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Abstract. Statistical Machine Translation (SMT) systems are usually trained on large 

amounts of bilingual text and monolingual target language text. If a significant amount of 

out-of-domain data is added to the training data, the quality of translation can drop. On the 

other hand, training an SMT system on a small amount of training material for given in-

domain data leads to narrow lexical coverage which again results in a low translation quality. 

In this paper, (i) we explore domain-adaptation techniques to combine large out-of-domain 

training data with small-scale in-domain training data for English—Hindi statistical machine 

translation and (ii) we cluster large out-of-domain training data to extract sentences similar 

to in-domain sentences and apply adaptation techniques to combine clustered sub-corpora 

with in-domain training data into a unified framework, achieving a 0.44 absolute 

corresponding to a 4.03% relative improvement in terms of BLEU  over the baseline.  
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1 Introduction 

In general, SMT models are trained on large corpora which may include quite heterogeneous 

topics. These topics usually define a set of terminological lexicons. Terminologies need to be 

translated taking into account the semantic context in which they appear. The semantic 

dependency problem could be overcome by learning topic-dependent translation models. There 

has been increased interest in incorporating data from domains with sufficient data in order to 

improve translation quality for small-data domains. 

Several approaches have been applied to domain adaptation such as using two phrase tables 

jointly with a data source indicator feature added to the log-linear combination (Nakov, 2008), 

which has shown good results. Some researchers use multiple decoding paths of PB-SMT 

decoders such as Moses (Koehn et al., 2007) for multi domain model adaptation (Koehn and 

Schroeder, 2007). Adaptations on the alignment model have been investigated where word 

alignments learned from a large out-of-domain corpus are used to align words for a small-scale 

domain (Wu et al., 2005). Some researchers proposed a way to retrieve only those sentences 

which are most similar to the test data in order to improve the training data’s match with 

respect to domain, topic, and style (Eck et al., 2004). Recently, researchers incorporate out-of-

domain data through learning phrase templates (phrase generalisation) in order to improve 

translation quality (Lim and Kirchhoff, 2008).  

In the present work, we conduct experiments on the English—Hindi language pair. Like 

other Indian languages, Hindi is also a free phrase order (used with emphasis and complex 

structures) language. Therefore, applying adaptation techniques on such a language pair could 

produce interesting findings.  

For adaptation purposes, previous research used similarity metrics to cluster heterogeneous 

corpus data into sub-corpora with homogeneous topics. In order to compute the distance 
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between a sentence and a cluster, different similarity metrics have been proposed. (Carter, 1994) 

introduced an entropy reduction based similarity metric to cluster a multi-domain monolingual 

corpus. A regular expression based similarity function has been defined to build class specific 

language models (Hasan and Ney, 2005). In our research, we explore a clustering technique 

based on an n-gram overlap metric to extract sentences similar to in-domain text from large out-

of-domain training data. 

We employ domain adaptation techniques to adapt an out-of-domain bilingual corpus to an 

in-domain SMT model using clustering to extract sentences similar to in-domain text from large 

out-of-domain training data. We apply adaptation techniques to combine sub-corpora with in-

domain small-scale training data into a unified framework. 

The remainder of the paper is organized as follows. In section 2 we discuss related work. 

Section 3 describes experimental results using our baseline SMT model. In section 4 we 

describe the domain adaptation techniques which are employed to combine multiple models. 

Section 5 presents the results obtained, together with some analysis. Section 6 concludes, and 

provides avenues for further work. 

2 Related Work 

Topic-dependent modeling was effectively applied in speech recognition to improve the quality 

of models (Carter, 1994). Adaptation technology has been widely used in language modeling in 

the same filed over the last decade (Iyer et al., 1997).  

Langlais (2002) was the first to introduce domain adaptation in SMT by integrating 

terminological lexicons in the translation model resulting in a significant reduction in word 

error rate (WER). Over the last years, many researchers have investigated the problem of 

combining multi-domain data. Wu and Wang (2004) and Wu et al. (2005) propose an alignment 

adaptation approach to improve domain-specific word alignment. 

Eck et al. (2004) present a language model (LM) adaptation technique in SMT applying 

information retrieval theory following the approach of Mahajan et al. (1999) in speech 

recognition. This approach was further refined by Zhao et al. (2004). Hildebrand et al. (2005) 

adapt the translation model by selecting similar sentences from the available training data 

applying the approach of Eck et al. (2004). The adapted models significantly improve the 

translation performance compared to baseline systems. 

More recently, Bulyko et al., (2007) studied language model adaptation for SMT. They 

explored discriminative estimation of language model weights by directly optimizing machine 

translation evaluation metrics such as BLEU score. An improvement 0.4 BLEU score was 

reported. 

Hasan and Ney (2005) cluster the training sentences into specific classes based on regular 

expressions to build class specific language models. They proposed a method of interpolating 

class specific and global language models following the mixture model proposed by Iyer et al. 

(1999). The results look promising in terms of perplexity reduction, as well as error rates 

obtained for a translation task using an n-best list rescoring framework. Both Yamamoto and 

Sumita (2007) and Foster and Kuhn (2007) extended this work to include the translation model. 

Yamamoto and Sumita (2007) used an unsupervised clustering technique on an unlabelled 

bilingual training corpus. Each cluster is regarded as a domain. Clusters are defined 

automatically (without human knowledge) and created by the entropy reduction based method 

(Carter, 1994). Civera and Juan (2007) introduce the mixture extension for HMM alignment 

models. This approach generates topic dependent viterbi alignments to feed a state-of-art phrase 

based SMT (PB-SMT).  

Koehn and Schroeder (2007) investigated domain adaptations by integrating in-domain and 

out-of-domain language models as log-linear features in an SMT model. They also used 

multiple decoding paths (Birch et al. 2007) for combining multiple domain translation tables in 

the state-of-the-art PB-SMT decoder Moses (Koehn et al., 2003).  
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Nakov (2008) combine an in-domain model (translation and reordering model) with an out-

of-domain model (translation and reordering) into Moses (Koehn et al., 2007). They derived 

log-linear features to distinguish between phrases of multiple domains by applying the data-

source indicator features and showed modest improvement in translation quality. 

Munteanu and Marcu (2006) automatically extract in-domain bilingual sentence pairs from 

large comparable corpora to enlarge the in-domain bilingual corpus. They showed a modest 

gain over the baseline system. Ueffing et al. (2007) introduced transductive semi-supervised 

learning for SMT, where source language corpora are used to train the models. The transductive 

learning can be seen as a means to adapt the SMT system to a new domain. Sentences from the 

devset or testset are translated repeatedly and the generated translations are added to training 

data to improve the performance of the SMT system. They reported a significant improvement 

of BLEU over the baseline.  

Wu et al. (2008) proposed a method to perform domain adaptation for SMT, where in-

domain bilingual data do not exist. The transductive learning method (Ueffing et al. 2007) has 

been used to adapt the in-domain monolingual corpus. Wu et al. (2008) also showed that log-

linear interpolation performs better than linear interpolation to combine in-domain and out-of-

domain language models as well as translation models.  

Snover et al. (2008) describes a novel domain adaptation method for utilizing monolingual 

target data to improve the performance of a statistical machine translation system on news 

stories. For the translation of each source text, a large monolingual data set in the target 

language is searched for documents that might be comparable to the source text. These 

documents are then used to adapt the MT system to increase the probability of generating texts 

that resemble the comparable document. Experimental results show substantial gains.  

Lim and Kirchhoff (2008) proposed a method for incorporating out-of-domain data through 

phrase generalization in order to improve the Italian-English translation quality. They showed a 

noticeable improvement in translation quality. 

Finch and Sumita (2008) employed probabilistic mixture weights to combine two models for 

questions and declarative sentences with a general model. Foster and Kuhn (2007) used 

distance based weights in a mixture model. In contrast to their work, Finch and Sumita (2008) 

used a probabilistic classifier to determine a vector of probability representing class-

membership. They performed experiments on a number of language pairs and experimental 

results showed the usefulness of their method. 

Domain adaptation techniques can be broadly divided into two categories: (i) adaptation 

techniques to improve word alignment models; such as Wu et al. (2005) and Civera and Juan 

(2007) and (ii) adaptation techniques to combine multiple domain models; such as Koehn and 

Schroeder (2007) and Nakov (2008). The present work falls into the second type of adaptation 

method.  

Identifying similar sentences plays an important role in domain adaptation. Experiments on 

detecting and clustering similar sentences from a corpus have been extensively studied in many 

natural language processing applications. Seno and Maria (2008) performed clustering methods 

to extract similar sentences from text documents.  

3 Experimental Data 

The shared task on English—Hindi SMT (Venkatapathy, 2008) released two different datasets:  

(1) TIDES-IIIT Dataset: this dataset was collected for the DARPA-TIDES surprise language 

contest on Statistical Machine Translation in 2002. This corpus is general domain with news 

articles forming the greatest proportion. The training, development and test sets contain 49,504, 

988 and 697 sentences respectively.  

(2) EILMT-Tourism Corpus: this dataset was provided by the EILMT consortium funded by 

DIT, Govt. of India. This dataset is a domain-specific corpus developed purely to build machine 

translation systems catering for the tourism domain. The released EILMT dataset was not a 
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discrete set, i.e. there were some common sentences among the testset, devset and training set. 

Therefore, for proper evaluation we have removed the duplicate sentences among them to make 

it a discrete dataset.  The training, development and test sets contain 6,755, 500 and 495 

sentences respectively. 
 

Table 1: Baseline results on EILMT and TIDES datasets. 

Baseline BLEU NIST METEOR WER PER 

EILMT 10.93 4.56 28.59 82.06 65.67 

TIDES 9.56 4.29 37.76 83.99 62.77 

Concat
1
 10.78 4.65 34.18 82.28 56.48 

 

 Table 2: Experiments adding domain-specific lexicon. 

TIDES Train Data+ EILMT lexicon BLEU NIST METEOR WER PER 

LM (EILMT) 8.25 4.31 37.08 84.61 58.54 

LM (EILMT+TIDES)
2
 8.15 4.16 37.68 84.96 59.73 

Baseline results for the two data sets are reported in Table 1. The accuracy of the EILMT 

baseline system (10.93 BLEU) is much higher than the TIDES baseline system (9.56 BLEU), 

although the size of the TIDES training data is almost eight times the EILMT training data. One 

possible reason may be that the sentences in TIDES are not faithful translations i.e., the target 

sentences convey only the meaning of the source sentences in the best possible way in the 

target language (Venkatapathy, 2008). 

Table 1 shows that concatenating TIDES training data with EILMT training data hurts the 

translation quality when translating the EILMT testset (0.15 BLEU point below the baseline). 

In the above situation, the out-of-domain training data overwhelms the in-domain training data 

due to the sheer relative size. This result clearly indicates the necessity of careful adaptation of 

out-of-domain data in English—Hindi SMT.  

3.1 Adding a Domain-Specific Lexicon 

Langlais (2002) was the first to add a domain-specific lexicon into PB-SMT to improve 

translation quality. Following his approach, we build an SMT model adding a tourism-domain 

lexicon to the large TIDES training data. An SMT model is built using this combined data. The 

experimental results are shown in Table 2. The tourism-domain lexicon is obtained by training 

on the EILMT corpus using the GIZA++ toolkit
3
.  

The first row as well as the second row in Table 2 show that results are much lower across 

the all evaluation metrics except METEOR than the results obtained by concatenating the two 

training data sets as shown in Table 2. The system produces 2.68 BLEU points less than the 

concatenation model. But, surprisingly the METEOR score is much higher than for the 

concatenation model when translating EILMT testset. This clearly indicates that we need 

further study to combine multi-domain training data.    

4 Domain Adaptation 

In this section, we describe the domain adaptation techniques that we applied to our 

experiments for translation and language model adaptation. Our goal is to make use of all 

available training data to build language models (LM) and translation models (TM). Generally, 

language model and translation model adaptation in SMT are performed applying two 

interpolation methods: (i) linear interpolation and (ii) log-linear interpolation. Wu et al. (2008) 

pointed out that log-linear interpolation performs better than linearly interpolating multiple 

                                                      
1 Concatenation of TIDES and EILMT training set (Devset, Testset and LM from EILMT data) 
2 Log-linear interpolation of EILMT and TIDES language models (This technique is described in Section 4). 
3 Available at http://www.fjoch.com/GIZA++.html 
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domain-specific language models and translation models. Therefore, we interpolated EILMT 

and TIDES language models and translation models using a log-linear combination. 

4.1 Language Model Adaptation 

We used the language modeling toolkit SRILM (Stolke, 2002) to build two language models 

from the target side of the EILMT and TIDES training data. We performed log-linear 

interpolation of multi-domain translation models. This results in a straight-forward combination 

of in-domain and out-of-domain language models. Fortunately, the PB-SMT Moses decoder 

supports log-linear combinations of language models. Language model weights are optimized 

with minimum error rate training (Och, 2003). 

4.2 Translation Model Adaptation 

In general, translation models are built separately for each of the domain specific corpora. 

These models are then combined using two techniques: (i) linear interpolation (ii) log-linear 

interpolation. We performed the log-linear interpolation of multi-domain translation models. 

There are two ways of performing log-linear interpolation:  

Multiple Decoding Paths: a recent feature of Moses is multiple decoding paths. This 

alternate decoding path model was developed by Birch et al. (2007). Here we use Moses’ 

capabilities to use different decoding paths for translation model adaptation. As per our 

requirements, we used two and three decoding paths depending upon the number of translation 

models. Each decoding path is dedicated to a particular translation table. Weights for each table 

are optimized by minimum error rate training.  In this approach, multiple lexicalised reordering 

tables are integrated in a log-linear combination into the Moses framework.  

Data-Source Indicator Features: there is another approach introduced by Nakov (2008) to 

combine multiple translation tables in a log-linear combination. For each translation table, there 

is a data-source feature which is integrated in the log-linear combination into Moses. The data-

source indicator features distinguish different domain-specific phrases. In this approach, 

multiple translation tables are combined together to create a single translation table by 

assigning a particular value for each data-source feature according to domain importance. We 

refer the interested reader to Nakov (2008) for the details of how these features are integrated 

into Moses for multi-domain translation tables. This approach is also applicable to combine 

multi-domain reordering tables. 

4.3 Clustering Out-of-Domain Corpus Data 

The idea is to extract sentences as similar as possible to the tourism domain sentences from the 

out-of-domain parallel corpus (TIDES). Hasan and Ney (2005) cluster sentences into specific 

classes based on regular expressions. They measure the perplexity of sentences as evaluation 

criteria. Yamamoto and Sumita (2007) applied unsupervised clustering on a bilingual training 

corpus. In their case, each cluster is regarded as a domain. Clusters are defined automatically 

(without human knowledge) and created by the entropy reduction based method (Carter, 1994). 

In both techniques, the total number of clusters is pre-defined by the user. Similarly, in our case, 

two clusters were defined, one cluster contains sentences similar to the tourism domain 

sentences (EILMT corpus), the other cluster contains the remaining sentences.  

We build a language model on the English side of the EILMT bilingual training data. We 

extract high-frequency n-grams (upto 5-grams) and their probability distribution from the 

language model. Stop words are removed from the high-frequency n-gram list. Intuitively, the 

remaining high frequency n-gram word sequences are tourism domain-specific terminologies. 

For clustering purposes, we defined a similarity function that measures sentence similarity 

based on the occurrences of domain-specific n-grams in the English sentences of the TIDES 

bilingual training data. The similarity function is based on the n-gram overlap metric, which 

calculates the similarity score of an input sentence depending on the number of overlapping 
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domain-specific n-grams in that sentence. The sentence similarity score is derived by adding the 

log-probabilities of all overlapping n-grams. The similarity thresholds of clusters are set 

manually. Thus, sentences of the TIDES bilingual corpus are clustered into two sub-corpora 

using the above monolingual sentence clustering method. The first cluster is a sub-corpus 

containing parallel sentences similar to our in-domain corpus. The second cluster contains the 

remaining parallel sentences. The first sub-corpus (SUB1) contains 5893 sentences, (11.9%) 

which are closer to in-domain tourism corpus.  The remaining sentences form the second sub-

corpus (SUB2) containing 436111 sentences. 

5 Results and Analysis 

We performed two sets of experiments. The first set of experiments tests the adaptations of out-

of-domain TIDES training data with in-domain EILMT training data. Experimental results are 

reported in Table 3. The second set of experiments is performed applying adaption techniques 

on clustered sub-corpora (SUB1 and SUB2) with the in-domain EILMT corpus. Experimental 

results are reported in Table 4. In all our adaptation experiments, we performed log-linear 

interpolation of in-domain and out-of-domain language models. 

Table 3 shows that when data-source indicator features are applied in the adaptation 

technique, system performance improves 0.29 BLEU point over the EILMT baseline (Table 1). 

When domain adaptation using 2-decoding paths is employed, the system produces a 0.19 

BLEU point improvement over the baseline.   

The experimental results of clustering the out-of-domain training data are reported in Table 4.  

We obtained a 0.44 BLEU improvement over the baseline when applying the adaptation 

technique using data-source indicator features on EILMT training data and two clustered sub-

corpora. This experiment improves system performance across all the evaluation metrics. A 3-

decoding path adaption technique on EILMT training data and two clustered sub-corpora 

results in an improvement of 0.25 BLEU point over the baseline. 

The experimental results in Table 3 and Table 4 clearly show that adaptation techniques 

improve across all the evaluation metrics over the baseline results displayed in Table 1. This 

indicates the usefulness and effectiveness of applying domain adaption techniques in English—

Hindi Statistical machine translation.   

Table 3: Domain Adaptation combining EILMT and TIDES corpus. 

Adaptation Experiments BLEU NIST METEOR WER PER 

Data Source Indicator Features TMEILMT+TMTIDES   11.22 4.65 33.1 82.56 56.46 

Multiple Decoding Paths TMEILMT+TMTIDES 11.12 4.69 34.46 80.44 55.63 
 

Table 4: Domain Adaptation combining EILMT and clustered sub-corpora. 

Adaptation Experiments BLEU NIST METEOR WER PER 

TMEILMT+TMSUB1 11.07 4.59 31.04 81.93 56.72 Data Source 

Indicator Features TMEILMT+TMSUB1+TMSUB2 11.37 4.68 34.29 81.72 55.94 

TMEILMT+TMSUB1  11.00 4.56 31.56 82.04 56.71 Multiple Decoding 

Paths TMEILMT+TMSUB1+TMSUB2  11.16 4.63 34.26 81.87 56.28 
 

Furthermore, the system developed by adaptation techniques on clustered sub-corpora and 

the in-domain training corpus produces the highest improvements (0.44 BLEU absolute; 

corresponding to 4.03% relative) over the baseline. This improvement clearly indicates the 

effectiveness of our approach to cluster out-of-domain corpus data.  

6 Conclusion and Future Work 

Lexical coverage is an important issue when an SMT system is built, particularly with 

languages with small-scale training data. But, this problem will worsen if out-of-domain 

training data is added in an improper way. Applying domain adaptation techniques to combine 
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multiple domain corpora, we have successfully increased the lexical coverage in an SMT model 

with improved system performance. The highest improvement in terms of BLEU (4.03% 

relative) is achieved when a domain adaption technique by data-source indicator feature is 

applied on clustered sub-corpora and in-domain training data. Therefore, clustering a large out-

of-domain corpus to extract sentences similar to an in-domain corpus is an interesting finding 

of this research. Domain adaptation techniques using multiple domain data have been 

successfully employed on a new language pair English—Hindi. To the best of our knowledge, 

no research has been published to date on domain adaptation in SMT on Indian languages.  

The improvement in translation quality is definitely due to the better lexical coverage of 

phrases. In future, we want to perform a manual evaluation on the output to see how the 

adapted system’s translation differs from baseline translation. For clustering purposes, we 

defined a simple similarity function which is based on an n-gram overlap metric. In future, we 

want to improve the similarity function by substituting the n-gram overlap metric with a 

weighted n-gram overlap metric (setting larger weights for the longer n-gram word sequences). 

In the present work, a bilingual out-of-domain corpus is clustered based on the occurrences of 

domain-specific n-grams in the source language. In future, we want to consider the target 

language as well as the source language. We also intend to investigate translating Hindi—

English to see whether similar improvements are achieved. We also want to automatically tune 

the threshold value for clustering based on machine translation evaluation metric. 
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