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Abstract. In this paper I aim at sketching out in bare outline a new model/framework of 
language processing with its implications for natural language processing. Research in 
theoretical linguistics, computational linguistics and mathematical linguistics has delineated 
the ways natural language can be represented and modeled. Studies in cognitive 
(neuro)science, on the other hand, have shown how language processing is implemented in 
human cognitive machinery. Here an attempt will be made to integrate all these findings 
into a mathematical model of language processing which will point to some potential 
constraints on what natural language processing can achieve or do and what it possibly 
cannot.    
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1 Introduction1 

A lot of research in mainstream theoretical linguistics (Chomsky, 1995, 2000; Pollard and Sag, 
1994; Bresnan, 1982, 2001; Jackendoff, 2002), mathematical linguistics (Manaster-Ramer, 1987; 
Kracht, 2003), computational linguistics/natural language processing (Berwick, 1985; Barton et 

al., 1987; Altman, 1995; Hausser, 2001; Roark and Sporat, 2007) has shown how the 
representational, structural and logical properties of natural language can be modeled. On the 
other hand, an emerging body of research in cognitive neuroscience of language (Levelt, 1989; 
Grodzinsky et al., 2000; Brown, 2001; Pulvermüller, 2002; Hagoort, 2003; Paradis, 2004; 
Poeppel, 2004) has revealed the ways those properties of language are represented in human 
brain showing their connection to cognitive mechanisms of language processing. But there 
seems to be a gulf between these approaches on one hand, and between the integrated results 
from these studies and natural language processing in artificial intelligence on the other. Apart 
from that, mathematical linguistics does not seem to have committed itself to considering and 
reflecting these issues bordering on wider cross-connections. Against this context, it becomes a 
pragmatic need to see how all these issues can be linked to each other. The present proposal is 
aimed at bridging the gulf as specified above, which will probably project far reaching 
implications for natural language processing in artificial intelligence in general. A general 
architecture of language embedded within a cognitive architecture will first be drawn up to 
ultimately show how it might constrain natural language processing. In the middle, a 
mathematical exploration of language and language processing as falling out of the general 
architecture of language will also be taken up in order to derive significant formal 
generalizations that the entire architecture offers. 

     The aim is to strike out a synergistic confluence between the (formal) linguistic notions 
and concepts, and the emerging general architecture of language which will be shown to be 
bound up with each other. In sum, it will be argued that the nature of rules, constraints, function, 
processing, language universals and competence as derived from the overall general architecture 
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of language has deep implications for computational intelligence underlying natural language 
processing. 

2 A General Architecture of Language 

Here a general functional architecture of language will first be presented with an eye on its 
potential implications for the overall framework of the mathematical model to be explored here. 
A certain generalizations will be drawn up from this general architecture of language to be 
implemented in and intertwined with a superimposed cognitive architecture. Such implications 
will be extrapolated for the cognitive architecture within which the mathematical framework 
will be positioned. A range of studies in linguistic phenomena (Neelman and Ackema, 2004; 
Hengeveld et al., 2004; Mascaró, 2007) are increasingly pointing toward more interconnected, 
fluid interactions among the components of language- syntax, semantics, lexicon, morphology 
and phonology. Now let’s have a look at the general architecture as given below. 

 

 
 
                                           

                            Figure 1: A multipartite unified functional architecture of language 
 
This is a functional level architecture of language in mind/brain. The nodes are functional 
modules, not in Fodorian sense. They are functionally coherent units of representational 
resources realized in diffuse, often shared networks of brain regions (Gobet, 2005; Downing, 
2005). Such representational resources can be characterized in terms of the activation patterns in 
neural regions which are involved in the components of language-namely, lexicon, syntax, 
semantics, phonology and morphology. And the bi-directional arrows regiment processing 
connections among them. Here we get in the architecture processing of representations, so 
processing is unified with representations. Processing interacts with and influences the 
representations in mind/brain in a mutual modulatory dynamics and processing applied to 
representations will constitute (linguistic) structures. In the proposed architecture above 
computation can run in any direction involving any number of language domains for the 
interpretation of any type of interaction effects- whether large or small- among the components 
of language. Different linguistic phenomena will involve different sets of interactions among the 
components. Here interface/interaction effects can be computed in parallel from and in any 
direction involving any number of domains or modules of language given that only some 
content of each as required by others is available to the others. These constraints will encode 
how each component of language will interact with the others, so for example, a specific 
constraint can determine how much information should be passed from syntax to phonology to 
which matters of recursion, argument structure, word order etc. may be irrelevant but syntactic 
constituency may well be relevant in specific situations. At best, such constraints may well be 
variable across different languages-some absolute and some relative. Before we proceed, let’s 
specify a number of concepts to be used for the formalizations in later sections below. A 
linguistic phenomenon is any phenomenon that involves a kind of interaction between any 
number of components of language for the observed regularities/irregularities found across 
languages. An interaction between any number of components of language involves a sort of 
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interfacing between them such that such interfacing causes the components of language 
involved in the interaction to map required information onto each other, for example, the 
linguistic phenomenon of split intransitivity- a distinction between ergativity/unaccusativity- 
causes syntax, lexicon, morphology and semantics to work in tandem and have impacts on one 
another. Computational relevance  requires the mapping of as much linguistic information at the 
interfaces between the components of language as is feasible and needed in a  given linguistic 
phenomenon.  Adequacy of information is the amount of linguistic information as demanded in 
the requirements of computational relevance, so for example, in the linguistic phenomenon of 
middle constructions information about word order/linearity, agreement from syntax are to be 
characterized as adequate information .  
Stipulation  For any χ in any L there must be an I(χ) such that there is a set Ω of Lc which are 

in parallel interaction with each other with  τ(I(χ)) and |Lc |= Θ and Θ≥ 1 and Ω ≠ Ø iff I(χ) 
satisfies a set Ф of constraints that operate on I(χ). 

What this means is simply that for any linguistic phenomenon χ in any language L, there 
must be some interaction involved in χ which is I(χ) determined by computational relevance and 
adequacy of information τ such that there is a set  Ω of linguistic components Lc interacting with 
each other in χ and  Lc can be of any number Θ but Θ must not be equal to zero, that is, must be 
equal to one or more than one and the set Ω of Lc must not be a null set with the set Ф of 
constraints that operate on the mutual interaction(s) of the linguistic domains. 

3 Toward a Cognitive Architecture of Language Processing 

It is necessary to fit the functional architecture of language into an architecture incorporating 
other cognitive domains so that how this architecture of language interacts with other cognitive 
domains can be linked to neural processing at the lower level. The extended picture in Figure 2 
below is also symmetric with certain constraints on their mutual interaction such that not all 
information passes from one domain/system to another. Such constraints- computational, 
algorithmic and implementational in Marr’s (1982) sense- are specified by our genome. They 
can each be specified in the manner below. 
    Computational Constraints:  
Computational constraints will involve constraints that delimit the range of choices the 
modulatory interactive dynamics between the cognitive domains produces for adaptive problem 
solving. So for instance, such a constraint can determine how much (working) memory can be 
allocated for online construction of syntactic constituents or storage of them during 
comprehension. 
    Algorithmic Constraints:  
Algorithmic constraints are those constraints that consist of restrictions on the algorithmic 
processes that inter-domain interactions can construct based on the available resources for 
specific tasks.  It should also be noted that the algorithmic processes in each cognitive domain 
may be different from those in the other(s) (Roeper, 2007). Such constraints may, for example, 
affect how information can be transferred from visual perception to language so that language 
may reconstruct the visual perceptual space, so finer details of visual perception may not be 
available to language because of such algorithmic constraints. 
    Implementational Constraints: 
Implemental constraints are constraints that fix up the layouts of neural connectivity among 
networks of brain regions such that cognitive functions are delimited by the manner of neural 
connectivity among neural networks. Constraints of this kind are mostly laid out genetically or 
epigenetically and modified to a large extent during developmental trajectory.  

So these constraints fix up rather than determine how the cognitive domains or modules are 
going to interact with each other. Enumerating all of them will be a big problem, since we do 
not yet know how many constraints apply to the cognitive domains in question. Nor do we 
know in full details how they lay out the maps of interactional boundaries between the cognitive 
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domains or modules, since a mapping from genes to behavior and cognition is still out of our 
reach (Karmiloff-Smith, 1992; Heschl, 2002). 
 
 

                          
 
 
                        Figure 2: Interconnection of language to other cognitive domains/systems. 
 
Here all these domains have varying interactions (I(d)) with respect to each other; what this 
means is that all these cognitive domains have differential mutual interactions with respect to 
each other. And this can be represented through a distribution of joint probability in the 
following equation. This is in consonance with Mondal (2009). The interaction potential I(φ) 
can be characterized as 
 
                                                    N 

                                         I(φ) = ΣPi ∫ d c1, … d cN δ(c1 … cN). ∆ψ                                                  (1)                                                     

                                                   i=1             
                                              

Here c1 …  cN are differential probability functions coming out of the interaction dynamics 
of language with other cognitive domains and N in c1 …  cN must be a finite arbitrary number 
as required for the totality of cognitive domains; P  is  a probability function; ∆ψ is a temporal 
distribution. The cognitive domains are functionally coherent units of emergent self-organizing 
representational resources realized in diffuse, often shared and overlapping, networks of brain 
regions as mediated by the bidirectional interactions in Figure 2. 
     This is also consistent with the dynamical view of cognition (Spivey, 2007).  However, it 
may be objected that all the domains are connected to each other in a symmetric fashion, since 
such an architecture allows for transfer of information in any direction given that some 
constraints are maintained. But in biology such symmetric interconnections are being 
increasingly recognized (Gottlieb, 2002; Dunbar, 2007).  Apart from that, research in 
developmental neuroscience and neurobiology of language (Neville and D. Bavelier, 1998; 
Stiles, 2000; Diamond et al., 2004; Davidson et al., 2006; Johnson, 2001; Johnson and 
Karmiloff-Smith, 2003; Lieberman, 2006) is also pointing toward a greater interconnectedness 
and neural overlap between the cognitive modules or domains. They all emerge in close synergy 
across the developmental scale. Research in the area of Cognitive Linguistics (Fauconnier, 1985, 
1997, 2002; Lakoff, 1987; Langacker, 1987) has also increasingly emphasized that language, 
memory, vision, motor system and other cognitive domains are interlinked to each other in what 
we mean by language. These are not just disparate findings; they point toward something. Now 
the time has perhaps come to amass findings and results from fields as diverse as cognitive 
neuroscience, (developmental) genetics, evolutionary biology, developmental neuropsychology, 
psycholinguistics, neurolinguistics toward exploring language in its broadest possible spectrum 
so that the nature of language at all levels can be unlocked. The symmetric interconnected 
architecture of language is motivated on these grounds. Vision, memory, motor system, auditory 
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system, emotion, social cognition are all linked to each other here in the architecture, as they all 
have something to do with language. It may not be the case that all will have equal influence 
and modulation on each other; rather they must have differential influence on each another. For 
example, memory might influence and modulate language more than vision. These factors will 
certainly be a part of the constraints on their mutual interaction. However, here the reasons for 
including emotion and social cognition are twofold. First, the role of emotion and social 
cognition in language has been relatively neglected in the literature. But recently the connection 
between language and emotion (Shanahan, 2007) has been raised. Shanahan (2007) argues that 
it is our emotions that projected the symbolic system that was later adapted to linguistic capacity. 
Given the possibility that emotion provided a boost to the growth of a symbolic capacity 
mediating the language-emotion interface, we find that language interacts with emotion at 
multiple levels with much stronger bond than has been perhaps presumed. Evidence of this 
comes from language acquisition research where it is becoming clearer that without emotional 
mechanisms language acquisition is almost impossible (Paradis, 2004). Emotional mechanisms 
as we understand them are also inseparable from social cognition.  A range of findings (Johnson 
et al., 2005; Jackendoff, 2007; Kinzler, 2007; Olson, 2007) suggest that language, perception 
and social cognition go together in humans’ cognitive development and help in cognitive tasks 
based on differential processing requirements. Such findings coupled with research in 
sociolinguistics (Hymes, 1972) can be integrated in support of the architecture above that posits 
that there is a symmetric interconnection between language and other cognitive domains 
including emotion and social cognition. Computationally speaking, social cognition will contain 
an ontology of knowledge about social categories, status, values, power, social setting etc.  
     All this indicates that there is much closer coupling between the cognitive domains than has 
been assumed. This is what makes the whole architecture susceptible to simplicity coupled with 
complexity as will be discussed in the fifth section where it will be linked to computational 
intelligence. This architecture possesses simplicity in the sense that there are fewer number of 
assumptions that are built into the architecture, it is complex in that the entire architecture is 
structurally composed of constituent subsystems each of which again having its own subsystems. 

4 Toward a Mathematical Cartography of a Language Model 

A range of mathematical generalizations by means of extrapolations from the assumptions made 
above can now be sketched out as following out from the overall picture of the architecture of 
language above. Such mathematical generalizations can be drawn up in such a way that such 
generalizations will have constraints on top from the superimposed cognitive architecture and at 
bottom from the general architecture of language embedded in that cognitive architecture. It is 
believed that such mathematical generalizations clothe the familiar notions about language in a 
newer way so that significant insights can be derived from an integration of mathematical 
modeling, a cognitive architecture and a generalized architecture of language. Hence, here a set 
of linguistic concepts in relation to neurocomputational processing of language will be 
mathematically formalized. Vectors will be used in the formalization as given below since they 
are perhaps better suited for the task of a mathematical model. Even if one may have certain 
reservations regarding their modeling capabilities in the framework being proposed here, 
parsimony dictates that the more compact and less elaborate characterization with much 
currency be used. The same principle will be regimented here. First, let us characterize the 
components of language L as a set of vectors representing syntactic, semantic, morphological 
and lexical features, processes and components. 
                                       

                                                  L= {α1, α2, α3, … ,αn}                                                       (2) 
 

 So the same can be said about other cognitive systems, memory (M), attention (A), vision 
(V), audition (AD), emotion (E), motor system (MS), and social cognition (SC). 
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                                            M= {β1, β2, β3, …, βn}                                                       (3) 
                                             A= {γ1, γ2, γ3, …, γn}                                                         (4) 
                                            V= {ω1, ω2, ω3, …, ωn}                                                      (5)      
                                            AD= {ξ1, ξ2, ξ3, …, ξn}                                                       (6) 
                                            E= {π1, π2, π3, …, πn}                                                         (7) 
                                           MS= {φ1, φ2, φ3, …, φn}                                                     (8) 

                                             Sc= {µ1, µ2, µ3, …, µn}                                                       (9) 
                                                   

    Memory (M) will have components like working memory, long-term memory, semantic 
memory etc. in the vectors; attention (A) will have as components overt attention, covert 
attention etc.; vision (V) will have as components featural vision, spatial vision etc.; audition 
(AD) will have components like acoustic-phonetic audition, articulatory-auditory mapping etc.; 
emotion (E) will have as components affect, mood, conation of affect etc.; motor system (MS) 
will have schemas of selection, planning, execution, and social cognition (SC) will have 
ontologies of status, hierarchy, register, social setting etc. Undoubtedly, in many cases the 
vectors representing components, features, processes in each cognitive domain/system will be 
overlapping. However, here any vector (Vi) will have the following dynamics as specified in 
(Spivey, 2007). 

                                                  
                                                                  ∂ Vi  = f (Vi)                                                               (10) 
                                                             ∂t  

 

4.1 Mathematical Structure of Rules, Constraints, Function, Processing, 
Language Universals and Competence       

The notions of rules, constraints, function, processing, language universals, and competence will 
be revisited here and illuminated in mathematical light. They form the core of language; so 
insights taken from the broader architecture of language as specified above can be applied to 
what constitutes the core of language. One may argue whether such new, if rudimentary, 
formalizations adequately model the notions as given below. However, one has to start de novo 
if one wants to explore familiar notions with a view to linking them to unfamiliar and 
unexplored paths of inquiry. At the end, such notions will be used to show what it is that we 
ultimately unveil through the interconnection of such notions as formalized below.  
    Rules: Rules R= (R1,…, Rn) in language will be formalized in the form below- 

      R = ∫ υ (Pi (α1. α2. α3, … ,αn), Pj (α1. α2. α3, … ,αn))  f (Pi (α1. α2. α3, … ,αn), t) d(Pi (α1. α2. 
α3, … ,αn))                                                                                                                                                (11) 

                                                                                                                                                               
Here υ denotes a probability weight recursively assigned to Pi and Pj which are differential 

probabilities having a complementary distribution with t denoting a particular point of time. In 
addition, υ also determines how strongly Pi and Pj may be correlated at time t. And f  is a 
continuous probability function. 
    Constraints: Constraints (Ci) on rules and its processes abound in the literature (Kayne, 1994; 
Moro, 2000; Smolensky and Legendre, 2006). Such constraints operate on phonological, 
semantic and lexical-morphological rules and processes determining the possible mappings 
from input values of underlying linguistic forms to the potential values of surface linguistic 
forms or representations. So we get constraints like- 
 

 Ci =  R     ∫ υ ((Pi (α1. α2. α3, … ,αm), Pj (α1. α2. α3, … ,αm))  f (Pi (α1. α2. α3, … ,αm), t) d(Pi (α1. 
α2. α3, … ,αm))                                                                                                                                                                                                   (12)                                                             
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    Here m < n from (10), m might be any arbitrary number between 2 and n-1 (2 being the 
lowest possible joint probability between the members of the set of vectors in (2)). And so m 

actually denotes differential interactive potentialities of vector components of language as they 
are deducted from rules.  
    Function: Functions have been defined and explained in functional theories in terms of 
communicative purpose of language use (Givón, 1995; Hengeveld and Mackenzie, 2006). 
Function is a statistical probability. So, for example, somebody utters ‘a man’ and stops, we 
cannot determine whether this NP is the subject or the object, this becomes the subject/object as 
the next word is processed; it becomes the subject in ‘a man comes …’, but becomes an object 
in ‘a man I know…’. So in the same way, if we say ‘Club..’ and stop, the function predicate 
cannot be determined from this. As we go on and continue with ‘Club them together…’, it 
becomes the predicate; otherwise in ‘Club is a social gathering…’ it is the subject, not predicate.  
Let us formalize it in terms of conditional probability- 
                             

                                                       P(αi/ αj)  =   P(αi ∩ αj)                                                     (13) 
                                                           P (αj) 
 
      αj can be either syntactic category or phonological structure or even semantic structure in a 
vector. Taking all such potentialities, we get functional potentiality Fp. So it can be represented 
in the form of total probability as– 
 

         Fp = P (α1). P (Fp /α1) + P (α2). P (Fp /α2) + P (α3). P (Fp /α3) +,  … , + P (αn). P (Fp /αn)                                                    
(14) 

 
       Processing: Now the aspect of cognitive processing of language as emerging out of the 
cognitive architecture of language in Figure 2. can have the following mathematical 
representation- 
 
                            ∂ 1Cd . ∂ 2Cd .  ∂ 3Cd . , …, . ∂ iCd    =  f (1Cd.

2Cd.
3Cd ., …,. iCd)                      (15)                                   

                             ∂t         ∂t       ∂t                   ∂t       
                                                                                                                     
     Here i

Cd denotes a cognitive domain like language or vision etc. as described in Figure 2. and 
i ≤ 8, since we have eight cognitive domains interconnected to each other in Figure 2.  
       Language Universals:  Language universals (UL) as specified in Comrie (1981), Croft 
(1990) can also be mathematically expressed in the following fashion- 
 

                                                  UL = f (FL. LP, ∆λ)                                                           (16) 
  
       FL denotes language function, LP language processing and ∆λ a vector field characterizing 
chance variation.   This meshes fairly well with Kirby (1999).  
    Competence: At last Chomskyan I-language or competence (CL) can be characterized as a 
state of processing in neurocognitive system at a point of time. It will be in the form of a triple 
of variable processing state (∆ψ), a point of time (t) and a probability density function (ρ). 
 

                                                CL= (∆ψ, t, ρ)                                                                  (17) 
 
      Where  ∆ψ = f( (ψ, t-1), (ψ, t-2), (ψ, t-3), … ,(ψ, t-m), (ψ, t +1), (ψ, t +2), (ψ, t +3),…, (ψ, t 
+ (n-1)), (ψ, t + n)), when     m <  n.    

                                                                                                                                         (18)  
  
      What this suggests is that competence is not only dependent on previous processing states of 
the neurocognitive system, but also on those coming later to be expected. This may seem to be 
counterintuitive on the face of it; but a little more thinking will show that what we understand as 

371



competence is a bit elementary. Controversies abound in the literature. Competence is a 
function of what the cognitive agent did, does and can possibly do. Such characterization is 
quite consistent with the dynamical view of cognition as well (Spivey, 2007). 

4.2 Emergent Computational Synergy, Natural Language Processing and 
Artificial Intelligence 

Rules, constraints, function, processing, language universals, and competence as specified 
above form what may be called emergent computational synergy which characterizes self-
organizing cognitive language processing, it is emergent in that all these components interact 
with each other in a complex self-organizing dynamics which can never be reduced to any of 
them; it is computational in that it can be characterized by Kolomogrov complexity and it is a 
synergy in that the emergent pattern grows out of dynamic, perhaps nonlinear, coupling among 
them. All these notions are inherently interwoven with one another. Constraints as we know 
them are defined and operate on rules; function and processing principles are also frozen and 
embedded in rules;  function and processing are factors in the constitution of language 
universals and at last, competence is a function of rules, constraints, language universals and 
processing. Let’s see why the notion of emergent computational synergy as emerging from the 
interwoven matrix of rules, constraints, function, processing, language universals, and 
competence is important here. They reveal some deeper patterns about language processing 
whether in humans or machines. Let’s see how. 
     Tools like parser, language generator, language understanding system,  morphological 
analyzer, tokenizer, stemmer etc. as are used in natural language processing tasks across a range 
of platforms are themselves products of this emergent computational synergy, as they are 
developed through human efforts. But they can never replicate or simulate this emergent 
computational synergy; since if hypothetically any of them can at all, the simulated/replicated 
synergy has to be able to produce another  tool/ tools just like itself and that product has to 
produce yet another and so on ad infinitum- an infinite regress. This is logically impossible. So 
what our advanced natural language processing tools can achieve is only a fragment of what this 
emergent computational synergy is supposed to produce through individual or collective efforts. 
It is not just a constraint on natural language processing tools; rather, it is a constraint on 
machines in general which will be the products or gifts of artificial intelligence.    

5 Conclusion 

This is just a preliminary sketch of what natural language processing can offer for artificial 
intelligence given that our neurocognitive machinery imposes constraints on natural language 
processing tools which are just products of this machinery. They come naturally out of the 
mathematical framework sketched out here. What natural language processing tools can do is 
automatization of a few seemingly human tasks in the barest depth, but perhaps nothing beyond 
that. The important thing is that such constraints have been couched in a preliminary 
mathematical framework described and delineated here. Further greater and richer insights into 
the fundamental nature of language processing can perhaps be extracted from the framework; 
this will be the goal of future research. 
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