method can be used. 

))(),(|)((

))(),(),(|)((
)|(

idisthtdtP

idisthlhtdtP
hdW

i

i
i   

(6) 

The total weight of rule r applied to a chart is then calculated by the following. 


i

i hdWrPrW )|(*)()(  (7) 

Generally, the probability of a parse tree is calculated by multiplying all rules applied to the 

parsed tree, such as 
i

irPTP )()( . Likewise, the weight of a parse tree with statistical 

information is calculated by 
i

irWTW )()( , and a parse tree with maximum weight is 

selected as the final result. 

3.2 Bilexical Model 

In the bilexical model, the dependency probability that i-th dependent di is dependent on head 

child h in a chart is expressed as follows. 

))(),(),(),(),(|(),|( idistdldthlhtDPdhDP iii   (8) 

In the chart in figure 1, the dependency probability is as follows. 

)100,,,,|(),|( TOtoVBPcallDPtocallDP   

As in the case of the generative model, the probability has to be applied in the form of a 

weight. The dependency weight is expressed as follows. 
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))(),(),(|(

))(),(),(),(),(|(
),|(

idistdthtDP

idistdldthlhtDP
dhDW

i

ii
i    

(9) 

This shows the ratio of the probability conditioned on particular lexical items to the 

probability conditioned on a more generalized tag. 

In previous research, we conducted experiments on these two models and obtained better 

results from the generative model (Roh, 2009). However, in analyzing the errors in detail, we 

found that the dependency weight of the bilexical model has some problems.  

First, the ratio is not adequate in this situation. For example, for P(D|h,p) = 1.0 and 

P(D|t(h1),t(p)) = 0.5, the weight is 2.0, while for P(D|h2,p) = 0.9 and P(D|t(h2), t(p)) = 0.3, the 

weight is 3.0. Here, p and h2 have greater weight, but it is obvious that p and h1 must have 

more weight based on the definition of bilexical dependency probability. In other words, the 

dependency weight should be purely dependent on the bilexical dependency probability, not on 

the ratio. 

Second, p and h1 need to have much greater weight as P(D|h,p) approaches 1. Thus, the 

weight should not be linearly proportional to P(D|h,p). With this in mind, we can revise the 

expression as follows. 

)5.0),|((),|( 
ii dhDPdhDW

n
  

(10) 

In the above expression, when ),|( idhDP  = 0.5, the weight becomes 1.0, which has no 

effect as a weight. This is reasonable since we are unable to give either preference or 

dispreference if the probability that h and p have a dependency relation is one half. The value 

P(D|h,p)+0.5 then has a range of 0.5 to 1.5, and the weight decreases or increases as it 

distances itself from 1.0. The value n was determined experimentally, and we use 7.0 as its 

value. 

3.3 Extracting Lexical Dependency Information 

We use the Penn Treebank as the linguistic data source (Marcus, 1993). When extracting the 

dependency data from the Penn Treebank, there are certain points that we need to consider.  

In the Penn Treebank, some coarse tags are used. For example, the part of speech (POS) tag 

“IN” includes both prepositions such as “in” and conjunctions such as “while.” Also the 

Treebank does not distinguish the “TO” of a preposition from the “TO” of a to-infinitive. 

Moreover, SBAR represents all types of clauses including noun clauses such as that-clauses, 

adverbial clauses such as if-clauses, and relative clauses such as which-clauses. In addition, 

while our parser basically uses the Penn Treebank tags, we had to modify the syntactic and POS 

tags, which resulted in some mismatched tags. For example our parser distinguishes adverbial 

clauses (SBARV) such as if-clauses from that-clauses (SBAR).  

Lastly, using a syntactic tag eliminates some important information. In the case of a verb, 

the syntactic tag “VP” (Verb Phrase) misses the form information of the verb, for example, 

whether it is in the gerund form or infinitive form. Thus, we distinguish between them by using 

different tags such as VPG (present participle VP), VPB (infinitive VP), VPN (past participle 

VP), etc, only when the verb is used as a dependent. When the verb is used as a head, we do not 

distinguish them. 

For this problem, we do not use a POS tag but rather the syntactic tag of the parent of the 

pre-terminal in the syntactic tree, and we conduct a tag conversion. 

The overall procedure is as follows: 

 

 Find its heads in the pre-terminals using a tree structure. The heads are marked by „!‟.  

(SS (S!  

    (NP (NNP President) (NNP Bush) ) 

    (VP! (VBD! called)  
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         (NP (PRP$ his) (NN! attention) ) 

         (PP (TO! to)  

             (NP (DT the) (NN! matter) ))) 

    (. .) )) 

For example, from the parse tree below, “President/NNP Bush/NNP called/VBD 

his/PRP$ attention/NN to/TO the/DT matter/NN” is extracted. 

 Conduct word/tag normalization, where the words are stemmed, and those tagged with 

“CD, NNP” are replaced by their tags, while the tags are replaced by their parent tags:  

(Bush/NNP called/VBD!) => (NNP/NNP called/VBD!) 

 Count all the events of word pairs with the distance feature. 

From (call/VP! attention/NP to/PP), the following are generated. 

000 call/VP! attention/NP 

100 call/VP! to/PP 

100 call/VP 

 Calculate all the lexical dependency weights according to the formulas used for the 

dependency weight. 

3.4 Experiments 

For the experiment, we use the standard data division (Collins, 1999). The lexical data was 

extracted from section 02-21 of the WSJ corpus. In addition, section 23 was reserved for the 

evaluation, and section 00 was used as a development set.  

The common method used to evaluate the CFG style parsing performance is through 

matching bracketing.  However, this method is heavily affected by the tags and bracketing style. 

Therefore, we use the dependency accuracy between words. Except for the headword of a 

sentence as a whole, all words in the sentence have their own headword. Therefore, the 

dependency accuracy is measured by obtaining and matching the headwords. The usual 

dependency accuracy includes the match of the relation between the head and its dependents 

(Lin, 1998). However, we do not consider the tags or any relation due to the tag disagreement 

and bracketing style.   The dependency performance is measured by obtaining how many words 

are attached to its correct headword. Table 1 shows the results. 

 

Table 1: Attachment accuracy of supervised learning 

 PP attachment 

Accuracy 

Dependency 

Accuracy 

Base parsing system 79.23% 91.39% 

generative model 83.04% 91.92% 

bilexical model 83.44% 91.97% 

 

Table 1 shows that the bilexical model is slightly better than the generative model. This is 

considered reasonable since the PP attachment problem is to find the attachment site when a 

sentence is given, and is better described by the bilexical model. The baseline for the 

experiments in this paper is our base parsing system, as our main concern is not PP attachment 

itself, but how we can improve the parsing performance using a statistical PP attachment 

disambiguation method. 

4 Unsupervised Learning 

4.1 Data Extraction 

In an unsupervised learning method for PP attachment, the learning data is usually extracted 

heuristically (Ratnaparkhi, 1998). We followed a similar method. For the unsupervised learning 
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data, the raw corpus is tagged and chunked, and all chunked NPs are replaced with their head 

words. Next, 4-tuples (v, n, p, n2) are extracted, where v is the closest verb occurring on the left 

of preposition p, and there is no conjunction except for a coordinate conjunction between v and 

p. In addition, n is the closest noun occurring on the left of preposition p with no verb between 

n and p. Finally, n2 is the object noun of p. If there is not either v or n, it is denoted as NULL. 

For example, the sentence “A man in the park saw a girl with a telescope” is tagged and 

chunked as follows: 

A/DT man/NN in/IN the/DT park/NN saw/VBD a/DT girl/NN with/IN a/DT telescope/NN ./. 

=> 

man/NN in/IN park/NN saw/VBD girl/NN with/IN telescope/NN ./. 

 

4-tuples: (NULL, man, in, park), (see, girl, with, telescope) 

 

The number of triple (v/n, p, n2) is then counted as follows according to the ambiguity. 

1) If a 4-tupe has the form of (v, NULL, p, n2), then add 1 to the number of triple (v, p, n2).  

2) If a 4-tupe has the form of (NULL, n, p, n2), then add 1 to the number of triple (n, p, n2). 

3) If a 4-tupe has the form of (v, n, p, n2), then several counting methods are considered. 

Counting method 1: Add 0.5 to the number of triple (v, p, n2) and 0.5 to the number of triple 

(n, p, n2). 

Counting method 2: Add P(D|VERB, PREP) to the number of triple (v, p, n2) and 

P(D|NOUN, PREP) to the number of triple (n, p, n2). 

Counting method 3: Add P(D|VERB, p) to the number of triple (v, p, n2) and P(D|NOUN, p) 

to the number of triple (n, p, n2). 

Counting method 4: Add P(D|v, p) to the number of triple (v, p, n2) and P(D|n, p) to the 

number of triple (n, p, n2). 

 

In the above example sentence, the numbers of triples are as follows. 

Counting method 1: 

(man, in, park):1, (see, with, telescope):0.5, (girl, with, telescope): 0.5 

Counting 2: 

(man, in, park):1, (see, with, telescope):P(D|VERB, PREP) = 0.395, (girl, with, telescope): 

P(D|NOUN, PREP) = 0.691 

Counting 3: 

(man, in, park):1, (see, with, telescope): P(D|VERB, with) = 0.527, (girl, with, telescope): 

P(D|NOUN, with) = 0.632 

 

For the linguistic source, the BLLIP WSJ corpus was used, which is composed of about 1.8 

million automatically tree-tagged sentences. The pos-tagged results were extracted, the results 

of which were used to extract the triples. The number of triples extracted was 1,466,472. 

4.2 Model 

For the attachment weight, we used the generative model and its ratio to a more general case 

conditioned on tags as follows. 

))(|(

)|(
)1(

))(|2,(

)|2,(
)|2,(

wtpP

wpP

wtnpP

wnpP
wnpW   ,                      (11) 

where w is a verb or a noun, t(w) is the tag of w, and λ is an interpolation constant for data 

sparseness. The method used to apply the weight is similar to that of the supervised learning. 


i

wnpWrPrW )|2,(*)()(  ,                                         (12) 

where α is a proportional constant used for scaling the PP attachment weight in order to adjust 

the weight according to the parsing weighting mechanism, and is determined experimentally.  

564



4.3 Experiments 

As in the experiments on supervised learning, the evaluation was conducted using section 23 of 

the WSJ corpus. Table 2 shows the results. 

 

Table 2: Attachment accuracy of unsupervised learning according to the counting methods of 

ambiguous data 

 PP attachment 

Accuracy 

Dependency 

Accuracy 

Base parsing system 79.23% 91.39% 

Counting method 1 82.33% 91.70% 

Counting method 2 81.26% 91.65% 

Counting method 3 81.71% 91.69% 

Counting method 4 81.68% 91.70% 

(v, p, n2): (n, p, n2) = 0.7:0.3 82.95% 91.78% 

 

One puzzling result is that counting method 1 is better than the other cases where supervised 

learning data are applied. We assumed that a more informed case would have better results than 

the case of simply giving one half. Therefore, we conducted additional experiments, changing 

(v, p, n2) using the constant values of 0.6, 0.7, and 0.8. As a result, 0.7 gives the best results, 

and was thus selected as the final value. However, further analysis regarding these results is 

needed. 

5 Combination 

We considered two methods in combining supervised and unsupervised learning data.  

1)  We applied supervised learning data when supervised learning data was available for the 

attachment weight, and we applied unsupervised learning data only when there was no 

supervised learning data available (super > unsuper). 

2)  We applied the attachment weight using both supervised and unsupervised learning data at 

the same time (super + unsuper). 

 

Table 3 shows the results. 

 

Table 3: Attachment accuracy of combining supervised and unsupervised learning methods. 

 PP attachment 

Accuracy 

Dependency 

Accuracy 

Base parsing system 79.23% 91.39% 

supervised 83.44% 91.97% 

unsupervised 82.95% 91.78% 

super > unsuper 84.06% 92.09% 

super + unsuper 84.65% 92.14% 

 

Volk (2002) took the “super > unsuper” approach. It seems that these cases are different as 

they deal with PP attachment as a classification problem, while we deal with it as a weighting 

problem. Finally, using statistical information, the PP attachment performance was enhanced by 

5.42% with an 8.7% error reduction ratio in the overall parsing performance. 

6 Conclusion 

This paper presented a method to enhance the PP attachment performance in a rule-based parser. 

We conducted a comparative experiment between the bilexical and generative models for 
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supervised learning. We also applied the unsupervised learning method of PP attachment to the 

rule-based parser. The results show a 3.73% improvement in performance. 

We also conducted simple experiments on combining two types of learning methods, the 

final results of which show a 5.42% performance improvement in PP attachment, with an 8.7% 

error reduction ratio in the overall parsing performance. 

For future work, we obviously need to conduct more analysis and experiments on adding 

counts to ambiguous 4-tuples by applying the supervised learning method. In addition, we need 

a more elaborate method to combine the supervised and unsupervised learning methods. Finally, 

we plan to devise an efficient way to build a tagged corpus for PP attachment. 
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