
Natural Language Database Interface for the
Community Based Monitoring System*

Krissanne Kaye Garcia, Ma. Angelica Lumain,

Jose Antonio Wong, Jhovee Gerard Yap, Charibeth Cheng

De La Salle University – Manila. 1410 Taft Avenue Malate, Manila

{10533834, 10517197, 10514848, 10506349, koc}@dlsu.edu.ph

Abstract. In most information systems, databases are accessed and manipulated typically
through systems developed to tailor-fit the company’s needs. The usual problem in these
cases is the limitation on data accessibility because the users are constrained to the forms
created for the system. Another way of accessing the database is through Structured Query
Language (SQL), a language that is not familiar to end users, thus still limiting the access to
the data. Natural Language Database Interfaces were developed to address limited database
accessibility for end users. This paper presents AlLaDIn, a web-based natural language
interface to the Community-Based Monitoring System of a city in the Philippines.

Keywords: natural language database interface, SQL, CBMS, natural language query

1. Introduction
CBMS is a poverty monitoring system that is now used in Pasay City. It tracks poverty by
surveying the people living in a certain area. Once this is done, they input them using the
programs Census Professional (CSPro) and CMS-Natural Resource Database (NRDB), which
are customized free software used to encode the data and to digitize spot maps. The output of
CSPro is a text file, which is then used as an input to the program STATA, which they use to
actually statistically monitor poverty. Since STATA needs technical skills to be used
effectively, the data is very hard to access. Thus, people who actually must have direct access to
these pieces of information must first ask the people/person who are/is capable of using the
software to get the data for them, which might take some time. To address this problem, a
Natural Language Database Interface (NLDBI) was developed for CBMS that will allow users
to access the CBMS data without having to learn STATA.

A NLDBI allows users to access a database using natural language query. It accepts a user
query, extracts pertinent data from the query, converts the extracted data to SQL, then retrieves
the data from the database. AlLaDIn is domain-dependent, database-dependent natural language
interface for CBMS-Pasay.

2. System Architecture
AlLaDIn is concerned with translating the English query by the user into its corresponding SQL
query to retrieve the data from the database. The result will then be displayed to the user. This
system has four major modules, as shown in the architectural design of the system in Figure 1.
This design is partially based on the Masque/SQL system (Androutsopoulos et al., 1995) and
the FST mapping technique (Gala, 2005).
2.1 Parser and Semantic Analyzer
This phase involves the (1) the tokenization of input, (2) parsing and analyzing the semantics of

* Copyright 2008 by Krissanne Kaye Garcia, Ma. Angelica Lumain,
Jose Antonio Wong, Jhovee Gerard Yap, Charibeth Cheng

384

22nd Pacific Asia Conference on Language, Information and Computation, pages 384–390

words, (3) retrieval of syntactic and semantic properties of words in the lexicon, and (4)
checking the grammatical and semantic rules of the input. A context-free grammar for the
English language is used to check if the sentence is grammatically correct.

Figure 1: Architectural Design of NLDBI-CBMS

Once the sentence has been inputted, the Parser and Semantic Analyzer would tokenize the
sentence. Each token would then be passed to WordNet for it to be properly tagged with its part-
of-speech (POS), other information tag (eg. singular, person), and the token’s synonyms. After
being tagged by WordNet, it would then be passed to the lexicon. The lexicon contains domain-
specific words or terminologies that are not found in WordNet. It would then tag each token that
was not tagged by WordNet. After tagging all tokens, the sentence would then be parsed and
checked if it is grammatically correct.

2.2 Semantic Post-Processor
Once the natural language query is accepted and confirmed by the system as grammatically and
semantically correct, the query is then passed to the semantic postprocessor. The semantic post-
processor is necessary for queries present the referencing problems of anaphora and ellipses
(Androutsopoulos et al., 1995). Consider the compound user query “How many people
live in Barangay 1? What about Barangay 2?” The second query is
ambiguous, however, the handling of such ambiguities presents a simpler way of querying for
the users by allowing follow-up questions to be used and short.

If the user’s input query does not have any anaphoric expression or ellipsis, the query is
scanned. The query would be looked up in the discourse model to fill up the succeeding queries
that have to be further resolved.

Template of the discourse model is shown in Table 1 and a sample discourse template is
shown in Figure 2.
Table 1: Discourse Model Template.

Tag Possible values Description
<Discourse> Marks the start of a discourse entry
<Sentence> Marks the start of an input sentence
<Token> Marks the start of a token in a sentence
<Term> person Indicates the term in the token

385

<POSTag> noun Indicates the term’s part-of-speech tag
<OtherInfo> singular, common,

number, plural,
proper}

Indicates other information related to the
token

<Synonym> Members Lists all possible synonyms of the token.
These synonyms are taken from WordNet if
the token is in WordNet, otherwise, these
synonyms came from the lexicon.

Figure 2. Sample Discourse template.
2.3 Finite State Transducer
A finite state transducer (FST) consists of states that maps one string to another string. It
transduces or replaces a certain string to another.

AlLaDIn uses FST to replace keywords extracted with their corresponding SQL terms and
database table attributes and conditions. The FST is represented by the rules defined in the
Selection Restriction and Type Hierarchy, and the Translation Rules.

The Selection Restriction and Type Hierarchy is in charge of looking for words that are
searchable in the CBMS Database. These words were manually created based on the CBMS
database schema. The words that we placed here are those that have a particular mapping to the
database, whether it be a table, attribute, or a condition. A sample of this is found in Table 2.

The Translation Rules is a table containing SQL keywords with a list of its corresponding
English terms. These English terms are just synonyms of the SQL keyword’s English literal. For
example, the SQL keyword max has an English literal maximum, the list of English terms were
derived from the synonyms of maximum. A sample of this is found in Table 3.

Table 2: Sample entries of the Selection Restriction with the mapping.

386

Table 3: Sample entry of the Translation Rules.

2.4 Translator to SQL
The tokens here are first replaced by their table attributes. This is done by passing each token
term as a parameter to the Primitive Mapping to DB, which will return their mapping(s). The
Primitive Mapping to DB is basically a table, which contains the word and their corresponding
mappings. This is shown in Table 2. The first column represents the token while the other
column represents the mappings. There are 40 more columns here that represent the mappings
of the token, but due to space constraint it cannot be displayed all here. 41 was used as the
maximum number of mappings because there are 41 tables in the CBMS database and we
assumed that a token can only be mapped to one attribute per table.

After replacing all keywords with their table attributes, the Translator to SQL module will
group the keywords into two groups, namely, the Object group and the Components group. The
Object group contains the select and from clauses, while the Components group contains
the where clause.

3. Simulation
To further understand how each module works, the inputs and outputs of each module will be
shown based on the query “How many people live in Barangay 1? What about
Barangay 2?”.

3.1 Paser and Semantic Analyzer
As the sentences enter the Parser and Semantic Analyzer module, the sentences are separated so
processing may be performed one sentence at a time. Figure 3 shows the sentences after
separation.

Figure 3: Sentences after being separated.

After separating the sentences, the sentences would then tokenized and passed to WordNet for
part-of-speech tagging and retrieve of semantic information and synonyms. The underlined
entries in Table 4 are the data taken from WordNet.

387

Table 4: The extracted tokens with WordNet information.
Term Part-of-Speech tag Other Information tag Synonyms
How many WH Null Null
People Noun Plural Members
Live Verb Null Null
In Preposition Null Null
Barangay 1 Unknown Null Null

What about WH Null Null
Barangay 2 Unknown Null Null

As seen in Table 4, “Barangay 1” is tagged as unknown. This is because WordNet does not
contain the domain-specific terminologies used by the CBMS, which can be found in the
lexicon. Table 5 shows the tokens with the lexicon information (underlined entries).

After tagging all tokens, the sentences will be parsed to check if the sentences are
grammatically correct. If one of the sentences is grammatically incorrect, the sentences
proceed to the Post-Semantic Analyzer for anaphora or ellipsis resolution.

Table 5: The extracted tokens with WordNet and lexicon information
Term Part-of-Speech tag Other Information tag Synonyms
How many WH Null Null
People Noun Plural Members
Live Verb Null Null
In Preposition Null Null
Barangay 1 Noun Singular Null

What about WH Null Null
Barangay 2 Noun Singular Null

3.2 Semantic Post-Processor
Upon entering the second module, the system checks if the sentences contain an anaphora or an
ellipsis for them to be resolved. Consider the second sentence “What about Barangay
2?”. This sentence contains an ellipsis and need to be processed. The Semantic Post-
Processor determines the missing components of the sentence with ellipsis from the previous
query. In our example, the previous query is “How many people live in Barangay
1?”. The processed sentence is shown in Table 6.

Table 6: Query 2 after ellipsis resolution.
Term Part-of-Speech tag Other Information tag Synonyms
How many WH Null Null
People Noun Plural Members
Live Verb Null Null
In Preposition Null Null
Barangay 2 Noun Singular Null

The Semantic Post-Processor compares each token of the previous query with the current
query, and then merging distinct tokens from both queries into one to formulate the new and
resolved query. However, the result of this process might not always be correct or complete.

3.3 Finite State Transducer
In the finite state transducer module, tokens are replaced, when possible, with their
corresponding SQL equivalents based on the Translation Rules table. In our example, how
many was replaced select count(*). Its part-of-speech tag is then changed to SQL to
indicate that the token is already an acceptable SQL token. Other tokens are replaced with

388

database-specific tokens, based on the Selection and Type Hierarchy entries and the synonyms
of the tokens. For our sample queries, the token people was replaced to the CBMS table
member, since it has a synonym of members. Its part-of-speech tag is then changed to
selection restriction. Tokens that are tagged as adverb, adjective, or
prepositions are filtered out of the token list. Table 7 shows the resulting set of tokens for
both sentences.

Table 7: Tokens after passing through FST.
Term Part-of-Speech tag Other Information tag Synonyms
select count(*) SQL Null Null
member Selection Restriction Plural Members
live Verb Null Null
Barangay 1 Noun Singular Null

select count(*) WH Null Null
member Selection Restriction Plural Members
live Verb Null Null
Barangay 2 Noun Singular Null

3.4. SQL Translation
The fourth module, Translator to SQL, converts those tokens tagged Selection
Restriction to its corresponding SQL syntax. Each token is checked in the Primitive
Mapping to DB if it has a corresponding SQL syntax. After which, all tags that are not tagged as
SQL are removed from the token list. Table 8 shows the partial output of the module.

Table 8: Partial output of SQLTranslator module.
Term Part-of-Speech tag Other Information tag Synonyms
select count(*) SQL Null Null
MEMBERS SQL Null Null
MEMBERS.brgy = 1 SQL Null Null

select count(*) SQL Null Null
MEMBERS SQL Null Null
MEMBERS.brgy = 2 SQL Null Null

The tokens will then be separated to the Objects and
Component groups. Table 9 shows the separation of tokens into groups.

Table 9: Object and Component groups.
Object Component
select count(*) MEMBERS.bgry = 1
MEMBERS

After grouping the tokens, it will then converted to its SQL statement which is select
count(*) from MEMBERS where MEMBERS.brgy = 1.

4. Results and Conclusion
AlLaDIn is domain-specific natural language database interface. The information that it knows
is heavily dependent on the data stored in and the structure of the CBMS database. If the
database schema is revised and/or when the data is updated, it is not guaranteed that the system
would still work perfectly. Entries in the lexicon came from the CBMS data, which means that it
needs to be update manually through the Administrator module when the CBMS database is
updated. The Primitive Mapping to DB table relies heavily on the database schema and if the
schema is changed, it also has to be revised.

389

The Parser and Semantic Analyzer module accepts simple interrogative and imperative
sentences. This module is dependent on WordNet and the lexicon in recognizing and tagging
words in the given sentence. If a word in the sentence is not matched or is matched but tagged
incorrectly, the system may generate an incorrect SQL statement thus generating incorrect
results or no results at all.

The Semantic Post-Processor module, in regards with sentence ambiguity detection and
resolution process, the module does not have any sentence ellipsis detection mechanism and the
resolution process is still imperfect. In the sentence ellipsis detection, the module just assumes
that every input natural language is an ellipsis sentence ambiguity problem. Therefore, all input
undergoes the resolution process even though the input natural language originally is not an
ellipsis. And with the resolution process, both resolution processes uses simple algorithms that
might not be enough to handle all possible cases. So there is a possibility that the input natural
language might not be resolved well, especially those inputs that are too complex. To further
improve the module, future works can be done to find a proper way of detecting the ellipsis
sentence ambiguity problem and to develop resolution algorithms that can handle and resolved
complex inputs.

The Finite State Transducer is able to handle the words that are found in the CBMS database
and the translation rules. If a given word is synonymous (according to WordNet) to a word
found in the database, the system would be able to successfully process it.

The Translator to SQL works as expected if at least one of the tokens is the query refer to a
table found in the CBMS database. If the tokens do not contain any database-specific attribute, a
default set of attributes is used by the system per table. The translator is also capable of
distinguishing if an attribute is used as an attribute or as a condition. For example, the query
“List the age of the people.” and “List the people with age greater
than 30.” In the first query age is used as an attribute, while in the second query age is
used as a condition. Although the system can handle this, it cannot distinguish if there are 2 or
more attributes used as conditions. If a query is ambiguous (i.e. tokens may be mapped to 2 or
more tables), the translator will be able to create 2 or more queries and determine which
attributes and/or condition belongs to a specific query.

To further improve AlLaDIn, it is recommended that the parser handle compound sentences.
Reliance of the system to CBMS data may also be lessened by automating the lexicon update
whenever the CBMS data has been updated. Ellipsis resolution and detection may also be
improved. Finally, the tokenization process may be enhanced. Since the conversion of the
tokens to SQL is highly dependent on the tokenization phase, it could be further improved if the
system can distinguish two or more attributes used as conditions.
5. Reference
Androutsopoulos, G.D., Ritchie, & P. Thanisch, “Natural Language Interfaces to Databases –

An Introduction”. Natural Language Engineering, 1(1), Cambridge University Press
(1995).

CBMS Brochure (2003). Philippine Institute for Development Studies. Makati, Philippines.
CBMS Network Conference Overview.(2006) The CBMS Network Conference 2006:

Philippine Institute for Development Studies. Makati, Philippines.
CBMS Network Coordinating Team (2005). Gaining Insights on the CBMS Application: The

Case of the Philippines Proceedings of the 2004 National Conference on CBMS. 2004
National Conference on CBMS (pp. 2-51). Makati City: CBMS Network Coordinating
Team.

CBMS Network Project Progress Report. (2004). Angelo King Institute for Economic and
Business Studies, De La Salle University, Manila.

Gala, S. (2005). Translation From English to Sql Using Statistical Machine Translation
and Finite State Transducers.[online]
Available: http://tangra.si.umich.edu/clair/shyamg/project.pdf

390

