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Abstract. Temporal information extraction is an interesting research area in Natural 
Language Processing (NLP). Here, the main task involves identification of the different 
relations between various events and time expressions in a document. The relations are 
then classified into some predefined categories like BEFORE, AFTER, OVERLAP, 
BEFORE-OR-OVERLAP, OVERLAP-OR-AFTER and VAGUE. In this paper, we report 
our works of temporal information extraction along the lines of TempEval-2007 evaluation 
challenge. We adapt supervised machine learning approach for solving the problems of all 
the three tasks, namely A, B and C. Initially, a baseline system is developed by considering 
the most frequent temporal relation in the corresponding task’s training data. Evaluation 
results on the TempEval-2007 datasets yield the F-score values of 59.8%, 73.8% and 
43.8% for Tasks A, B and C, respectively under the strict evaluation scheme. All these 
systems show the F-score values of 61.1%, 74.8% and 46.9% for Tasks A, B and C, 
respectively under the relaxed evaluation scheme. For the sub-ordinate event in Task C, the 
system shows the F-score values of 55.1% and 56.9% under the strict and relaxed 
evaluation scheme, respectively.   

Keywords: Temporal Relation Identification, TimeML, Conditional Random Field, 
TempEval-2007, Tasks A, B and C. 

1  Introduction 
Temporal information extraction has become a popular and interesting research area of Natural 
Language Processing (NLP) since the last few years. Generally, events are described in different 
newspaper texts, stories and other important documents where events happen in time. Many text 
processing applications require identifying these events described in a text and locating these in 
time. This is also important in a wide range of NLP applications that include temporal question 
answering, machine translation and document summarization etc. The TempEval-2007 
challenge (Verhagen et al., 2007) addressed this question by establishing a common corpus on 
which various research teams came up with different approaches to find temporal relations. In 
TempEval-2007, the following types of temporal relations (i.e. event-event and/or event-time) 
were considered: 

• Task A: Relation between the events and times within the same sentence. 
• Task B:  Relation between events and document creation times. 
• Task C. Relation between the verb events in adjacent sentences. 

In each of these tasks, systems attempted to annotate appropriate pairs with one of the 
relations, namely BEFORE, BEFORE-OR-OVERLAP, OVERLAP, OVERLAP-OR-AFTER, 
AFTER or VAGUE. The participating teams were instructed to find all temporal relations of 
these types in a corpus of newswire documents.  
     In the literature, temporal relation identification has been treated as a classification problem 
and solved using machine learning in a number of proposals (Boguraev et al., 2005; Mani et al., 
2007; Mani et al., 2007; Chambers et al., 2007). Some of the TempEval-2007 participants 
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(Verhagen et al., 2007) also proposed several machine learning based approaches to identify 
and classify different temporal relations. In TempEval-2007 (Verhagen et al., 2007) task, a 
common standard dataset was introduced that involves three temporal relations. The participants 
reported F-scores values for event-event relations ranging from 42% to 55% and for event-time 
relations from 73% to 80%.  

In our present work, we propose supervised machine learning approaches to solve the 
problems of all the three tasks, i.e. A, B and C of TempEval-2007. The task of temporal relation 
identification is considered as a pair-wise classification problem, where each event/time, 
event/document creation time or event/event pair is assigned one of the TempEval relation 
classes (i.e. BEFORE, AFTER, etc.). Event/time pairs are encoded using syntactically and 
semantically motivated features in the TimeBank corpus. These features are automatically 
extracted from the training data and used to train a supervised machine learning model, 
Conditional Random Field (CRF). It is to be noted that we only used the features available in 
the training/test datasets.  
    The remainder of this paper is structured as follows. Section 2 describes about the tasks.  
Section 3 presents our proposed approach that discusses very about CRF in brief, various 
features, used to characterize the various relationships between event and time expressions, and 
the various steps of the overall system architecture. Evaluation scheme is presented in Section 4. 
Detailed experimental results are reported in Section 5. Finally, Section 6 concludes the paper. 

2  Description of Task 
In TempEval-2007, three different tasks were defined to identify various temporal relations 
from the text and classify them into some predetermined categories. Task A at TempEval 2007 
was involved with automatic identification of the temporal relations holding between events and 
all temporal expressions appearing in the same sentence. The main problem of Task B was to 
find out the relations between the events and document creation time. Task C was involved with 
the automatic identification of temporal relations holding between verb events in adjacent 
sentences. This task addresses only the temporal relations holding between time and event 
expressions that occur within the same and/or consecutive two sentence(s). In each sentence, 
only one main event is identified. If any sentence has only one event, then it automatically 
becomes the main event of that sentence. In the case of sentences with multiple events, the main 
event is determined following very shallow, syntactic-based criteria. 

 The events expressions (TEs) were annotated in the source in accordance with the TimeML 
standard (Pustejovsky et el., 2003). For all the tasks, data were provided for training and testing 
that includes annotations identifying: (1) sentence boundaries, (2) all temporal referring 
expression as specified by TIMEX3, (3) all events as specified in TimeML and (4) selected 
instances of temporal relations, as relevant to the given task. For all the tasks, a restricted set of 
event terms were identified–those whose stems occurred twenty times or more in TimeBank. 
This set is referred to as the Event Target List or ETL. Furthermore, only event expressions that 
occur within the ETL are considered. In the training and test data, TLINK annotations for these 
temporal relations are provided. The only difference being that in the test data the relation type 
is withheld. The task is to supply this label. 

3 Conditional Random Field Based Approach  
Our approach for temporal relation identification and classification is based on a supervised 
machine learning algorithm, namely Conditional Random Field (CRF). This is capable to 
include arbitrary set of features, but can still avoid overfitting in a principled manner. We 
consider the task as a pair-wise classification problem in which the target pairs–Event-Time, 
Event-Document Creation Time and Event-Event are modeled using CRF.  
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3.1 Conditional Random Field 
 
Conditional Random Field (CRF) (Lafferty et el., 2001) is an undirected graphical model, which 
is a special case of which corresponds to conditionally trained probabilistic finite state automata. 
Being conditionally trained, these CRFs can easily incorporate a large number of arbitrary, non-
independent features while still having efficient procedures for non-greedy finite-state inference 
and training. The main advantage of CRF comes from that it can relax the assumption of 
conditional independence of the observed data often used in generative approaches, an 
assumption that might be too restrictive for a considerable number of object classes. 
Additionally, CRF avoids the label bias problem. 

CRF is used to calculate the conditional probability of values on designated output nodes 
given values on other designated input nodes. The conditional probability of a state sequence 

 given an observation sequence O o1, 2, ..., TS s s s=< > 1 2,, ....., )To o=<  is calculated as: 
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f s s o t− kis a feature function whose weight where, λ is to be learned via training. The 
values of the feature functions may range between .....− ∝ +

0 1 ,( , , ))s k k t t

∝ , but typically they are binary. To 
make all conditional probabilities sum up to 1, we must calculate the normalization factor, 
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this, as in HMMs, can be obtained efficiently by dynamic programming. 
   To train a CRF, the objective function to be maximized is the penalized log-likelihood of the 
state sequences given the observation sequence: 
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where, { ( ) ( ),i io s< > } is the labeled training data. The second sum corresponds to a zero-mean, 

, 

2σ -variance Gaussian prior over parameters, which facilitates optimization by making the 
lihood surface strictly convex. Here, we set parameters like λ  to maximize the penalized log-

likelihood using Limited-memory BFGS (Sha and Pereira, 2003), a quasi-Newton method that 
is significantly more efficient, and results in only minor changes in accuracy due to changes in 
σ . 

 C   RFs generally can use real-valued functions but it is often required to incorporate the binary 
valued features. A feature function 1 ,( , , )k t tf s s o t− has a value of 0 for most cases and is only 
set to  1, when 1,t ts s−  are certain states and the observation has certain properties. 
     We have us C++ based CRF++ package1, a simple, customizable, and oed the pen source 

the CRF model. These 
features are extracted automatically from the respective datasets. Here, we mainly use various 
combinations of the subsets of the following features: 
                                                     

implementation of CRF for segmenting /labeling sequential data.  
 

3.2 Temporal Features Used for CRF Training and Testing  
We use the gold-standard TimeBank features for training and testing 

 
1http://crfpp.sourceforge.net  
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 (i).Event class: This is denoted by the ‘EVENT’ tag and used to annotate those elements in a 

xt that mark the semantic events. 
(ii) Event stem: This denotes the stem of the head event 

rms: POS information is very useful to identify various 
f ADJECTIVE, NOUN, VERB, and 

NT, PAST, FUTURE, INFINITIVE, PRESPART, PASTPART or NONE. 

olean values 

l word present 

ession: It represents the temporal relationship holding between the 

 feature represents the various temporal prepositions. 

nt tense, event aspect and temporal expression in the target sentence 
re for Task B; and event class, POS, event tense, event aspect and temporal expression in the 

tar

We rvised learning algorithm, CRF, for identifying various temporal relations and 
 document (i.e., training or test 
aluation task. The dataset is 

sponding temporal relationship type. The temporal 

te
. 

(iii). Event and time strings: This denotes the actual event strings and time.  
(iv). Part of Speech of event te
temporal relations. The features values may be either o
PREP. 
(v). Event tense: This feature is useful to capture the standard distinctions among the 
grammatical categories of verbal phrases. The tense attribute can have values, namely 
PRESE
(vi). Event aspect: This feature denotes the aspect attribute of event that may take values, 
PROGRESSIVE, PERFECTIVE and PERFECTIVE PROGRESSIVE or NONE. 
(vii). Event polarity: Polarity of an event instance, represented by the bo
POSITIVE or NEGATIVE. 
(viii). Event modality: The modality attribute is only present if there is a moda
that modifies the instance. 
(ix) Type of temporal expr
various event and time expressions.   
(x). Temporal signal: This
(xii). Temporal expression in the target sentence: This feature takes the values greater than, 
less than, equal or none. 
 

We use the following subsets of features for each task. All the listed features from (i)-(xii) 
are for Task A; POS, eve
a

get sentence are for Task C. 
      

3. 3  Various Steps for CRF based Relation Extraction 
 use supe

classifying them into some predefined categories. The input is a
set). We obtain this dataset from the TempEval-2007 ev
preprocessed for the specified CRF format. Thereafter, we extract the features in the form of 
vectors from the annotated training data. A feature vector consisting of the available features as 
described in Section 3.2 is extracted for each <event, time> pair in Task A, <event, document 
creation time> pair in Task B and <event, event> pair in Task C from the TimeBank corpus. 
The <event, event> pair in Task C could be the pairs of <main-event, main-event> and <main-
event, next subordinate event, previous subordinate event, main-event>. Now, we have a 
training data in the form ( , )i iW T , where, iW  is the ith pair along with its feature vector and iT  is 
its corresponding TempEval relation class.  
   All the feature vectors are extracted from the training data. The first attribute denotes <event, 
time> pair in Task A, <event, document creation time> pair in Task B and <event, event> pair in 
Task C. The last attribute denotes the corre
relation is annotated by one of the output labels, such as BEFORE, BEFORE-OR-OVERLAP, 
OVERLAP, OVERLAP-OR-AFTER, AFTER or VAGUE. The remaining attributes of the 
feature vector denote the features. Then, we train the CRF model using the automatically 
extracted feature vectors and by defining the appropriate feature template. Feature template 
defines the probabilities.  
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  Models are created from the training set and the feature template. The same feature extraction 
methodology is again repeated for the test data. An unknown instance of <event, time>, <event, 

asks were defined in such a way that a simple pairwise comparison is 
required to create a full temporal graph and judgments are made in 

unted as ‘failure’. The 
sta

document creation time> or <event, event> is assigned the appropriate output label, i.e. 
OVERLAP, BEFORE, AFTER, BEFORE-OR-OVERLAP, OVERLAP-OR-AFTER and 
VAGUE, depending upon the probabilities, learned in the CRF model. The output label 
predicted by the CRF is matched against the reference label.  

4   Evaluation Scheme 
For TempEval -2007, the t
possible since it was not 
isolation. The organizers used two scoring schemes: strict and relaxed.  

The strict scoring scheme only counts exact matches as success. For example, if the key is 
OVERLAP and the response is BEFORE-OR-OVERLAP then this is co

ndard definitions of precision and recall are followed:  
Pr /
Re /

ecision Rc R
call Rc K

=
=

 

RRc  is number of correct answers in the response, where, is the total number of answers in the 
response, and K is ber of answers in the key.  the total num
For the relaxed scoring scheme, precision and recall are defined as 

  Pr /ecision Rcw R=  
Re /call Rcw K=

Rcwwhere,  ber of correct answers. The F-score is measured as 
follows where Pr = Pr call:  

reflects the weighted num
ecision and Re = Re

 

      ( )2Pr*Re/ Pr ReF score− = +
 

5 
For each of the tasks, we develop a number of CRF models depending upon the various features 

e form ( , )i iW T , where, iW  is the ith pair along 

xtract the <event, time>, <event, document creation time> and <event, event> relations 
from the training corpus. 

res derived from the training corpus. 

k for every fK using the CRF toolkit with the training file and 

plate depending upon the performance. 

  Experimental Result and Discussions 

included into it. We have a training data in th
with its feature vector and iT  is its corresponding TempEval relation class. Models are built 
based on the training data and the feature template. The procedure of training is summarized 
below: 
 

1. Define the training corpus, C. 
2. E

3.  Create a file of candidate featu
4.  Define a feature template. 
5. Compute the CRF weights λ

feature template as input. 
6.  Derive the best feature tem
7.  Select the best feature template obtained from Step 6. 
8. Retrain the CRF model 
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 We use various subsets of the following feature template during our experiment. In the figure, 
wi : Current <event, time>, <event, document creation time> and <event, event> pair,   w(i-n) : 
Previous nth pair,  w(i+n) : Next nth pair, ti-1: previous  pair.        

 
 

w(i-2) 
w  (i- 1)

wi 
                                  1      wi+

w(i+2) 
Combination of wi-1 and   wi 
Combination of wi and   wi+1 

Dynamic output ta  the previous pair g (ti) of
Fea res ture vector of wi of other featu

 
Fig ent  

 
5.1  Results of Task

he following table, Table 1 illustrates the results for Task A. The system demonstrates the 
re of 59.8%, 59.8% and 59.8% under the strict evaluation scheme. 

nder relaxed evaluation, the system yields precision, recall and F-score of 61.1%, 61.1% and 

 
    
5.2  Results of T

rent representations of the feature template as 
 show that the system performs best with the context of size five (i.e., 

revious two, current and the next two <event, DCT> pairs), tense and aspect features. It shows 

Model Evaluation scheme Precision  Recall F-score  

ure 1: Feature template used for the experim

 A  
 
T
precision, recall and F-sco
U
61.1%, respectively. The baseline is based on the most frequent temporal relation encountered 
in the training data of the task. In the case of task A, the most frequent temporal relation present 
in the training data is OVERLAP. The CRF based system performs better than the baseline 
model with more than 3% F-score under the strict evaluation framework and 4.03% F-score 
under the relaxed evaluation framework. 
 

Table 1: Evaluation results for Task A (we report percentages) 

Baseline 
     

Strict 56.8 56.8 56.8 

 Relaxed  58.9 58.9 58.9 

CRF  
Strict 
 
Relaxed 

59.8 
 
61.1 

59.8 
 
61.1 

59.8 
 
61.1 

ask B  
 
Various experiments are carried out with the diffe
shown in Figure 1. Results
p
the precision, recall and F-score values of 71.4%, 71.0% and 71.2%, respectively under the 
strict evaluation scheme and 71.8%, 71.3% and 71.5%, respectively under the relaxed 
evaluation scheme. The overall evaluation results of the system are presented in Table 2. The 
baseline model is developed based on the most frequent temporal relation encountered in the 
training data for the task. In the case of task B, the most frequent temporal relation present in the 
training data is BEFORE. Results show that the CRF based system performs better than the 
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baseline model with the margins of 16.7% F-score in the strict evaluation scheme and 16.9% F-
score in the relaxed evaluation scheme. 

Table 2: Evaluation results for Task B (we report percentages) 

Model Evaluation scheme 

 
 
5.3  Results of T

itially, we experiment with the several feature templates (of Figure 1) for identifying the 
related either to main-event or sub-ordinate-event. Overall evaluation 

sults of the systems are presented in Table 3. Results show that the system performs best with 

t> pairs); tense, 

 
 

It also shows the results o ine model. In  of task C, ost frequ poral 
lation present in the training data is OVERLAP. For the main-event, CRF based system 

erforms better than the baseline model with the margins of 1.8% F-score in the strict 
eva

Precision  Recall F-score  
Baseline 
     

Strict 57.1 57.1 57.1 

 Relaxed  57.9 57.9 57.9 

CRF  
Strict 
 
Relaxed 

74.1 
 
75.1 

73.6 
 
74.6 

73.8 
 
74.8 

ask C 
 
In
various temporal relations 
re
the feature template that represents the context of size five (i.e. previous two, current and the 
next two <main-event, main-event> pairs); tense and aspect of the current pair and the dynamic 
output relation of the previous <main-event, main-event> pair. It shows the precision, recall and 
F-score values of 43.8%, 43.8% and 43.8%, respectively under the strict evaluation scheme and 
46.9%, 46.9% and 46.9%, respectively under the relaxed evaluation scheme.   
   For the sub-ordinate-event type relations, the system performs best with a feature template 
that corresponds to the context of size seven (i.e. previous three, current and the next three 
<main-event, next-subordinate-event, previous- subordinate-event, main-even
aspect and class features of the current pair and the output relation of the previous pair, 
determined dynamically at run-time. It shows the precision, recall and F-score values of 55.1%, 
55.1% and 55.1%, respectively under the strict evaluation scheme and 56.9%, 56.9% and 56.9%, 
respectively under the relaxed evaluation scheme.   

Table 3: Evaluation results of Task C (we report percentages) 

Technique Evaluation scheme Precision  Recall F-score  
Baseline 
    

42.0 
 

Strict 42.0 42.0 

 Relaxed  46.0 46.0 46.0 

CRF (main-event) 
Strict 
 
Relaxed 

43.8 
 
46.9 

43.8 
 
46.9 

43.8 
 
46.9 

CRF(subordinate-event ) 
Strict 
 
Relaxed 

55.1 
 
56.9 

55.1 
 
56.9 

55.1 
 
56.9 

f the basel  case the m ent tem
re
p

luation scheme and 0.9% F-score in the relaxed evaluation scheme. Results clearly show that 
CRF is most effective to handle the subordinate-event. It shows the overall performance 
improvement of 13.1% and 10.9% F-scores over the baseline model in the strict and relaxed 
evaluation scheme, respectively. The system also exhibits superior performance for the 
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r, we have reported our work on temporal information extraction under the 
 the supervised systems based on CRF for 

ms of all the three tasks, namely Tasks A, B and C of TempEval-2007.  Each 

 make the system more robust. Future works also include 

Verhagen, M., Gaizauskas, R., Schilder, F., Hepple, M., Katz, G., Pustejovsky, and J.: SemEval-
 15: TempEval Temporal Relation Identification. Proceedings of the 4th 
l Workshop on Semantic Evaluations (semEval-2007), pp. 75-80, Prague. 

he Fifth International Workshop on Computational Semantics (IWCS-5),  

La

ne Learning (ICML), pp. 282-289. 

subordinate-event over the main-event with more than 11.3% and 10% F-scores in the strict and 
relaxed evaluation schemes, respectively.  
        

6   Conclusion  
In this pape
TempEval 2007 evaluation exercise. We proposed
solving the proble
of the models was developed using only the features, available in the TimeBank corpus.  
Evaluation results yield the F-score values of 59.8%, 73.8% and 43.8% for Tasks A, B and C, 
respectively under the strict evaluation scheme. All these systems show the F-score values of 61.1%, 
74.8% and 46.9% for Tasks A, B and C, respectively under the relaxed evaluation scheme. For the sub-
event relation in Task C, the system showed the F-score values of 55.1% and 56.9% under the strict and 
relaxed evaluation scheme, respectively.  
   We would like to experiment by considering all and more variations of the available features. 
In future, we also want to introduce additional features that may be extracted from our existing 
tools. Some rules may be identified to
investigating other statistical learning techniques like Maximum Entropy and Support Vector 
Machine for solving the problems.  
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